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A previous workfShen, Ma, Xie, and Zhang, Phys. Rev. Lett.92, 256603s2004dg on two-dimensional
quantum wells with Rashba type spin-orbit interaction under a strong perpendicular magnetic field is general-
ized to include the Dresselhaus coupling. The Rashba coupling and the Dresselhaus coupling interplay with the
Zeeman effect in opposing ways. The former tends to produce a resonant spin Hall effect at certain magnetic
fields while the latter suppresses it. Due to the resonant spin Hall effect, the spin Hall current is highly
nonohmic at low temperatures. The condition for the resonant spin Hall conductance in the presence of both
Rashba and Dresselhaus couplings is derived using a perturbation method. In the presence of disorder, we
argue that the resonant spin Hall conductance occurs when the two Zeeman split extended states near the Fermi
level become degenerate due to the Rashba coupling, and that the quantized charge Hall conductance changes
by 2e2/h instead ofe2/h as the magnetic field changes through the resonant field.

DOI: 10.1103/PhysRevB.71.155316 PACS numberssd: 75.47.2m

I. INTRODUCTION

Spintronics, which exploits electron spin rather than
charge to develop a new generation of electronic devices, has
emerged as an active field in condensed matters because of
both the underlying fundamental physics and its potential
impact on the information industry.1–3 One key issue in spin-
tronics is the generation and efficient control of spin current.
Spin-orbit interaction of electrons exists extensively in met-
als and semiconductors and mix spin states. It provides an
efficient way to control the coherent motion of electron
spins. Recently, it has been proposed theoretically that an
electric field may generate a spin current in hole-doped semi-
conductors and in two-dimensional electron gasess2DEGd in
heterostructures with spin-orbit coupling due to the spin he-
licity and the noncollinearity of the velocity of the single
particle wave function.4–6 Studies of this intrinsic spin Hall
effect have evolved into a subject of intense research.7–13The
spin Hall effect in a paramagnetic metal with magnetic im-
purities has also been discussed, in which a transverse spin
imbalance will be generated when a charge current
circulates.14–17We also note that the spin chirality in systems
with strong spin-orbit interaction may induce a pure spin
current.18

Over the past two decades, remarkable phenomena have
been observed in the 2DEG, most notably, the discovery of
integer and fractional quantum Hall effect.19–21 Research in
spin transports provides a good opportunity to explore spin
physics in the 2DEG with spin-orbit couplings. The spin-
orbit coupling leads to a zero-field spin splitting, and it com-
petes with the Zeeman spin splitting when a perpendicular
magnetic field is applied. The result can be detected as beat-
ing in Shubnikov-de Haas oscillations.22,23

Very recently we have studied the spin Hall effect in the
2DEG with Rashba type spin-orbit coupling in a strong per-

pendicular magnetic field and predicted a resonant spin Hall
effect caused by the Landau level crossing near the Fermi
energy.6 In this paper we present detailed calculations of the
problem. The resonance shows up below a characteristic
temperature of the order of the Zeeman energyEZ. The peak
of the resonance diverges as 1/maxskBT,eElbd slb is the mag-
netic length andE the electric fieldd, and its weight diverges
as −lnT at low T asE→0. Near the resonant magnetic field
B0, Gs~1/uB−B0u. The resonance arises from the Fermi level
degeneracy of the Zeeman-split Landau levels in the pres-
ence of the Rashba coupling. More generally, the spin-orbit
interaction present in the 2DEG may be of the Dresselhaus
type rather than the Rashba type, or a combination of both. It
is thus of interest to extend the analysis of Ref. 6 to beyond
the pure Rashba coupling. To do so, it is useful to analyze
certain symmetries in systems with the Rashba and/or
Dresselhaus couplings. We will show that in contrast to the
zero magnetic field case, where two physical systems differ-
ing only in a pure Rashba vs a pure Dresselhaus coupling
exhibit identical essential physical behavior, this is not the
case when a magentic field is present. The difference arises
from the way the Rashba coupling vs the Dresselhaus cou-
pling interplays with the Zeeman effect. In particular, the
Rashba coupling opposes the Zeeman splitting and causes
resonance while the Dresselhaus coupling enhances Zeeman
splitting and thereby suppresses the resonance. By using lin-
ear response theory, we calculate the spin Hall conductance
Gs, including its magnetic field and temperature dependences
for realistic parameters of InGaGs/ InGaAlGs. For systems
possessing both Rashba and Dresselhaus couplings, the reso-
nant condition is derived within a perturbation theory which
is accurate for the small ratio of the Zeeman energy to the
cyclotron frequency.

The paper is organized as follows. In Sec. II we introduce
the Hamiltonian of the system under consideration and ana-
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lyze its symmetries. In Sec. III we study the spin Hall current
for systems with only Rashba or only Dresselhaus coupling.
In Sec. IV we consider systems with both Rashba and
Dresselhaus couplings. By treating the couplings as small
parameters, we develop a perturbation method to derive the
resonance condition. The paper is concluded with a summary
and a brief discussion on the effects of disorder in Sec. V.

II. MODEL HAMILTONIAN AND SYMMETRY

A. Spin-orbit coupling and model Hamiltonian

For the introduction, we start with the three-dimensional
s3Dd spin-orbit interaction known for III-V compounds such
as GaAs and InAs, which is of the form24,25

Vso
3D = a0K spd · s + b0E · sp 3 sd, s1d

wheresm sm=x,y,zd are the Pauli matrices for spin of elec-
trons,p is the momentum of the charge carrier, and

Kmspd = o
n,d

pnpmpnem,n,d. s2d

In Eq. s1d, the first term is the Dresselhaus coupling which
originates from the lack of bulk inversion symmetry,24 while
the second term is the Rashba coupling which arises from the
lack of structure inversion symmetry.25 The effective fieldE
is induced by the asymmetry of the external voltage to the
system. In quantum wells, by neglecting the weak interband
mixing and retaining the linear contribution ofp parallel to
the x-y plane, the spin-orbit interaction in 3D is reduced to
an effective one in 2D,

Vso
2D = Hso

D + Hso
R , s3ad

Hso
D sad =

a

"
ssxpx − sypyd, s3bd

Hso
R sbd =

b

"
ssypx − sxpyd, s3cd

wherea=−a0"kpz
2l and b=b0"kEzl, with the average taken

over the lowest energy band of the quasi-2D quantum well.
The Rashba coupling can be modulated up to 50% by a gate
voltage perpendicular to the plane.22,26 In some quantum
wells such as GaAs the two terms are usually of the same
order of magnitude, while in narrow gap compounds like
InAs the Rashba coupling dominates.27–29 Experimentally
the relative strength of the Rashba and Dresselhaus cou-
plings can be extracted from photocurrent measurements.30

In this paper we consider a spin-1/2 particle of charge −e
and effective massm confined by a semiconductor quantum
well to a 2D x-y plane of lengthLx and width Ly.

31 The
particle is subjected to a spin-orbit interactionVso

2D. A perpen-
dicular magnetic fieldB=−Bẑ= ¹ 3A and an electric field
E=Eŷ along they axis are appliedssee Fig. 1 in Ref. 6d.
Both electron-electron interaction and impurities will be ne-
glected in our study. The Hamiltonian reads

H = H0 + eEy,

H0 =
1

2m
Sp +

e

c
AD2

−
1

2
gsmBBsz + Vso

2DsAd, s4d

wheregs is the Landeg factor, andmB is the Bohr magneton.
In Vso

2DsAd the momentump is replaced by the canonical
momentum,P=p+e/cA. We choose the Landau gaugeA
=yBx̂ and consider a periodic boundary condition in thex
direction, hencepx=k is a good quantum number.

Below we rewrite the Hamiltonian in terms of lowering
and raising operators. For eachk, we introduce the lowering
operator

ak =
1

Î2lb
Fy +

c

eB
sk + ipydG

and the corresponding raising operatorak
†=sakd†, with the

magnetic lengthlb=Î"c/eB. a anda† satisfy the commuta-
tions fak,ak8

+ g=dkk8, and fak,ak8g=0. In terms ofak and ak
+,

we have

H0/"v = ak
+ak +

1

2
s1 − gszd + iÎ2hRsaks− − ak

+s+d

+ Î2hDsak
+s− + aks+d, s5d

where v=eB/mc is the cyclotron frequency, s±
=ssx± isyd /2, andg=gsm/2me is twice the ratio of the Zee-
man energy to the cyclotron frequencysme is the free elec-
tron massd. hR=bmlb/"2 and hD=amlb/"2, both inversely
proportional to ÎB are the dimensionless Rashba and
Dresselhaus coupling, respectively.

The velocity operator plays an important role in the study
of transport properties including the spin Hall conductance.
The velocity operator of a single particle isvt=ft ,Hg / i"
st=x,yd, from which we obtain

vx =
"

Î2mlb
fak

+ + ak + Î2hDsx + Î2hRsyg, s6ad

vy =
i"

Î2mlb
fak

+ − ak + iÎ2hDsy + iÎ2hRsxg. s6bd

Comparing this with the standard expression of velocity for a
charged particle in a magnetic field,v=sp+e/cAd /m, the
spin-orbit coupling effectively induces a spin-dependent vec-
tor potential.

B. Symmetries

We analyze three symmetries of the Hamiltonian in this
section, which we will use in our calculations.

Interchange symmetry of the two couplings. Under the
unitary transformation, sx→sy,sy→sx,sz→−sz, the
Rashba and Dresselhaus couplings are interchanged,7

asPxsx − Pysyd → asPxsy − Pysxd; s7ad

bsPxsy − Pysxd → bsPxsx − Pysyd; s7bd
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gs → − gs. s7cd

Therefore a system with Rashba couplingb, Dresselhaus
couplinga, and Landeg-factor gs is mapped onto a system
with Rashba couplingb, Dresselhaus couplinga, and Lande
g-factor −gs. In particular, a system with only Dresselhaus
coupling can be mapped onto a system with only Rashba
coupling and an opposite sign ings. This symmetry will be
used in Sec. III. At the symmetric pointa=b, Vso

2D is invari-
ant under the transformation.a=−b is another symmetric
point under the transformation,sx→−sy,sy→−sx,sz→
−sz. For physical parameters, we will always considergs
.0.

Signs of the couplings. Under the transformation,sx→
−sx,sy→−sy,sz→sz, we havea→−a and b→−b. The
eigenenergy spectrum is invariant under the simultaneous
sign changes of the two couplings. The eigenenergy spec-
trum is even inhR if hD=0 and is even inhD if hR=0.

Charge conjugation. Under the charge conjugation trans-
formation, −e→e, the magnetic moment of the carrier also
changes its sign, or effectivelygs→−gs in Eq. s4d. This
transformation is equivalent to the flip of the external mag-
netic field B→−B. Therefore a system of hole carriers has
the same physical properties as the corresponding electron
system except for possible directional changes in the
observables.31

H0 can be solved analytically in the systems with only
Rashba or only Dresselhaus coupling. An analytical solution
is currently not available forH0 with both couplings.32–34 In
the next section, we shall discuss the charge and spin Hall
conductance of the electron system with a pure Rashba cou-
pling. The results can be mapped easily onto the system with
a pure Dresselhaus coupling and to the hole system in semi-
conductors by using the symmetries discussed above.

III. SYSTEMS WITH PURE RASHBA OR PURE
DRESSLHAUS COUPLING

In this section we focus on systems with either Rashba
coupling or Dresselhaus only. We will present the calculation
with respect to the Rashba case. The Dresselhaus case can
then be addressed using the interchange symmetry discussed
above. After a brief review of the single particle solution in
the absence of an electric field, we will discuss the spin Hall
conductance by using linear response theory in Sec. III B,
and its nonlinear effect and scaling behavior near the reso-
nance in Sec. III C. Some of the analysis here has been pre-
viously reported.6 For readability purposes we reproduce the
highlights here for the linear response section. For the non-
linear effect, we expand the discussion from the previous
work to emphasize that the spin Hall effect is not an artifact
of perturbation theory.

A. Single particle solution

The single particle problem ofH0 with hD=0 can be
solved.25 The Rashba coupling hybridizes a spin down state
in the n0

th Landau level with a spin-up state in thesn0+1dth

Landau level, and the eigenenergies are given by

ens
R = "vSn +

s

2
Îs1 − gd2 + 8nhR

2D , s8d

with s= ±1 for positive integern, and e0,+="vs1−gd /2.
There is a large degeneracyNf=LxLy/ s2plb

2d to each
eigenenergy. The corresponding eigenstates are given by

un,k,sl = S cosunsfnk

i sinunsfn−1k
D s9d

wherefnk is the eigenstate of thenth Landau level withpx
=k in the absence of the spin-orbit coupling.u0+=0, and

tanuns=−un+sÎ1+un
2 for nù1, with un=s1−gd /Î8nhR

2.
The eigenenergies for the system with Dresselhaus cou-

pling only can be obtained by replacinghR by hD andg by
−g,

ens
D = "vSn +

s

2
Îs1 + gd2 + 8nhD

2D . s10d

The energy spectra versushR or hD are plotted in Fig. 1. In
the absence of the spin-orbit coupling, the Zeeman energy
splits the two degeneraten0

th Landau levels of spin-up and
spin-down electron states into two nearby ones with the
lower level for spin-up and the higher level for spin-down.
As hR increases from zero, the energy of then0

th Landau level
state of spin-down is lowered because of its hybridization
with the spin-up state at thesn0+1dth Landau level due to the
Rashba coupling. The Rashba interaction competes with the
Zeeman energy and there is an energy crossing at certain
values ofhR or the magnetic fields as we can see in Fig. 1sad.
The spin Hall resonance we examine is closely related to this
level crossing. The energy level diagram in Fig. 1sbd for the
Dresselhaus coupling has different features. In that case, a
spin-up state, which is at the lower level due to the Zeeman
splitting, mixes with a spin-down state at a higher Landau
level, which separates further the Zeeman splitting, thus
there is no resonance in the spin Hall current.

B. Linear response theory: Spin Hall conductance

We consider the charge and spin Hall currents along thex
axis induced by an electric field along they axis. In terms of
the velocity operator, the charge and spin-z component cur-
rent operators are defined by

jc = − evx, s11d

js =
"

4
sszvx + vxszd, s12d

respectively. We refer readers to Ref. 6 for the discussions on
the other spin components. The symmeterized form of the
spin current operator guarantees that it is Hermitian. Each
single particle stateufnksl carries a currentkfnksu jc,sufnksl.
The charge and spin Hall conductance are then given by

Gc,s =
1

LxLy
o
nks

fnkskfnksu jc,sufnksl/E, s13d

wherefnks is the Fermi-Dirac distribution function. Note that
since spin is not a conserved quantity in the presence of
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spin-orbit couplings, the spin current defined above and the
spin density do not satisfy a continuity equation. Neverthe-
less, the expectation values of the spin density and the spin
current are well-defined. Unlike a free electron in a uniform
magnetic field, the single particle problem with the spin-orbit
coupling in the presence of an electric fieldEŷ is not ana-
lytically solvable, since the Landau levels mixing no longer
truncate. After a replacement ofy→y+eE/mv2 in the op-
eratorak by ãk=ak+eElb/Î2"v, the Hamiltonian of the sys-
tem in the presence of the electric field reads, apart from a
constant,H=H0sEd+H8, whereH0sEd is the one in Eq.s5d
by replacingak with ãk and H8=−eElbhRsy. We now con-
sider H8 as a perturbative Hamiltonian to study the charge
and spin Hall currents. Up to the first order inE, we obtain

Gc,s = Gc,s
s0d + Gc,s

s1d s14d

where the superscript refers to the zeroth order and first order
in the perturbation inH8. The charge Hall conductance is
found to be independent of the spin-orbit coupling,Gc
=ne2/h, with n=Ne/Nf being the filling factor. Within the
perturbation theory, the spin Hall conductanceGs can be di-
vided into two parts. The part arising from the zeroth order in
H8 is found to be the product of the spin polarizationkSzl per
electron and the Hall conductanceGc, divided by the elec-
tron charges−ed,

Gs
s0d = − kSzlGc/e. s15d

The expectation value of the spin polarization per electron is

kSzl =
1

Ne

"

2o
nks

kn,k,suszun,k,slfnks=
1

Ne

"

2o
nks

cos 2unsfnks.

s16d

kSzl at T=0 is plotted in Fig. 2sad. The oscillation is due to
the alternate filling by electrons of the energy levels with
mainly spin-up and spin-down. A jump is visible atn=12.6
scorresponding to inverse magnetic field 0.162T−1d because

of the energy crossing. Conversely, the lack of such an en-
ergy crossing in the Dresselhaus casessee laterd implies no
such jump, as can be seen in Fig. 2scd.

The second part inGs arises from the first order inH8,

Gs
s1d =

ehR

8pÎ2
o

n,s,n8=n+1,s8

fns− fn8s8

ens
R − en8s8

R 3 sÎn sin 2uns sin2 un8s8

− În8 cos2 uns sin 2un8s8d. s17d

At T=0, if the two degenerate energy levels are partially
occupied,Gs

z may become divergent. Mathematically, the
resonance is given by the condition 2n,n,2n+1 for the
electron filling factorn, with n an integer satisfying the equa-
tion

Îs1 − gd2 + 8nhR
2 + Îs1 − gd2 + 8sn + 1dhR

2 = 2. s18d

From the above condition, for a system with anyhRÞ0,
hD=0, andgs.0, there is a unique resonant magnetic field
B0 such that the resonant condition is satisfied. By symmetry,
we obtain the resonance condition for the system with a pure
Dresselhaus coupling, which is given by the solution forn of
the equation,

Îs1 + gd2 + 8nhD
2 + Îs1 + gd2 + 8sn + 1dhD

2 = 2. s19d

Unlike the pure Rashba coupling case, there is no solution
for anygs.0 in the pure Dresselhaus coupling system. This
is because the energy levelsens

D and en8s8
D with n8=n±1 do

not cross over, so the pairs of the crossing levels in the
Dresselhaus coupling system correspond ton8Þn±1 and do
not contribute to the spin Hall conductance.

We have calculated the spin Hall conductance numeri-
cally. Gs

z at T=0 is shown in Fig. 2sbd. In addition to the
oscillation in 1/B similar to that ofsz, there is a pronounced
resonant peak at the fillingn=12.6. No such resonant peak
occurs for the Dresselhaus case, as is shown in Fig. 2sdd. In
Fig. 3, we showGs

z at several temperatures for the Rashba

FIG. 1. sad Energy levels in units of"v as a
function of the dimensionless Rashba coupling
hR. The parameters areb=0.9310−11 eV m, ne

=1.931016/m2, m=0.05me, and gs=4, taken
from Ref. 22 for the inversion heterostructures
In0.53Ga0.47As/ In0.52Al0.48As. sbd Same as insad,
but for the Dresselhaus couplinghD swith the
same strength of the Rashba couplingd.
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case. The height of the resonance peak increases drastically
as the temperature decreases below a few kelvin. In the inset
of Fig. 3, we show theT-dependence of the height of the

resonant peak and the two nearby side peaks. The character-
istic temperature for the occurrence of the peak can be esti-
mated to be the Zeeman energyEZ, which is about 10 K at
the resonant field for the parameters in the caption. More
explicit derivation of this will be given in the next section.

C. Nonohmic spin Hall current and scaling behavior

In this section we study the nonlinear effect of the electric
field to the resonant spin Hall current and the scaling behav-
ior. Since the resonance originates from the interference of
two degenerate levels near the Fermi energy, we will focus
on those two levels to examine the problem. As an example,
we shall consider In0.53Ga0.47As/ In0.52Ga0.48As with the pa-
rameters given in Fig. 1, in which case the resonance occurs
at the filling factorn=12.6 fsee Fig. 1sbdg and the relevant
two levels areu1l= un=6,k,s= +1l and u2l= un+1=7,k,s=
−1l. The energy levels below the two levels are assumed to
be fully filled, and all levels above the two to be empty. This
is valid if "v@kBT. The Hamiltonian is then, up to a con-
stant, reduced to a 232 matrix,

Hreduced= SDe v0

v0 − De
D , s20d

whereDe=se6,+1
R −e7,−1

R d /2, and

FIG. 2. Average spinSz and spin Hall conductance as a function of 1/B at T=0. The parameters are the same as in Fig. 1.

FIG. 3. Spin Hall conductance vs 1/B at several temperatures
for Rashba coupling systems. The parameters are the same as those
in Fig. 1. In the inset, temperature dependence of the height of the
resonance peak and two side peaks is plotted.
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v0 = k2uH8u1l = − eElbhR cosu6,+1 sinu7,−1.

As we can see from the reduced Hamiltonian and from
Fig. 4, the electric field breaks the level degeneracy and
opens an energy gapDEgap=2uv0u. Denoting the two eigen-
states of the reduced Hamiltonian byuF±l, the spin Hall cur-
rent density is given by

Is =
1

2plb
2si−f− + i+f+d, s21d

where the Fermi-Dirac distributionf±=hexpsf±ÎsDed2+v0
2

−mg /kBTd+1j−1, with f++ f−=dn=n−2n, m the chemical po-
tential, andi±=kF±u jx

zuF±l. The electric field and temperature
dependences of the spin currentIs near the resonance point is
plotted in Fig. 5. At low temperatures the resonant spin cur-
rent approaches to a constant in a weak electric field.

Now we analyze the scaling behavior of the spin conduc-
tance near the resonance point. For simplicity we limit our
discussion to the case ofdn,1 andg!1. Near the resonant
point, De<−EZb whereEZ=g"v0/2 is the Zeeman energy
and b=sB−B0d /B0 is the reduced dimensionless magnetic
field. Using the identity

f− − f+ ; f−s1 − f+df1 − e−2ÎsDed2+v0
2/kBTg, s22d

we obtain the singular part of the spin Hall conductance to be

Gs . −
dne

4p

EZ

ÎsDed2 + v0
2

f−s1 − f+d
sf− + f+d

3 f1 − e−2ÎsDed2+v0
2/kBTg

s23d

where the factorf−s1− f+d / sf−+ f+d is a slowly varying func-
tion of T ranging from 1 at low temperatures tos1
−dn /2d /2 at high temperatures. At low temperaturesGs is
given by

Gs . −
e

4p

dn

ubu
. s24d

It is only a function of the reduced magnetic field and the
excess part of the filling factor from 2n. At the resonant
magnetic field, i.e.,b=0, the spin Hall current approaches
with lowering temperature to a constant,Is=
−e/4pdnEZ/ selbhR cosun,+1 sinun+1,−1d as can be seen in
Fig. 5. Using the resonance condition in Eq.s18d, B0
<4nm2cb2/g"3 sn=6d and using the fact that for largen, n
is proportional to 1/B0, the resonant magnetic fieldB0
~b /Îg approximately. Thus the resonant spin current is pro-
portional to

Is = −
dne

2

8pm2c2

gB0
2

b
~ dnb. s25d

Therefore for a given filling factor, the larger the spin-orbit
couplingb is, the stronger the spin Hall resonance. The re-
sulted spin Hall conductance diverges atT=0 as

Gs . −
dne

4p

EZ

uv0u
= −

dne
2

8pm2c2

gB0
2

b

1

E
. s26d

At temperatureskBT.ÎsDed2+v0
2,

Gs . −
dns1 − dn/2de

4p

2EZ

kBT
s27d

and the integral

E Gsdb→ −
dne

2p
Sln

2EZ

kBT
D .

This integral reflects the weight of the resonant peak of the
spin Hall conductance.

Since the method used in this section is beyond perturba-
tion theory, we conclude that the resonance spin Hall con-
ductance we predict is not an artifact of the perturbation
method. Instead, the resonance is caused by the interference
between the two degenerate energy levels at the Fermi en-
ergy.

IV. SYSTEMS WITH BOTH RASHBA AND DRESSELHAUS
COUPLINGS

In this section we briefly discuss the resonance in the spin
Hall conductance in systems with both Rashba and Dressel-
haus couplings. The Hamiltonian including the electric po-
tential reads

FIG. 4. Schematic illustration of the energy shift due to the
electric field in the two degenerate levels near the resonant point.

FIG. 5. Resonant spin current density as a function of the elec-
tric field at different temperatures. The spin current unit is
s−e/4pdsN/Cd. The filling factor at the resonance isn=12.6.
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H = H0sEd + H8 s28d

with H8=−eElbshDsx+hRsyd. In this caseH0 is not solvable
analytically. A stateun0, ↓ l sin the basis of the Landau levels
with hD=hR=0d is coupled toun0+1,↑ l via the Rashba cou-
pling, which is further coupled toun0+2,↓ l due to the
Dresselhaus coupling. In this way, a Landau level is coupled
to an infinite number of other Landau levels, and the analytic
solution is not available. The problem, however, may be ap-
proximately solved by using perturbation theory to treathR
and hD as small parameters. This is equivalent to the limit
B→`, sincehD,R~1/ÎB. For parameter values given in Fig.
1, hR

2 =0.004!1 at the resonant fieldB<6.1 T. In the ab-
sence of the electric field, the single particle energy, up to the
second order inhR andhD, is given by

en0↑
"v

= n0 +
1 − g

2
+

2n0hR
2

1 − g
−

2sn0 + 1dhD
2

1 + g
, s29ad

en0↓
"v

= n0 +
1 + g

2
+

2n0hD
2

1 + g
−

2sn0 + 1dhR
2

1 − g
. s29bd

Note that the mixed term ofhRhD does not appear in the
perturbation to the second order. The two levels become de-
generate if the following equation is satisfied:

g

2s2n0 + 1d
=

hR
2

1 − g
−

hD
2

1 + g
. s30d

It follows that a necessary condition for the resonant spin
Hall current ishR

2 /hD
2 . s1−gd / s1+gd<1, for g!1. At hD

=0 and in the limithR!1, Eq. s30d is consistent with Eq.
s18d for the resonant condition we derived for the pure
Rashba system. Alternatively the resonant magnetic field is

B0 <
2s2n0 + 1d

g

m2c

e"3 sb2 − a2d. s31d

The large numbern0 increases with 1/B0 for a specific den-
sity of particles. Thus for a certain Rashba coupling the in-
creasing of Dresselhaus coupling will decrease the resonant
magnetic fieldB0. The singular part of the spin Hall conduc-
tance can be studied by examining the two level system in
the presence of an electric field as we described in Sec. III C.
At the resonant point and at low temperature,

Gs = −
dne

2"2

8pm2c2

gB0
2

Îa2 + b2

1

E
. s32d

As the Dresselhaus coupling increases from zero, the reso-
nance is shifted to lower magnetic fields and occurs at higher
Landau levels with a weaker resonant strength.

V. SUMMARY AND DISCUSSIONS

In summary, we have studied the spin Hall effect in a
two-dimensional electron system with spin-orbit couplings in
a strong perpendicular magnetic field. In systems with the
Rashba coupling dominating over the Dresselhaus coupling,

there is a resonant magnetic field at which the spin Hall
conductance diverges at low temperature and low electric
field. The physics for this resonance is the energy level cross-
ing of the two Landau levels due to the competition of the
Zeeman splitting and the Rashba coupling. For a given sys-
tem, there is a unique resonant magnetic field, at which the
two Landau levels become degenerate at the Fermi energy. In
this case, some physical properties may show singularity. As
studied earlier, the spin polarization will change its sign as
the magnetic field is varied passing through the resonant
field. Namely the magnetic susceptibility is divergent. The
spin Hall conductance is another singular response due to
this level crossing. When an infinitesimally weak dc electric
field is applied in the plane, the two degenerate Landau lev-
els are split accordingly and a finite spin Hall current is in-
duced. The resonance is macroscopic in the sense that a huge
number of the states in the same Landau level are involved in
the process. We have calculated the temperature and electric
field dependences of the resonance. The characteristic tem-
perature for the resonant spin Hall current is of order of the
Zeeman energy. As the temperature decreases, the height of
the resonance peak diverges like~1/T and the weight di-
verges like~ln T. While the spin orbit coupling has a dra-
matic effect on the spin Hall conductance, the charge Hall
conductance is not affected and remains quantized. The spin
Hall current is nonlinear with the electric field at the resonant
field. At low temperatures, the spin Hall current rapidly rises
linearly with the electric field and saturates at higher electric
fields. At T=0, the spin Hall conductance diverges as 1/E at
resonance. Near the resonant magnetic fieldB0, it is ~1/uB
−B0u. Contrary to the Rashba coupling, the Dresselhaus cou-
pling further increases the Zeeman energy splitting to sup-
press the effect of the Rashba coupling. The strength of the
Rashba coupling necessary to surpass the Dresselhaus cou-
pling, in order to have the resonant spin Hall current, was
estimated by using a perturbation method treating the cou-
plings as small parameters. This is accurate as long as the
Zeeman energy is much smaller than the cyclotron fre-
quency.

We have assumed no potential disorder in our theory. The
effects of disorder in 2DEG with Rashba coupling, especially
in a strong magnetic field, is not well understood at this
point.35 Nevertheless, it seems reasonable to assume that the
spin-orbit coupling does not change the effects of disorder
qualitatively. This is likely to be the case in the presence of a
strong magnetic field, which ensures extended states in the
Landau levels when the disorder is not sufficiently strong as
evidenced by the experimentally observed quantization of
the Hall conductance. We then assume that the disorder gives
rise to broadening of the Landau level and localization so
that the extended states in a Landau levels are separate in
energy from those in the next one by localized states. Inspec-
tion of the spin-orbit coupling shows that Laughlin’s gauge
argument still holds,36,37 and each Landau level with its ex-
tended states completely filled contributee2/h to the charge
Hall conductance. Thus we conclude that the quantum Hall
conductance remains intact with the spin-orbit interaction,
except at the special degeneracy point. As the Fermi energy
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varies across this degenerate extended state, the charge Hall
conductanceGc is expected to change by 2e2/h, instead of
e2/h for the other extended levels. This fact can be used
experimentally to determine the Rashba interaction induced
degeneracy discussed in this paper.

ACKNOWLEDGMENTS

This work was in part supported by the Research Grant
Council in Hong KongsS.Q.S. and F.C.Z.d, NSF ITR Grant
No. 0223574 sF.C.Z.d, and DOE/DE-FG02-04ER46124
sX.C.X.d.

1G. A. Prinz, Science282, 1660s1998d.
2S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton,

S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M.
Treger, Science294, 1488s2001d.

3Semiconductor Spintronics and Quantum Computation, edited by
D. Awschalom, D. Loss, and N. SamarthsSpringer, Berlin,
2002d.

4S. Murakami, N. Nagaosa, and S. C. Zhang, Science301, 1348
s2003d; Phys. Rev. B69, 235206s2004d.

5J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A.
H. MacDonald, Phys. Rev. Lett.92, 126603s2004d.

6S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, Phys. Rev. Lett.
92, 256603s2004d.

7S. Q. Shen, Phys. Rev. B70, 081311sRd s2004d.
8N. A. Sinitsyn, E. M. Hankiewicz, W. Teizer, and J. Sinova, Phys.

Rev. B 70, 081312sRd s2004d.
9D. Culcer, J. Sinova, N. A. Sinitsyn, T. Jungwirth, A. H. Mac-

Donald, and Q. Niu, Phys. Rev. Lett.93, 046602s2004d.
10J. Schliemann and D. Loss, Phys. Rev. B69, 165315s2004d.
11J. Hu, B. A. Bernevig, and C. Wu, Int. J. Mod. Phys. B17, 5991

s2003d.
12E. I. Rashba, Phys. Rev. B68, 241315sRd s2003d.
13L. Hu, J. Gao, and S. Q. Shen, Phys. Rev. B70, 235323s2004d;

X. Ma, L. Hu, R. Tao, and S. Q. Shen,ibid. 70, 195343s2004d.
14M. I. Dyakonov and V. I. Perel, Phys. Lett.35A, 459 s1971d.
15J. E. Hirsch, Phys. Rev. Lett.83, 1834s1999d.
16S. Zhang, Phys. Rev. Lett.85, 393 s2000d.
17L. Hu, J. Gao, and S. Q. Shen, Phys. Rev. B68, 115302s2003d;

68, 153303s2003d.
18See, for example, S. Q. Shen, Phys. Lett. A235, 403 s1997d; S.

Q. Shen and X. C. Xie, Phys. Rev. B67, 144423s2003d.
19K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett.45, 494

s1980d.
20D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett.

48, 1559s1982d.
21The Quantum Hall Effect, edited by R. E. Prange and S. M.

Girvin sSpringer, Berlin, 1987d; Perspectives in Quantum Hall
Effects, edited by S. Das Sarma and A. PinczuksWiley, New

York, 1997d.
22J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev.

Lett. 78, 1335s1997d.
23J. P. Heida, B. J. van Wees, J. J. Kuipers, T. M. Klapwijk, and G.

Borghs, Phys. Rev. B57, 11 911s1998d.
24G. Dresselhaus, Phys. Rev.100, 580 s1955d.
25E. I. Rashba, Fiz. Tverd. TelasLeningradd 2, 1224 s1960d fSov.

Phys. Solid State2, 1109 s1960dg; Y. A. Bychkov and E. I.
Rashba, J. Phys. C17, 6039s1984d.

26D. Grundler, Phys. Rev. Lett.84, 6074s2000d.
27B. Jusserand, D. Richards, G. Allan, C. Priester, and B. Etienne,

Phys. Rev. B51, R4707s1995d.
28W. Knap, C. Skierbiszewski, A. Zduniak, E. Litwin-Staszewska,

D. Bertho, F. Kobbi, J. L. Robert, G. E. Pikus, F. G. Pikus, S. V.
Iordanskii, V. Mosser, K. Zekentes, and Yu. B. Lyanda-Geller,
Phys. Rev. B53, 3912s1996d.

29J. B. Miller, D. M. Zumbühl, C. M. Marcus, Y. B. Lyanda-Geller,
D. Goldhaber-Gordon, K. Campman, and A. C. Gossard, Phys.
Rev. Lett. 90, 076807s2003d.

30S. D. Ganichev, V. V. Bel’kov, L. E. Golub, E. L. Ivchenko,
Petera Schneider, S. Giglberger, J. Evans, J. De Boeck, G.
Borghs, W. Wegscheider, D. Weiss, and W. Prettl, Phys. Rev.
Lett. 92, 256601s2004d.

31A hole in semiconductor carries a positive chargee.
32B. Das, S. Datta, and R. Reifenberger, Phys. Rev. B41, 8278

s1990d.
33V. I. Falko, Phys. Rev. Lett.71, 141 s1993d.
34J. Schliemann, J. C. Egues, and D. Loss, Phys. Rev. B67, 085302

s2003d.
35J. Inoue, G. E. W. Bauer, and L. W. Molenkamp, Phys. Rev. B

70, 041303sRd s2004d; S. Murakami,ibid. 69, 241202s2004d;
E. G. Mishchenko, A. V. Shytov, and B. I. Halperin, Phys. Rev.
Lett. 93, 226602s2004d; K. Nomura, J. Sinova, T. Jungwirth, Q.
Niu, and A. H. MacDonald, cond-mat/0407279; L. Sheng, D. N.
Sheng, and C. S. Ting, cond-mat/0409038.

36R. B. Laughlin, Phys. Rev. B23, 5632s1981d.
37B. I. Halperin, Phys. Rev. B25, 2185s1982d.

SHEN et al. PHYSICAL REVIEW B 71, 155316s2005d

155316-8


