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Spin-resolved Hall effect driven by spin-orbit coupling
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Spin and electric Hall currents are calculated numerically in a two-dimensional mesoscopic system with
Rashba and Dresselhaus spin-orbit coupling by means of the Landauer-Büttiker formalism. It is found that both
electric and spin Hall currents circulate when two spin-orbit couplings coexist, while the electric Hall conduc-
tance vanishes if either one is absent. The electric and spin Hall conductances are suppressed in strong disorder,
but survive in weak disorder. Physically it can be understood that the spin transverse “force” generated by
spin-orbit coupling is responsible for the formation of the spin Hall current and the lack of transverse reflection
symmetry is the origin of the electric Hall current.
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When a metallic sample is subjected to a perpendicular
external magnetic field, the Lorentz force acting on the
charge carriers gives rise to a transverse voltage between two
edges of the sample; this is well known as the ordinary Hall
effect. Actually, the Hall effect family has a number of im-
portant members. The anomalous Hall effect may occur even
in the absence of an external magnetic field in a ferromag-
netic metal with spin-orbit coupling.1–8 In the past few years
it has been recognized that the spin-orbit coupling may pro-
vide an efficient way to manipulate a spin-resolved current in
metals and semiconductors.9–15 In a two-dimensional elec-
tron gass2DEGd lacking bulk and structure inversion sym-
metries, the effective Hamiltonian is given by

H =
p2

2m* + lssxpy − sypxd + bssxpx − sypyd, s1d

where the second term is the Rashba spin-orbit coupling and
the third one is the Dresselhaus spin-orbit coupling.sm sm
=x,y,zd are the Pauli matrices, and the coupling parameters
l and b have the dimension of velocity. Using the Heisen-
berg equation of motion the second derivative of the position
operatorr gives

m* ]2r

]t2
= +

2m*sl2 − b2dsz

"
p 3 ẑ. s2d

Compared with the Lorentz force brought by the magnetic
field upon a charged particle, the spin-orbit coupling pro-
duces a spin transverse “force” on a moving electron. It has
no classical counterpart as the coefficient is divided by", but
it reflects the tendency of spin asymmetric scattering of a
moving electron subject to the spin-orbit coupling. When
charge carriers are driven by an external electric field, this
force tends to form a transverse spin current.

In this paper we calculate the spin and electric Hall con-
ductances in a 2DEG mesoscopic system with Rashba and
Dresselhaus coupling by using the Landauer-Büttiker for-
mula and the Green’s function technique. It is found that
both electric and spin Hall currents circulate while these two
types of spin-orbit coupling coexist, but the electric Hall cur-
rent disappears when either one is absent. The spin and elec-

tric Hall conductances are suppressed in strong disorder, but
survive in weak disorder. The numerical results are in good
agreement with the symmetry analysis of the system.

We consider a cross-shape device with four semi-infinite
metallic leads as shown in Fig. 1. The scattering regionsthe
shadowed part in Fig. 1d is described by the effective Hamil-
tonian in Eq.s1d, and when it is treated as anL3L lattice
with the tight-binding approximation, the model Hamiltonian
reads,

H = − t o
i j ,s=↑,↓

ci,s
† cj ,s + tso

Ro
i

sJi,y
x − Ji,x

y d + tso
Do

i

sJi,x
x − Ji,y

y d,

s3d

wheretso
R andtso

D are the dimensionless parameters for Rashba
and Dresselhaus coupling strength in the unit oft, respec-
tively, and the local spin current operatorJi,a

m is defined as16

Ji,a
m = − it o

s,s8

sci,s
† sss8

m ci+a,s8 − H.c.d, s4d

where a stands for the unit vector along the axes of the
lattice andm stands for the direction of spin polarization.17

FIG. 1. Cross-shape device with four semi-infinite metallic
leads. The spin-orbit coupling is supposed to exist in the shadowed
area only, and the effect of the semi-infinite leads is treated exactly
through self-energy terms.
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The calculation of electric and spin currents is based on
the Landauer-Büttiker formalism.18,19AssumeTq,p

n,m to be the
spin-resolved transmission probability of electrons transmit-
ted from spin channelm of leadp to spin channeln of leadq,
andVp to be the electric voltage in leadp, then, respectively,
the outgoing electric current and spin current polarized along
m direction in leadp are

Ip
c =

e2

h
o

q,m,n
sTp,q

m,nVq − Tq,p
n,mVpd, s5d

Ip
m = −

e

4p
o
q,n

fsTp,q
m,n − Tp,q

−m,ndVq − sTq,p
n,m − Tq,p

n,−mdVpg. s6d

The transmission probability coefficients can be calculated
by using the Green’s function technique,Tq,p

n,m

=TrfGq
nGRGp

mGAg. And the retarded and advanced Green
functions are given by GR,AsEd=1/sE−Hc−op=1

4 Pp
R,Ad,

whereE is the electron energy andHc is the model Hamil-
tonian in the shadowed region in Fig. 1. The retarded and
advanced self-energy terms introduced by the semi-infinite
lead p, sPp

Rdpis,pjs8=−tomxmspideikmaxmspjddss8 and Pp
A

=sPp
Rd†, wherexmspid is the transverse mode wave function

at site pi in lead p connected to the scattering region. It
should be noted that in Eq.s6d m may stand for an arbitrary
direction of spin polarization, and this is done by incorporat-
ing a transformation in the definition ofGp, that is,
Gp

mspi ,s ,pj ,s8d=2tRmsRs8m
−1 omxmspidsinskmadxmspjd andR is

the rotation matrix to transform the eigenstates ofsz to those
of r̂ ·s sr̂ is a unit vectord.20 The Landauer-Büttiker formal-
ism has been applied extensively to study the spin transport
in mesoscopic systems numerically.21–24

In this paper we consider an initial electric current driven
through leads 1 and 2,I1

c=−I2
c, by setting the bias voltage

V1=−V2=V0/2 andV3=V4=0. The currents in leads 3 and 4
are perpendicular to the current through leads 1 and 2. Thus
the electric and spin Hall conductances are defined as

GcH = I3
c/sV1 − V2d; s7d

GsH
m = I3

m/sV1 − V2d, s8d

respectively, where the spin current has three components,
m=x,y,z. Electric and spin Hall conductances are evaluated
as functions of the Fermi energy for different ratios of
Rashba and Dresselhaus coupling strength in Fig. 2. Gener-
ally speaking, the electric Hall conductance is symmetric
about the Fermi energyEf while the spin Hall conductance is
antisymmetric such that the spin Hall conductance vanishes
at the band center,Ef =0. This is consistent with the symme-
try analysis for the tight-binding Hamiltonian.23 In the case
of the pure Rashba or Dresselhaus coupling, the electric Hall
conductance disappears, but the spin Hall conductance still
exists. In the two cases oftSO

R =1 and tSO
D =1/2 and oftSO

R

=1/2 andtSO
D =1, the electric Hall conductances are equal.

However the spin Hall conductancesGsH
z differ by a minus

sign, withGsH
x andGsH

y swapped, and the former is consistent
with the work of Shen25 and Sinitsynet al.26 for free 2DEG
systems. A special case is at the symmetric point oftSO

D

= tSO
R . The spin Hall conductanceGsH

z =0, while GsH
x andGsH

y

are equal and nonzero, which means the current is polarized
within the x-y plane. In this case the operatorsx+sy com-
mutes with the total Hamiltonian, and actually there is no
spin flip in the scattering region.27 On the other hand the
longitudinal electric and spin conductances are also nonzero.
The longitudinal conductances are about one order larger
than the Hall conductances in magnitude, i.e.,I3

c / I2
c,10.

And the electric conductance is also symmetric with respect
to the Fermi energy, just like the electric Hall conductance,
while the longitudinal spin current is antisymmetric. Accord-
ing to the symmetry properties of such a system,25 under the
transformation:sx→sy, sy→sx, and sz→−sz, tSO

D → tSO
R ,

and tSO
R → tSO

D , correspondinglyGsH
x →GsH

y , GsH
y →GsH

x , and
GsH

z →−GsH
z while the electric Hall conductance remains un-

changed. At the symmetric point,tSO
R = tSO

D , it yields that
GsH

x =GsH
y andGsH

z =0. Our numerical results obviously agree
with this symmetry analysis.

The Hall conductances as functions of the Rashba cou-
pling strength are also evaluated, with the specific Dressel-
haus coupling strengthtso

D =1.0 and electron Fermi energy
Ef =−2.0t as shown in Fig. 3. It indicates clearly that the
electric Hall conductance increases with increasing the
Rashba couple strength, and reaches its maximal value at
tso
R = tso

D . Then it turns to decrease whentso
R . tso

D , and ap-
proaches to zero for a large Rashba coupling strength. The
figure shows thatGsH

z =0 andGsH
x =GsH

y at tso
R = tso

D as expected
by the symmetry analysis. For a large spin-orbit coupling
both electric and spin Hall conductance approaches to zero
because the spin-orbit coupling in the scattering region forms
a large potential barrier and the incident electrons will be
completely reflected. Unlike bulk systems25,26where the spin
Hall conductance in the clean limit has a universal value
±e/8p and the sign is given by the relative ratio of two
coupling strength in Eq.s1d, Fig. 3 shows that the value of
spin Hall conductance varies with the relative ratio as well as
the sign, but the change of sign is compatible with the bulk
systems case. And this result is also compatible with the
previous numerical work in the case of pure Rashba
coupling.23,24,28

FIG. 2. sColor onlined Electric and spin Hall conductances as
functions of the electron Fermi energy for different ratios of the
Rashba and Dresselhaus coupling strengths.L=40 for all the results
in this figure.
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To see the finite-size effect we calculate the electric and
spin Hall conductances forL=20, 30, 40, and 50.GcH/L and
GsH/L as functions ofEf are plotted in Fig. 4. We notice that
these curves for different sizes fit a single one very well.
Thus we conclude that both electric and spin Hall conduc-
tance are proportional to the sizeL of the sample. In other
words, in our calculation the electric and spin Hall currents
are determined by both the number of the incident channels
and that of the outgoing channels. Thus the Hall currents
induced by a specified longitudinal electric field are not pro-
portional to the sizeL linearly, but toL3L.

The disorder effect is an interesting issue in the spin Hall
effect in 2DEG. It is still greatly controversial whether the
spin Hall effect may survive when the impurity scattering is
taken into account.29–31 We consider the disorder effect by

including the disorder potential term Vdisorder
=oi,s=↑,↓eici,s

† ci,s in Eq. s3d, whereei are randomly distrib-
uted betweenf−W/2 , +W/2g. Selectively the electric and
spin Hall conductances,GcH andGsH

x , for two couplings with
equal strength are plotted in Fig. 5.GsH

z is exactly equal to
zero according to the symmetry. It shows that both electric
and spin Hall conductances can survive in weak disorder, but
be suppressed in strong disorder. We also did calculation for
several other cases, and obtained similar results. The case of
pure Dresselhaus coupling is in agreement with the work of
Shenget al. for pure Rashba coupling.23

Physically the spin Hall conductance can be well under-
stood from the spin transverse force caused by the spin-orbit
coupling in Eq.s2d. The electric field drives electrons mov-
ing along the field such that the electrons with spin-up or
spin-down experience opposite the transverse force and thus
a nonzero spin current is induced perpendicular to the field.
The relative ratio of the two coupling strength determines the
direction of the spin Hall current as the spinomotive force
changes its sign aroundl=b and vanishes at the point. All
calculated results are consistent with this. However, the spi-
nomotive force is not a direct origin of the nonzeroGcH,
sinceGcH arises only when two couplings are present simul-
taneously. From the symmetry properties of the system we
notice that the Hamiltonian with pure Rashba coupling is
invariant under the transformation:kx→kx, ky→−ky, and
sx→−sx, sy→sy, sz→−sz. Similarly the Hamiltonian with
pure Dresselhaus coupling is invariant under the transforma-
tion: kx→kx, ky→−ky, and sx→sx, sy→−sy, sz→−sz.
This is why the electric Hall current vanishes in these two
cases, while the spin Hall current circulates because there is
no symmetry constraint on it as bothky andsz change their
signs under such transformation. On the other hand, the
Hamiltonian with both Rashba and Dresselhaus couplings
does not possess the reflection symmetry ofkx→kx, ky→
−ky. Therefore the coexistence of both couplings breaks the
reflection symmetry of the system, which makes the electric
current not parallel to the electric field such that it gives rise
to a nonvanishing Hall conductanceGcH. This unconven-

FIG. 3. sColor onlined Electric and spin Hall conductances as
functions of the Rashba coupling strength with a fixed Dresselhaus
coupling strengthtso

D =1.0 atEf =−2.0t andL=40. Similar results are
obtained for the Hall conductances as functions of the Dresselhaus
coupling strength with a fixed Rashba coupling strength, which are
consistent with symmetry analyses.

FIG. 4. sColor onlined Electric and spin Hall conductances di-
vided by sample sizeL as functions of the electron Fermi energy.
Here the Rashaba and Dresselhaus coupling strengths are equal and
the results forL=20, 30, 40, and 50 are shown simultaneously. It
implies a size effect that both Hall conductances are proportional to
L in this calculation.

FIG. 5. sColor onlined Electric and spin Hall conductances as
functions of the logarithm of the disorder strengthW/ t. Results are
obtained with equal Rashba and Dresselhaus coupling strengths at
Ef =−2.0t and L=30. Standard deviations in the calculation are
shown through the error bars.
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tional Hall conductance may be related to some discussions
in terms of the anomalous Hall effect due to parity anomaly
and additional band crossing.5 Moreover, since the diagonal
spin conductance is nonzero in this case,26 the diagonal spin
current along leads 1 and 2 might generate a charge Hall
current via the reciprocal spin Hall effect.32

In conclusion, we studied the electric Hall conductance as
well as the spin Hall conductance for a finite-size system
with four leads. Both electric and spin Hall conductances are
nonzero when both Rashba and Dresselhaus couplings are
present, thus the current is actually spin polarized. Unlike the
anomalous Hall effect, the present electric Hall current is

driven by the spin-orbit coupling, not by the exchange cou-
pling with the magnetic impurities.33 This effect also differs
from the one resulted from a spin polarized current via the
Rashba coupling.34 Though the incident current is not spin
polarized, the Hall current is polarized in our case.

The authors would like to thank L. Sheng and D. N.
Sheng for helpful discussions. This work was supported by
the Research Grant Council of Hong KongsS.Q.S.d, and by
the National Science Foundation of China under Grant No.
10474022sL.B.H.d.
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