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Estimating the Number of Errors In a System 
Using a Martingale Approach 

Paul Yip StdDev standard deviation 
University of Hong Kong, Pokfulam ZMM zero-mean martingale. 
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Time-dependent failure intensity, Weight function, Zero-mean 
martingale 5, history of the process during [OJ] 

V number of real errors in the system (parameter of 
Summary & Conclusions - A new, efficient procedure 

estimates the number of errors in a system. A known number of 
seeded errors are inserted into a system. The failure intensities of 
the seeded and real errors are allowed to be different and time 
dependent. When an error is detected during the test, it is remov- 
ed from the system. The testing process is observed for a fiied 
amount of time 7. Martingale theory is used to derive a class of 
estimators for the number of seeded errors in a continuous time 
setting. Some of the estimators and their Bssociated standard devia- 
tions have explicit expressions. An optimal estimator among the 
class of estimators is obtained. A simulation study assesses the per- 
formance of the proposed estimators. 

1. INTRODUCTION 

interest) 
number of seeded errors (known) 
failure intensity for [real, seeded] errors 

D 
A,, fit 
Uu-, Mu- number of [real, seeded] errors detected/removed in 

U,, M, number of [real, seeded] errors detectedlremoved in 
[O, tl 

U,, 3n, zero-mean martingales 
see (3) 

e A,/& a known constant 
AV,($), SDI($) [average, StdDev] of the 500 simulated values 
- distributed as. 

Other, standard notation is given in “Information for Readers 
& Authors” at the rear of each issue. 

ro, U )  

- 

Mills [ 151 proposed a capture-recapture sampling method Assumptions 
which allows estimation of the number of errors in a system 
by randomly inserting a known number of errors and then testing 
the system for both inserted & indigenous errors. Duran & 
Wiorkowski [ 5 ] ,  and Yip & Fong 1211 derived maximum 
likelihood estimates of the indigenous errors and showed 
methods to obtain s-confidence limits. They assumed that the 
seeded errors behave as if randomly selected from the distribu- 

method was also discussed in [2, 161. 
Martingale theory is used here for an alternative estima- 

tion procedure which allows different failure intensities for the 
seeded & real errors. In order to avoid the identifiability prob- 

1. A known number of errors, D, is seeded in the system 

2. A, & fit may be time dependent. 
3. 8 is a known constant; it need not be 1. 
4. The same failure intensity is applied to each type of er- 

at the beginning of the experiment. 

‘Or in the system. 

or affecting old errors) immediately after detection. 

a continuous time 

tion of possible real errors in the system. The error seeding 5a* Errors are removed (without introducing new 

5b. Errors are detected/removed one at a time. (This allows 

4 6. Uu-, Mu- are measurable w.r.t. 

lem, a known constant proportionality is assumed between the 
seeded & real errors. This problem can be related to a removal 
experiment for a closed population of a certain type of animal 2. CONTINUOUS-TIME MARTINGALE 

in wildlife studies. Several authors have addressed this prob- 
lem [4, 6, 9 - 11, 13, 141. ~ ~ ~ i ~ ~ a l ~  theory is applied in 
reliability studies in [12, 191. 

for the population size of the real errors. some of the estimators 
and their associated standard deviations have explicit expres- 
sions. An optimal estimator among the class estimators for the 
number of real errors is obtained. 

The methods here are based on results for continuous mar- 
tingales and follow from the work of [ l]. The appendix infor- 

process (317,; t 2 0) such that: 

E{mo) = o, 

E(1312,l) < 03, for all t 2 0, 

Martingale theory is used to derive a class of estimators d Y  explains martingales. For this paper, ZMM is a stochastic 

Acronyms & Abbreviations’ 

RMSE (square) root of mean square deviation 
’The singular & plural of an acronym or abbreviation are always 
spelled the same. 
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E{3n,+h15,}  = 312,, for all t 2 0, h > 0. 

We can construct ZMM with respect to the counting processes 
U, & M,. The following 2 statements are true: 

By the Doob-Meyer decomposition, (1) & (2) are ZMM with 
respect to the increasing family of a-fields or filtration {5,, t 
2 0) 

U, = U, - A,*(V-U, - )  du, Sb 

In the presence of A,, identifiability problems occur when 
we want to estimate v by (1) only. Obviously, the information 
of v & A, in (1) is confounded. The extra effort by inserting 
D errors into the system in the beginning of the testing pro- 
vides an extra equation to estimate v.  However an identifiabili- 
ty problem can still occur with an extra unknown parameter 
6; thus assumption 3 is needed. Sacks & Chiang [18] and Wolter 
[21] made a similar assumption of constant proportionality be- 
tween two intensities in a competing risk model and a capture- 
recapture experiment respectively. 

We now use the ZMM of (1) & (2) to get an estimating 
equation which can generate a class of estimators for the popula- 
tion size of real errors, v.  Define a martingale-difference: 

Then E{d@,15,-} = 0. 

Notation 

W,- a measurable function w.r.t. 5,- 
j6 W,-.(D-M,-)  dU, - 0.j; W,- . ( v -U , - )  dM,. 

(3b) 

a* = {a: t 2 0}, is a ZMM. 

Equate (3b) to zero and evaluate it at time 7 ;  then a class of 
estimators for v is obtained: 

(4) 

which depends on the choice of W,-. The conditional variance 
of @' is: 

323 

The terms for variance follow from a standard result, eg, [3]; 
the covariance is zero by virtue of the orthogonality result of 
martingales since dM, & dU, cannot jump simultaneously. Use 
a result from [ 171: 

StdDev{B,} = W ~ - . ( D - M , - ) '  dU, + 8' [ 1: 
Any W,- which is measurable w.r.t. 5,- can be used. Consider 
some choices of W,- which gives explicit expression for v. 

Choice 1 : W,- = 1 

PI = [ 1' ( D - M , - )  dU, + 0 -  U,- dM, [ 0 - M 7 ] ,  (6) 
0 5:  I/ 

StdDev{P1} = (D-M, - ) 'dU,  + O2 c S: 
(7) 

Choice 2: Quasi-Score W,- 

An optimal estimating function within such a class of mar- 
tingale estimating functions in (3) is discussed in [7, 81. The 
best choice, quasi-score, is: 

Hence the optimal weight corresponding to (3) is: 

K- = [ ( v - U , - ) . [ ( D - M , - )  + ( V - U , - ) - ~ ] ] - ~ .  



324 IEEE TRANSACTIONS ON RELIABILITY, VOL. 44, NO. 2, 1995 JUNE 

Accordingly, the optimal estimating equation (gives the tightest 
s-confidence limits for P) is, using (9a): 

Trials 4 , 6 , 7  examine the effect of v on the performance when 
D ,  P are kept the same. 

(Si:= WZ-.(D-M,-) dU, - 8 .  K - . ( v - U , - )  dM,. TABLE 1 Sa Description of the Trials 

Trial V D D l v  e P 
(9b) 

~~~ ~ 

P* is the solution of (9b). An explicit expression is not available; 1 400 50 0.125 0.5 0.3 
an iterative procedure is required. From (5 ) ,  2 400 50 0.125 0.5 0.5 

3 400 50 0.125 0.5 0.9 
4 400 50 0.125 1.0 0.5 

(D-Mu-)2/$i-dUu + e2 5 400 50 0.125 2.0 0.5 
6 100 50 0.5 1.0 0.5 
7 loo0 50 0.05 1.0 0.5 

Table 2. Simulation Resultst for the Trials in Table 1 
[The top row is for i,; the bottom row is for ;*I 

1: (P-  U,,-)'/$:- dM, 

+,- = ( P * - u , - ) . [ ( D - M , J  + (~*-u,-).e] 
Trial v D AV,($) SDI($) Av,(SD,($)) RMSE Coverage 

3. SIMULATION 1 400 50 402.30 104.05 192.10 216.94 1.00 
397.69 102.08 103.87 139.78 0.95 

2 400 50 403.52 72.94 140.26 156.85 1.00 
A Monte Carlo simulation was performed to evaluate the 399.10 70.86 74.18 98.90 0.99 

3 400 50 402.38 50.14 87.63 99.98 1.00 
396.10 39.85 36.91 52.07 0.92 

performance of PI from (7) and i* from (9b). Various values 
of 8 have been used. An arbitrary stopping time could be used 
for 7.  Here we assume that the stopping time is determined by 
the removed proportion of the seeded errors. We investigate 400 50 66.46 88.80 0.95 

393.27 61.51 58.04 81.60 0.93 the effects of 8, the stopping time, and the proportion of seed- 
ed errors placed in the system, on the performance of the 400 50 400.29 53.38 36.88 o.80 
estimators. 388.54 40.54 35.69 52.04 0.91 

The simulation results are in two tables. Table 1 lists all 6 100 50 99.32 18.59 18.52 25.19 0.94 
96.82 16.21 16.47 22.56 0.96 the sets of parameter values in the simulation study. Table 2 

lists the results of the 7 trials in table 1. There were 500 repeti- 7 IO00 50 999.31 153.94 154.28 209.65 0.95 
928.02 88.66 129.19 165.83 0.95 tions for each trial. 

Notation 
+The number of significant figures is not intended to imply any ac- 
curacy in the estimates, but to illustrate the arithmetic. 

Avz(SDI(P)) average StdDev{P} of the 500 simulated trials 
RMSE{P} + SDl(P)2]'h 
Bias{P) P - v 
Coverage proportion of the estimates between the 95% 

s-confidence limits appreciably. 
P proportion of seeded errors removed: the stopping 

criterion. 

Trials 1 - 3 confirmed that when P is large: the performance 
of PI & P* improve, and the RMSE & SD(P) decrease 

Trials 2, 4, 5 showed that the performance of PI & P* im- 

Trials 4, 6, 7 showed that: P* underestimates v when v is 
prove when 8 > 1. 

large. The statistics computed were: 

AV]( P) , SDI($), Av2(SD1 (P)), RMSE, Coverage. For all trials, 
Trials 1 - 3 examine the role of P and the performance of 
the estimators when v, D ,  8 are kept the same. The estimators 
should perform better when P is large since more informa- 
tion has been collected. 
Trials 2, 4, 5 examine the effect of 8 when v, D ,  P are kept 
the same. When 8 > 1, the performance of the estimators 
should improve since more real errors are removed. 

PI is satisfactory though RMSE(P1) > RMSE(P*), 
Coverage(P1) is approx 80% - 100%, Coverage(;*) is ap- 

performance of P* is uniformly better than PI. 
Dl is easier to compute and can be used as an initial value 

prox 91% - 99%, 

to search for P*. 
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APPENDIX 

Counting Process, Martingales, and Stochastic Integrals 

N = {NI; t E 3} is a counting process if it begins at 0 
and increases only by integer-valued jumps, where 3 = [O,oo). 
The observed process can include one or more counting pro- 
cesses, such as the process counting the number that have fail- 
ed and the process counting the number that have been censored 
(lost to follow-up). The increasing family of histories 5 = {TI; 
t E 3} is ajZtration. 

A process 3n = {XI; t E 3} is a martingale (with 
respect to 5) if, for all t E 3: 

E{3n,+,J5,} = 3nt for all s E 3. 

A consequence of the martingale property is that E{3n,} = 
E{3no} for all t E 3. For a ZMM, E{3no} = 0. 

This appendix introduce some properties of martingales 
which are useful to reliability analysts and gives results for 
continuous-time martingales in the context of independent con- 
tinuous failures times. These results are most relevant to ap- 
plications in this paper. These are not always the most general 
results. A more rigorous approach is in [3]. 

Notation 

N, 
Y,  

number of the n failure times falling in (O,t] 
n - N,-: number still at risk just prior to time s. 

Let No = 0. Partition the interval (OJ] into many very 
small increments. Then write Nt as dN,. We are concerned 
with the conditional distribution of dN,, given 3,-. This con- 
ditional distribution is binomial: 

dN,J5,- binm(a,.ds, Y,) 

Most time increments contain 0 failures and a small fraction 
of the increments contain 1 failure; the probability of an incre- 
ment containing more than 1 failure is negligible. As, 

E{dNSJ1,-} = Y,.a,.ds, then, 

can be treated as a martingale-difference. It follows that the 
process, 

311. = {3n,; t E 3}, specified by, 

3nt = 1‘d3n, = N, - 
0 

is a ZMM. 

Let W = { W,; t E 3) be any process such that W,- is deter- 
mined by 5,-for each s 1 0, then each, 

is also a martingale-difference. It follows that 3n* specified by, 

r t  r t  

is a ZMM. This property is very useful for generating estimating 
equations. In a similar manner, using various choices of W, one 
obtains estimating equations for other quantities. 

The next step is to associate a standard deviation with such 
an estimate. 

Var { W,-. d3n,} = E { Var { W,- d3n, I 5,-} } + Var { E { W,- 

= E { W:- .Var{d3n, 5,-}} = E { W:- .Var {dN, I 5,-} } 

Hence, 

Var{’X:} = E Wz-.Y,.a, ds = E W:- dN, , IS1 1 Is: 1 
A central limit theorem also applies, indicating that inference 
can be made by using the s-normal distribution when the amount 
of data is sufficiently large [3]. 
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Do you want to sound off on a reliability topic? 
Then DO IT ! 

Write a “Letter to the Editor”. 
The Editorial Staff welcomes your comments on 

material published in this Transactions (eg, editorials and 
technical papers) as well as on other topics of interest to 
Trarisactiom readers. If you comment on the work of 
someone else, that person will be invited to present a 

O P I N I O N  I T E M S  OI’INION 17‘ICM.S O P I N I O N  ITEMS 

reply or clarification. We will publish controversy, but we 
don’t want to publish misunderstandings. 

We encourage interaction between you and the 
original author to minimize misunderstanding and clarify 
the areas of disagreement. 

Material judged unsuitable as a refereed paper can 
sometimes be abbreviated and published as opinion. 
Opinions will be edited as to length and propriety - at 
the sole discretion of the Editorial staff. 4 T R t  


