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A single-step operation is proposed to produce multiqubit maximally entangled states in the NMR model. In
the scheme, all qubits are initially in the ground state, and one single pulse of a multifrequency coherent
magnetic radiation is applied to manipulate simultaneously the “active states” that satisfy the resonant condi-
tions while all other “inactive states” remain unchanged. An effective Hamiltonian is derived in a generalized
rotating frame, which allows us to predict the time evolution of “active states” generated by the magnetic pulse.
The magnetic pulse parameters, such as frequencies, phases, amplitudes, and duration time, are obtained
analytically to implement a Bell state of two qubits and a Greenberger-Horne-Zeilinger state of three qubits.
The scheme has been generalized to create anN-qubit entangled state. Two rules are found to calculate the
magnetic pulse parameters numerically, which are required to realize entangled states for even and odd qubits,
respectively. The rules are successfully checked in the cases of 4øNø10. The relation of lnt0 and lnN is
found to be linear, and the duration timet0 is approximately proportional toÎN.

DOI: 10.1103/PhysRevA.70.022311 PACS number(s): 03.67.Lx, 03.65.Ud, 76.90.1d

I. INTRODUCTION

Quantum computing, based on quantum superposition and
entanglement, has enormous advantages over the classical
Turing machine[1,2]. Up to now, many physical systems
have been suggested as possible implementations of quantum
computing and quantum information processing, such as ion
traps [3], nuclear magnetic resonance(NMR) [4], cavity
QED systems[5], Josephson junctions[6], quantum dots[7],
and silicon-based nuclear spins[8]. Among the systems,
NMR is particularly attractive because of the long decoher-
ence time and is one of the most developed approaches. The
Deutsch-Josza quantum algorithm[9–11], Grover’s quantum
search algorithm[12–14], the seven-qubit Shor quantum fac-
toring algorithm [15], quantum error correction[16,17],
quantum Fourier transform[18], the five-qubit order-finding
algorithm [19], quantum teleportation[20], adiabatic quan-
tum computation[21], decoherence-free quantum computa-
tion [22,23], and geometric quantum computation[24,25],
etc., have been successfully implemented in NMR experi-
ments.

Quantum entanglement is of fundamental interest in ex-
perimental tests of quantum mechanics[26,27] and also
plays a key role in quantum computing and quantum infor-
mation processing[28,29]. It becomes significant in tech-
niques to generate entangled states, especially multiple-
particle entangled states. Implementing multiple-particle
entangled states is an extremely challenging task. In recent
years, the NMR technique has made some important experi-
mental progress in this respect. Chuanget al. succeeded in
creating Bell states using an effective pure state as an input
in their two-spin NMR system[30]. The idea of using NMR
to demonstrate Greenberger-Horne-Zeilinger(GHZ) correla-
tions was proposed by Lloyd[31], and an effective GHZ
state was first generated by Laflammeet al., whose experi-

ment appears to be the first time that a quantum network was
used to systematically entangle more than two qubits[32].
Experimental realization of GHZ correlations was also re-
ported by using NMR in Ref.[33]. Knill et al. generated a
seven-qubit “cat state” which consists of an equal superpo-
sition of two states: one with all spins up and the other with
all spins down[34]. Recently, an entanglement transfer on a
four-qubit liquid-state NMR quantum information processor
was implemented[35].

Lloyd described a method to perform an arbitrary quan-
tum circuit by a sequence of electromagnetic pulses with
well-defined frequency and amplitude in a weakly coupled
quantum system[1,36]. The implementation of multiqubit
entangled states mentioned above in NMR experiments in-
volves a special sequence of magnetic pulses. For instance,
in Laflammeet al.’s experiment a simple circuit to create a
GHZ state consists of a rotation byp /2 around they axis
followed by two controlled-NOT gates on other qubits, and
adapting this circuit to their system results in the pulse se-
quence shown in Fig. 2(b) of Ref. [32]. For simplicity, we
consider the ground stateu00¯0l as the initial state in an
N-qubit system. The entangled statesu00¯0l
+ u11¯1ld /Î2 (“cat state”) can be generated by using a Had-
amard gate followed bysN−1d Ln (NOT) gates (or N−1
controlled-NOT gates[37]). The Ln (NOT) gate can be de-
scribed by a unitary matrix[38]

LnsNOTd = SI2n+1−2 0

0 sx
D , s1d

whereI2n+1−2 is thes2n+1−2d3 s2n+1−2d identity matrix, and
sx is the Pauli matrix.L1(NOT) is the so-called controlled-
NOT gate, andL2(NOT) the Toffoli gate. Figure 1 shows
quantum circuits to create a Bell state and a GHZ state from
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the initial ground statesu00l and u000l for two-qubit and
three-qubit systems, respectively. The quantum circuits for
largerN-qubit systems can be derived by analogy. Obviously,
the number of required operations increases linearly with the
number of qubits. Moreover, most implementation of the
controlled-NOT gate in a liquid-state NMR also involves a
special sequence of resonance electromagnetic pulses
[30,38]. Note that Duet al. realizedL2(NOT) and L3(NOT)
gates in three- and four-qubit NMR systems experimentally
using a single transition pulse with well-defined frequency
and amplitude[38]. In addition, Bermanet al. also investi-
gated numerically a single-electromagnetic-pulse implemen-
tation of a quantum controlled-NOT gate in NMR model
[39,40].

In this paper, a single-step operation is proposed to pro-
duce multiqubit maximally entangled states in the NMR
model with well-resolved coupling. Unlike the previous
schemes using a special sequence of magnetic pulses, to our
best knowledge our proposal is the first to use only one pulse
in the NMR model. It is assumed that the initial state is the
ground stateu00¯0l. The key of our proposal is to design
one single pulse of a multifrequency coherent magnetic ra-
diation with well-defined frequencies, phases, amplitudes,
and duration time. The multifrequency magnetic pulse is ap-
plied to manipulate simultaneously the “active states” which
satisfy the resonant conditions while all other “inactive
states” remain unchanged. The idea of a multifrequency
magnetic pulse was presented theoretically in quantum infor-
mation processing with large-spin systems[41–43]. In Sec.
II, we describe how to generate the maximally entangled
Bell state su00l+eifu11ld /Î2 of two qubits by means of a
single-step operation in the NMR model. In Sec. III, we fur-
ther discuss implementation of the maximally entangled
GHZ statesu000l+eifu111ld /Î2 of three qubits. In Sec. IV,
we extend this to generate the entangled cat states ofN qu-
bits. Two rules are presented to calculate numerically the
magnetic pulse parameters that are required to realize en-
tangled states of any even and odd qubits, respectively, and
the rules are checked for the cases of 4øNø10. In particu-
lar, it is interesting to observe that duration timet0 of the
magnetic pulse is approximately proportional toÎN. Section
V is devoted to the conclusions.

II. THE BELL STATE OF TWO QUBITS

To present a systematic description on a single-step op-
eration proposal, we start with the maximally entangled Bell
state. It is assumed that two qubits are initially in the ground
state u00l. In the following we will show how to design a
single pulse of a multifrequency coherent magnetic radiation
that can generate the maximally entangled Bell stateuCBelll
=su00l+eifu11ld /Î2 in the NMR model. Consider a two-spin
NMR model in which one spin interacts with the other spin
through the Ising interaction. The Hamiltonian is

H2 qubit= −
1

2
Sv1s1

z + v2s2
z +

J

2
s1

zs2
zD , s2d

wherev1s2d is the Larmor frequency for spin 1s2d in a very
strong static magnetic field,J is the interaction constant be-
tween nuclei, ands1s2d

z is theẑ component of the Pauli matrix
of spin 1 s2d (the units are such that"=1). We assume that
v1.v2 and J!v1−v2. For example, we choose that
v1/ s2pd=500 MHz, v2/ s2pd=100 MHz, and J/ s2pd
=10 MHz. The complete set of eigenstates of Hamiltonian
H2 qubithu00l , u01l , u10l , u11lj is defined as a complete and or-
thogonal set of basis states, and the corresponding eigenen-
ergies are«1=−sv1+v2+J/2d /2, «2=−sv1−v2−J/2d /2, «3

=−s−v1+v2−J/2d /2, and «4=−s−v1−v2+J/2d /2, respec-
tively. The sketch of the energy levels of HamiltonianH2 qubit
is shown in Fig. 2.

Now the problem becomes to find one magnetic pulse that
leads to a unitary time evolution of the spins and produces
the expected maximally entangled Bell stateuCBelll. To
achieve this aim, we add an applied rectangular transversal
magnetic pulse with two frequenciesV1 andV2 to the two-
qubit system. Figure 2 shows two possible schemes, and as
an illustration, we choose the right scheme. Thus, the total
Hamiltonian reads

Htotal
s2d = H2 qubit+ Hpulse

s2d , s3d

where

FIG. 1. Quantum circuits to create maximally entangled states
from the initial ground states.(a) Two-qubit system;(b) three-qubit
system.

FIG. 2. The sketch of the energy levels of the Hamiltonian
H2 qubit and two multiphoton transition schemes to generateuCBelll.
The dashed lines present the single-spin transitions.V1s2d is the
resonant frequency of the transverse magnetic pulse.
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Hpulse
s2d = −

1

4 o
i,k=1

2

hikseisVkt+Fkdsi
+ + e−isVkt+Fkdsi

−d. s4d

Here,s±=sx± isy, h1k=g1mHkstd, andh2k=g2mHkstd. g1 and
g2 are theg factors of two nuclear spins and different, andm
is the nuclear magneton.Hkstd sk=1,2d is a pulse:Hkstd
=Hk for 0, t, t0, and 0 otherwise. The phasesFk and du-
ration timet0 of the alternating magnetic field will be studied
below in detail. In the current scheme, the frequency of the
external magnetic fieldV1 is resonant with the frequency of
the transitionu00l↔ u10l, and the frequencyV2 with the tran-
sition u10l↔ u11l, i.e., V1=v1+J/2 andV2=v2−J/2. Then,
starting from the ground stateu00l, a pulse with two frequen-
cies V1 and V2 leads only to a coherent evolution of three
basis statesu00l, u10l, and u11l. The basis states, which sat-
isfy the resonant conditions and can be manipulated simulta-
neously by a multifrequency magnetic pulse, are the so-
called “active states.” The remaining stateu01l is the so-
called “inactive state,” which does not satisfy the resonant
conditions and remains unchanged. In this case, the Hamil-
tonian (3) is truncated approximately as

Hs2d = «1u00lk00u + «3u10lk10u + «4u11lk11u

+ Sh1

2
eisV1t+F1du00lk10u +

h2

2
eisV2t+F2du10lk11u + H.c.D ,

s5d

whereh1=h11 andh2=h22. The time-dependent Schrödinger
equation readsi ] uCstdl /]t=Hs2duCstdl, where the evolution
of the quantum stateuCstdl from the initial state
uCs0dls=u00ld under the HamiltonianHs2d [Eq. (5)] can be
expressed as

uCstdl = c1stdu00l + c2stdu10l + c3stdu11l. s6d

Now we are in the position to extract an effective Hamil-
tonian, which governs the expected unitary evolution, and
leads to an analytic solution to this problem. We apply the
generalized rotating frame[42,44] to eliminate the time de-
pendence ofHs2d by means of a unitary transformation

Ustd = e−isV1t+F1du00lk00u + u10lk10u + eisV2t+F2du11lk11u,
s7d

such that an equivalent HamiltonianHrot
s2d is obtained[45],

Hrot
s2d ; UstdHs2dU+std − iUstd ] U+std/] t = 3

0
h1

2
0

h1

2
0

h2

2

0
h2

2
0
4 .

s8d

The eigenstates and eigenvalues ofHrot
s2d are

uw1l =
h1

Î2D
u00l +

1
Î2

u10l +
h2

Î2D
u11l, s9ad

uw2l =
h2

D
u00l −

h1

D
u11l, s9bd

uw3l =
h1

Î2D
u00l −

1
Î2

u10l +
h2

Î2D
u11l, s9cd

and

E1 =
1

2
D, E2 = 0, E3 = −

1

2
D, s10d

whereD=Îh1
2+h2

2. The propagator of the formU+stde−iHrot
s2d

t

determinescistd si =1,2,3d. Thus, with the initial condition
c1s0d=1 andc2s0d=c3s0d=0, we have the time evolution of
the system as follows:

c1std =
1

D2fh2
2 + h1

2cossDt/2dgeisV1t+F1d, s11ad

c2std =
h1

D
sinsDt/2de−ip/2, s11bd

c3std =
h1h2

D2 f1 − cossDt/2dge−isV2t+F2d+ip. s11cd

The expected maximally entangled Bell stateuCBelll requires
that the basis statesu00l and u11l are simultaneously popu-
lated with equal amplitudes, i.e.,uc1st0du2= uc3st0du2=1/2 and
uc2st0du2=0. From Eqs.(11a)–(11c), one can deduce the solu-
tion of the duration time of the pulset= t0=2p /D, and two
solutions forh2/h1: h2/h1=1+Î2 or h2/h1=−1+Î2. For the
first solution, h2/h1=1+Î2, the phasef in the Bell state
uCBelll=su00l+eifu11ld /Î2 is determined byf=p−sV1

+V2dt0−sF1+F2d, and f=−sV1+V2dt0−sF1+F2d for the
second solutionh2/h1=−1+Î2.

According to the two different solutions of the field am-
plitudes, the generation processes of the Bell state as a func-
tion of time are shown in Fig. 3(for h2/h1=1+Î2) and Fig.
4 (for h2/h1=−1+Î2), respectively, for the parameters
v1/ s2pd=500 MHz, v2/ s2pd=100 MHz, J/ s2pd=10 MHz,

FIG. 3. Time evolution of the probabilitiesucistdu2 subjected to
the magnetic pulse for the two-qubit NMR model. The dotted line
indicates the end of the rectangular pulse. The values of the param-
eters are v1/ s2pd=500 MHz, v2/ s2pd=100 MHz, J/ s2pd
=10 MHz, V1/ s2pd=505 MHz, V2/ s2pd=95 MHz, h1/ s2pd
=0.1 MHz. h2/h1=1+Î2. The duration timet0=24 s2p MHzd−1.
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V1/ s2pd=505 MHz, V2/ s2pd=95 MHz, and h1/ s2pd
=0.1 MHz. Obviously, the generation time(duration timet0)
of the Bell state is shortened by stronger pulses. In short, we
have presented a single-step operation to produce a maxi-
mally entangled Bell state of two qubits in the NMR model.
The Bell state with an arbitrary phase can be generated by
using a two-frequency pulse with well-defined frequencies,
phases, amplitudes, and duration time. Note that we useJ
coupling on the order of 10 MHz, which is higher than a
typicalJ-coupling value in NMR quantum computing experi-
ments. In order to implement the scheme on a two-qubit
system withJ coupling on the order of 100 Hz, according to
the requirement of the conservation condition of energydt0
@1 (here, d is the detuning of the pulse frequency with
respect to the resonant conditiond,J), it is estimated that
the duration timet0 may be on the order of 0.1 s. This dura-
tion time is reasonable for typical decoherence times in
NMR quantum computing experiments.

III. THE GHZ STATE OF THREE QUBITS

In this section we study how to generate the maximally
entangled GHZ stateuCGHZl=su000l+eifu111ld /Î2 in a
three-qubit NMR model by means of a single multifrequency
pulse. The initial state is still assumed to be the ground state
u000l. In this case, we must use a rectangular circularly po-
larized transverse magnetic field pulse with three frequencies
V1, V2, andV3. Then the evolution of the system with the
three-qubit NMR model under the action of this magnetic
pulse is described by the following Hamiltonian:

Htotal
s3d = H3 qubit+ Hpulse

s3d , s12d

where

H3 qubit= −
1

2o
i=1

3 Svisi
z + o

j=2s j.id

3
Jij

2
si

zs j
zD , s13d

Hpulse
s3d = −

1

4 o
i,k=1

3

hikseisVkt+Fkdsi
+ + e−isVkt+Fkdsi

−d, s14d

with v1.v2.v3 and Jij !vi −v j. For example, we take
v1/ s2pd=500 MHz, v2/ s2pd=250 MHz, v3/ s2pd
=100 MHz, J12/ s2pd=20 MHz, J23/ s2pd=10 MHz, and
J13/ s2pd=2 MHz. The basis states
hu000l , u001l , u010l , u011l , u100l , u101l , u110l , u111lj make up
the Hilbert space of the HamiltonianH3 qubit. A sketch of the
energy levels of the HamiltonianH3 qubit is shown in Fig. 5.
Figure 5 also shows a multiphonon transition scheme to pro-
duce the expected maximally entangled GHZ stateuCGHZl.
In this scheme, the frequency of the external magnetic field
V1 corresponds to the frequency of the transition
u000l↔ u100l, V2 to u100l↔ u110l, andV3 to u110l↔ u111l,
i.e., V1=v1+J12/2+J13/2, V2=v2−J12/2+J23/2, and V3
=v3−J23/2−J13/2. According to the conservation laws of
energy and angular momentum, starting from an initial state
u000l, a pulse with three frequenciesV1, V2, andV3 induces
a coherent evolution of only four basis statesu000l, u100l,
u110l, and u111l, and four other basis states remain un-
changed. This is a necessary condition for our scheme. In
Fig. 5, the active states and inactive states are indicated by
the black and open circles, respectively.

Now the problem is reduced to one in a four-level sub-
space consisting of four active states. For convenience, we
denoteu000l→ u0l, u100l→ u1l, u110l→ u2l, and u111l→ u3l.
Then the Hamiltonian(12) is truncated as follows:

Hs3d = o
n=0

3

«nunlknu + o
n=1

3 Shn

2
eisVnt+Fndun − 1lknu + H.c.D ,

s15d

whereh1=h11, h2=h22, andh3=h33. «n is the eigenvalue of
the HamiltonianH3 qubit corresponding to the active state
(eigenstate). The evolution of the quantum stateuCstdl under
the HamiltonianHs3d (15) can be expressed as

FIG. 4. Time evolution of the probabilitiesucistdu2 subjected to
the magnetic pulse for the two-qubit NMR model. The dotted line
indicates the end of the rectangular pulse. The values of the param-
eters are v1/ s2pd=500 MHz, v2/ s2pd=100 MHz, J/ s2pd
=10 MHz, V1/ s2pd=505 MHz, V2/ s2pd=95 MHz, h1/ s2pd
=0.1 MHz. h2/h1=−1+Î2. The duration timet0=58 s2p MHzd−1.

FIG. 5. The sketch of the energy levels of the Hamiltonian
H3 qubit and a multiphoton transition scheme to generateuCGHZl.
The dashed lines present the single-spin transitions. The black and
empty circles indicate the active states and inactive states in this
scheme, respectively.V1s2,3d is the resonant frequency of the trans-
verse magnetic pulse.
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uCstdl = c0stdu0l + c1stdu1l + c2stdu2l + c3stdu3l. s16d

Likewise, the generalized rotating frame[42,44] is again ap-
plied to eliminate the time dependence ofHs3d by means of a
unitary transformation

Ustd = u0lk0u + eisV1t+F1du1lk1u + eifsV1+V2dt+sF1+F2dgu2lk2u

+ eifsV1+V2+V3dt+sF1+F2+F3dgu3lk3u, s17d

such that an equivalent HamiltonianHrot
s3d is obtained,

Hrot
s3d = 3

0
h1

2
0 0

h1

2
0

h2

2
0

0
h2

2
0

h3

2

0 0
h3

2
0

4 . s18d

The eigenstatesuwkl and eigenvaluesEk sk=1,2,3,4d of Hrot
s3d

can also be found explicitly(see the Appendix). A propagator

of the form U+stde−iHrot
s3d

t determines the phases and the
moduli of cistd si =0,1,2,3d. Thus, with the initial condition
c0s0d=1 andc1s0d=c2s0d=c3s0d=0, we have the time evolu-
tion of the system as follows:

c0std =
− h1

2 − h2
2 + h3

2 + V2

2V2
cossE1td

+
h1

2 + h2
2 − h3

2 + V2

2V2
cossE3td, s19ad

c1std =
1

2Î2h3V2

fÎV1 − V2sh1
2 − h2

2 − h3
2 − V2dsinsE1td

− ÎV1 + V2sh1
2 − h2

2 − h3
2 + V2dsinsE3tdg

3 e−isV1t+F1−p/2d, s19bd

c2std =
h1h2

V2
fcossE1td − cossE3tdge−ifsV1+V2dt+sF1+F2dg,

s19cd

c3std =
Î2h1h2h3

V2
F sinsE3td

ÎV1 − V2

−
sinsE1td
ÎV1 + V2

G
3 e−ifsV1+V2+V3dt+sF1+F2+F3d−p/2g, s19dd

where V1=h1
2+h2

2+h3
2 and V2=ÎV1

2−4h1
2h3

2. The expected
maximally entangled GHZ stateuCGHZl requires that the ba-
sis statesu0l and u3l be simultaneously populated with equal
amplitudes, i.e., uc0st0du2= uc3st0du2=1/2 and uc1st0du2
= uc2st0du2=0. From Eqs.(19a)–(19d), one can deduce two
sets of parameters of the magnetic pulse to generateuCGHZl.
The first set of pulse parameters is thath1=h3, h2/h1=6/Î7,
and the pulse duration timet0=p / s4E3d. Then the phasef in
the GHZ stateuCGHZl=su000l+eifu111ld /Î2 is determined
by f=p /2−oi=1

3 sVit0+Fid, whereFi are the phases of the
required three-frequency pulse. The second set of pulse pa-
rameters is thath1=h3, h2/h1=2/Î15, and the pulse duration
time t0=3p / s4E3d. The phasef in the GHZ state isf
=−p /2−oi=1

3 sVit0+Fid.
According to the two sets of parameters of the magnetic

pulse, the generation processes of the GHZ state as a func-
tion of time are shown in Fig. 6(for the first set of param-
eters) and Fig. 7(for the second set of parameters), respec-
tively, for the parametersv1/ s2pd=500 MHz, v2/ s2pd
=250 MHz, v3/ s2pd=100 MHz, J12/ s2pd=20 MHz,
J23/ s2pd=10 MHz, J13/ s2pd=2 MHz, V1/ s2pd=511 MHz,
V2/ s2pd=245 MHz, V3/ s2pd=94 MHz, and h1/ s2pd
=0.1 MHz. From Figs. 6 and 7, a single-step operation is
presented to produce the maximally entangled GHZ state of
three qubits in the NMR model by using a three-frequency
pulse with well-defined frequencies, phases, amplitudes, and
duration time.

IV. GENERALIZATION TO GENERATE N-QUBIT
ENTANGLED STATES

The single-step operation in Secs. II and III can be gen-
eralized to anN-qubit NMR model. The cat state forN qubits

FIG. 6. Time evolution of the probabilitiesucistdu2 subjected to
the magnetic pulse for the three-qubit NMR model. The dotted line
indicates the end of the rectangular pulse. For the first set of param-
etersh1/ s2pd=0.1 MHz, h3=h1, h2/h1=6/Î7. The duration time
t0=41.56 s2p MHzd−1

FIG. 7. Time evolution of the probabilitiesucistdu2 subjected to
the magnetic pulse for the three-qubit NMR model. The dotted line
indicates the end of the rectangular pulse. For the second set pa-
rametersh1/ s2pd=0.1 MHz, h3=h1, h2/h1=2/Î15. The duration
time t0=60.84 s2p MHzd−1
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is defined byuCcatl=su00¯0l+eifu11¯1ld /Î2. Generally
speaking, for anN-qubit NMR model, we use a rectangular
circularly polarized transversal magnetic field pulse withN
frequenciesV1, V2, . . . , andVN. The effective Hamiltonian
is

Htotal
sNd = HN qubit + Hpulse

sNd , s20d

where

HN qubit = −
1

2o
i=1

N Svisi
z + o

j=2s j.id

N
Jij

2
si

zs j
zD , s21d

Hpulse
sNd = −

1

4 o
i,k=1

N

hikseisVkt+Fkdsi
+ + e−isVkt+Fkdsi

−d. s22d

We assume thatv1.v2. ¯ .vN andJij !vi −v j. HN qubit
has 2N basis states and eigenenergies.N+1 basis states are
chosen as active states. The frequencyVi corresponds to the
resonant frequency of the transition from theith active state
to the si +1dth active state and all pulse frequenciesVi si
=1,2, . . . ,Nd are required to be different. Moreover, accord-
ing to the conservation laws of energy and angular momen-
tum, all pulse frequenciesVi are also required not to induce
a change of the remaining 2N−N−1 inactive states. This is a
necessary condition for our scheme. Thus, the system is re-
duced to ansN+1d-level subspace consisting ofN+1 active
states. For convenience, we again use decimal notation to
denote theN+1 active states, i.e.,j00 is denoted byj0i and j11
by jNi, etc. Then the Hamiltonian(20) is truncated approxi-
mately as

HsNd = o
n=0

N

«nunlknu + o
n=1

N Shn

2
eisVnt+Fndun − 1lknu + H.c.D .

s23d

The evolution of the quantum stateuCstdl under the Hamil-
tonianHsNd (23) can be expressed as

uCstdl = o
n=0

N

cnstdunl. s24d

Likewise, the generalized rotating frame[42,44] is applied to
eliminate the time dependence ofHsNd by means of a unitary
transformation

Ustd = o
n=0

N FSp
m=0

n

eisVmt+FmdDunlknuG , s25d

such that an equivalent HamiltonianHrot
sNd is obtained,

Hrot
sNd = 3

0
h1

2
0 ¯ 0

h1

2
0

h2

2
� A

0
h2

2
0 � 0

A � � �

hN

2

0 ¯ 0
hN

2
0

4 . s26d

Hrot
sNd has N+1 eigenstates uhid=on=0

N visn+1dunl, for i
=1,2, . . . ,sN+1d with the eigenvaluesh1,h2, . . . ,hN+1.

Propagators of the formU+stde−iHrot
sNd

t determine the phases
and the moduli of cnstd, from the initial state uCs0dl
= u00¯0l, and

cnstd = Sp
m=0

n

e−isVmt+FmdDo
j=1

N+1

fsv−1d1je
−ih j tv jsn+1dg. s27d

The expected cat statesuCcatl require that the basis states
u00¯0l (i.e., u0l in decimal notation) and u11¯1l (i.e., uNl)
are simultaneously populated with equal amplitudes, i.e.,
uc0st0du2= ucNst0du2=1/2 and theremainingucnst0du2=0. Now,
our task becomes to solveN nonlinear equations to deter-
mine the pulse parameters. For largerN, it is not easy to give
analytic solutions ofcnstd, so numerical calculations will be
invoked. According to our calculations, we find two rules
(but not mathematically proved) for calculating the magnetic
pulse parameters to reach the cat states for the cases of even
qubits and odd qubits, respectively.

(i) For even qubits,Hrot
sNd hasN+1 eigenvalues denoted by

0, ±uE1u, ±uE2u , . . . , ±uEN/2u with order
uEN/2u. ¯ . uE2u. uE1u. There are two schemes of pulse pa-
rameter sets that can reach the cat state. The first one is that
h1=hN, h2=hN−1, . . . , hsN/2d−1=hsN/2d+2, hsN/2d+1/hN/2=1+Î2,
and the duration time of the pulset0=p / uE1u. In this case, the
phasef in the cat stateuCcatl=su00¯0l+eifu11¯1ld /Î2 is
determined byf=p−om=1

N sVmt0+Fmd. The second set is
h1=hN, h2=hN−1, . . . , hsN/2d−1=hsN/2d+2, hsN/2d+1/hN/2=−1+Î2,
the duration time of the pulset0=p / uE1u, and f
=−om=1

N sVmt0+Fmd.
(ii ) For odd qubits,Hrot

sNd has N+1 eigenvalues ±uE1u,
±uE2u , . . . , ±uEsN+1d/2u with uEsN+1d/2u. ¯ . uE2u. uE1u. There
are again two schemes of parameter sets to reach the cat
state. The first one ish1=hN, h2=hN−1, . . . , hsN−1d/2=hsN+3d/2,
and the duration time of the pulset0=p / s4uE1ud. The phasef
is given by f=−p /2−om=1

N sVmt0+Fmd for N=5,9,13, . . .
andf=p /2−om=1

N sVmt0+Fmd for N=7,11,15, . . .. Thesec-
ond set, likewise, hash1=hN, h2=hN−1, . . . , and hsN−1d/2
=hsN+3d/2, but t0=3p / s4uE1ud, and phase f=−p /2
−om=1

N sVmt0+Fmd for N=7,11,15, . . . and f=p /2
−om=1

N sVmt0+Fmd for N=5,9,13, . . ..
Using these rules, numerical calculations will be simpli-

fied. We check the rules for seven cases:N=4,5, . . . ,10. The
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results exactly prove the rules. All numerical results are
given in Tables I and II. The relation of lnt0 and lnN (for
4øNø10) is fitted as a curve lnt0.3.46+0.49 lnN, which
is plotted in Fig. 8. Thus, the duration timet0 is approxi-
mately proportional toÎN. In the introduction, we mentioned
that the entangled statesu00¯0l+ u11¯1ld /Î2 (the cat
state) can be prepared using a Hadamard gate followed by
N−1 controlled-NOT gates, that is, using a special sequence
of magnetic pulses. As a simplified description, we assume
that the operation time of a Hadamard gate istH and the time
of each controlled-NOT gate istC. Then the total operation
time t0 for generating the cat state of theN-qubit NMR
model by means of this special sequence of magnetic pulses
is t0= tH+NtC, which is approximately proportional toN. Ac-
cording to the single-spin transition scheme for operating the
controlled-NOT gate in Refs. [38–40], tC=p /V and tH
=p / s2Vd (V is the Rabi frequency). For comparison, we
assumeV / s2pd=0.1 MHz. Figure 8 also shows the relation
of ln t0 and lnN (indicated by black circles) needed to gen-
erate the cat states using a Hadamard gate followed bysN
−1d controlled-NOT gates in theN-qubit NMR model.

V. CONCLUSION

In conclusion, we described how to design a single pulse
of multifrequency coherent magnetic radiation to produce
maximally entangled states in the multiqubit NMR model.
Unlike the previous schemes using a special sequence of
magnetic pulses, our proposal is a single-step operation. In
our scheme, for anN-qubit NMR system, a pulse withN

nonequal frequencies is applied to manipulate simulta-
neouslyN active states. Moreover, all the pulse frequencies
Vi are also required not to induce evolution of the remaining
2N−N−1 inactive states. This is a necessary condition for
our scheme. We obtain the magnetic pulse parameters, such
as frequencies, phases, amplitudes, and duration time, neces-
sary to implement Bell states of two qubits and GHZ states
of three qubits. Generally, we find two rules for calculating
the magnetic pulse parameters to reach the entangled states
for even and odd qubits, respectively. We have checked the
rules in several cases for 4øNø10 and all exactly tally with
the rules. We fit the relation of lnt0 and lnN, and find the
duration time t0 ,ÎN. In our method, a 2N-dimensional
space is reduced to ansN+1d-level subspace if the necessary
condition is satisfied.

Theoretically, the present scheme can be extended to
largerN-qubit NMR models. In practice the scheme requires
the application of line selective pulses. This is easily achiev-
able for small molecules containing several qubits, but may
be difficult for larger molecules since the requiredJ cou-
plings become quite small for spins that are separated by
several bonds. Therefore, this scheme may be practical only
for a small number of qubits. On the other hand, this scheme
may find useful applications in multilevel systems. For ex-
ample, the Hamiltonians of Eqs.(8) and (18) can be easily
implemented in multilevel systems(e.g., systems with
smaller spin numberS, sayS=1 and 3/2). Higher-order spin
systems have limitations in quantum computing as well, but
many other quantum computer systems rely on employing, at
least temporarily, other energy levels. For example, ion trap
quantum computers regularly employ other transitions to

TABLE I. The numerical calculation results that generate the cat statesuCcatl for the N-qubit NMR model using the first scheme of
parameters.h1/ s2pd=0.1 MHz and the units oft0 are s2p MHzd−1.

N t0 h2/h1 h3/h1 h4/h1 h5/h1 h6/h1 h7/h1 h8/h1 h9/h1 h10/h1

4 62.83 0.6629 1.6002 1

5 71.98 1.3801 0.6547 1.3801 1

6 76.95 1.2910 0.7654 1.8478 1.2910 1

7 81.62 1.2766 1.1386 2.3094 1.1386 1.2766 1

8 88.86 1.3229 1.5000 0.8557 2.0658 1.5000 1.3229 1

9 95.26 1.3396 1.5560 1.8150 0.8242 1.8150 1.5560 1.3396 1

10 99.35 1.3416 1.5492 1.6733 0.9374 2.2630 1.6733 1.5492 1.3416 1

TABLE II. The numerical calculation results that generate the cat statesuCcatl for the N-qubit NMR model using the second scheme of
parameters.h1/ s2pd=0.1 MHz and the units oft0 are s2p MHzd−1.

N t0 h2/h1 h3/h1 h4/h1 h5/h1 h6/h1 h7/h1 h8/h1 h9/h1 h10/h1

4 62.83 1.6002 0.6629 1

5 67.26 1.0091 2.1020 1.0091 1

6 76.95 1.2910 1.8478 0.7654 1.2910 1

7 84.00 1.3275 1.6194 0.7480 1.6194 1.3275 1

8 88.86 1.3229 1.5000 2.0658 0.8557 1.5000 1.3229 1

9 93.31 1.3225 1.4772 1.2598 2.5252 1.2598 1.4772 1.3225 1

10 99.35 1.3416 1.5492 1.6733 2.2630 0.9374 1.6733 1.5492 1.3416 1
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temporarily move the quantum state out of the qubit mani-
fold. In another example using coupled Josephson junctions,
higher-lying energy levels could be used to implement two-
qubit gates. Our scheme may find the most applications in
such schemes, which lie outside spin-1/2 NMR quantum
computing. Meanwhile, it should be noted that off-resonance
pulses inducez rotations even far beyond the excitation win-
dow of the pulse[46]. Thesez rotations are the results of
transient Bloch-Siegert shifts[46–48]. The shifts have unfa-
vorable effects on this proposed scheme, especially for the
case of nearby frequencies, because the quantum state during
the pulse itself is rather complicated and most definitely not
a computational basis state. Fortunately, Steffenet al. found
that the resulting error from transient Bloch-Siegert shifts
can be corrected by shifting the frequency of the on-
resonance pulse in such a way that it tracks the shift of the
spin frequency[49]. Briefly, although in practice this pro-
posed scheme is subject to the choice of the system, its ad-
vantage may be to provide a possible scheme for designing
the shortest sequence of pulses corresponding to a quantum
computation task.
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APPENDIX

Four eigenstates(not normalized) of Hrot
s3d are

uw1l =
ÎV1 + V2s− h1

2 − h2
2 + h3

2 + V2d

2Î2h1h2h3

u0l

+
− h1

2 + h2
2 + h3

2 + V2

2h1h2
u1l +

ÎV1 + V2

Î2h1

u2l + u3l,

uw2l =
ÎV1 + V2sh1

2 + h2
2 − h3

2 − V2d

2Î2h1h2h3

u0l +
− h1

2 + h2
2 + h3

2 + V2

2h1h2
u1l

−
ÎV1 + V2

Î2h1

u2l + u3l,

uw3l =
− ÎV1 − V2sh1

2 + h2
2 − h3

2 + V2d

2Î2h1h2h3

u0l

+
− h1

2 + h2
2 + h3

2 − V2

2h1h2
u1l +

ÎV1 − V2

Î2h1

u2l + u3l,

uw4l =
ÎV1 − V2sh1

2 + h2
2 − h3

2 + V2d

2Î2h1h2h3

u0l +
− h1

2 + h2
2 + h3

2 − V2

2h1h2
u1l

−
ÎV1 − V2

Î2h1

u2l + u3l,

whereV1=h1
2+h2

2+h3
2 and V2=ÎV1

2−4h1
2h3

2. The eigenvalues
are given by E1=ÎV1+V2/ s2Î2d, E2=−ÎV1+V2/ s2Î2d,
E3=ÎV1−V2/ s2Î2d, andE4=−ÎV1−V2/ s2Î2d.

[1] S. Lloyd, Science261, 1569(1993).
[2] D. P. DiVincenzo, Science269, 255 (1995).
[3] J. I. Cirac and P. Zoller, Phys. Rev. Lett.74, 4091(1995); C.

Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J.
Wineland,ibid. 75, 4714(1995).

[4] N. A. Gershenfeld and I. L. Chuang, Science275, 350(1997);
D. Cory, A. Fahmy, and T. Havel, Proc. Natl. Acad. Sci.
U.S.A. 94, 1634(1997).

[5] Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J.
Kimble, Phys. Rev. Lett.75, 4710(1995).

[6] A. Shnirman, G. Schön, and Z. Hermon, Phys. Rev. Lett.79,
2371 (1997).

[7] D. Loss and D. P. DiVincenzo, Phys. Rev. A57, 120 (1998).
[8] B. E. Kane, Nature(London) 393, 133 (1998).
[9] I. L. Chuang, L. M.K. Vandersypen, X. L. Zhou, D. W. Leung,

and S. Lloyd, Nature(London) 393, 143 (1998).
[10] K. Dorai, Arvind, and A. Kumar, Phys. Rev. A61, 042306

(2000).
[11] R. Marx, A. F. Fahmy, J. M. Myers, W. Bermel, and S. J.

Glaser, Phys. Rev. A62, 012310(2000).

FIG. 8. The relation of lnt0 and lnN. The black squares indi-
cate the numerical calculation results for theN-qubit NMR model
using a single-step operation to generate the cat states. The numbers
above the black squares present the number of qubits in the NMR
model. The solid line is the linearly fitted one, and the dotted line is
an extrapolated one. The black circles indicate the relation of lnt0
and lnN for generating the cat states using a Hadamard gate fol-
lowed byN−1 controlled-NOT gates in theN-qubit NMR model.

ZHOU, TAO, AND SHEN PHYSICAL REVIEW A70, 022311(2004)

022311-8



[12] J. A. Jones, M. Mosca, and R. H. Hansen, Nature(London)
393, 344 (1998).

[13] I. L. Chuang, N. Gershenfeld, and M. Kubinec, Phys. Rev.
Lett. 80, 3408(1998).

[14] L. M.K. Vandersypen, M. Steffen, M. H. Sherwood, C. S. Yan-
noni, G. Breyta, and I. L. Chuang, Appl. Phys. Lett.76, 646
(2000).

[15] L. M.K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni,
M. H. Sherwood, and I. L. Chuang, Nature(London) 414, 883
(2001).

[16] D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W.
H. Zurek, T. F. Havel, and S. S. Somaroo, Phys. Rev. Lett.81,
2152 (1998).

[17] E. Knill, R. Laflamme, R. Martinez, and C. Negrevergne,
Phys. Rev. Lett.86, 5811(2001).

[18] Y. S. Weinstein, M. A. Pravia, E. M. Fortunato, S. Lloyd, and
D. G. Cory, Phys. Rev. Lett.86, 1889(2001).

[19] L. M.K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, R.
Cleve, and I. L. Chuang, Phys. Rev. Lett.85, 5452(2000).

[20] M. A. Nielsen, E. Knill, and R. Laflamme, Nature(London)
396, 52 (1998).

[21] M. Steffen, W. van Dam, T. Hogg, G. Breyta, and I. Chuang,
Phys. Rev. Lett.90, 067903(2003).

[22] L. Viola, E. M Fortunato, M. A. Pravia, E. Knill, R. Laflamme,
and D. G. Cory, Science293, 2059(2001).

[23] J. E. Ollerenshaw, D. A. Lidar, and L. E. Kay, Phys. Rev. Lett.
91, 217904(2003).

[24] J. A. Jones, V. Vedral, A. Ekert, and G. Castagnoli, Nature
(London) 403, 869 (2000).

[25] J. Du, P. Zou, M. Shi, L. C. Kwek, J.-W. Pan, C. H. Oh, A.
Ekert, D. K.L. Oi, and M. Ericsson, Phys. Rev. Lett.91,
100403(2003).

[26] J. S. Bell, Physics(Long Island City, N.Y.) 1, 195 (1965).
[27] D. M. Greenberger, M. A. Horne, and A. Zeilinger, Am. J.

Phys. 58, 1131(1990).
[28] C. H. Bennett, Phys. Scr., T76, 210 (1998).
[29] A. Galindo and M. A. Martin-Delgado, Rev. Mod. Phys.74,

347 (2002).

[30] I. L. Chuang, N. Gershenfeld, M. G. Kubinec, and D. W. Le-
ung, Proc. R. Soc. London, Ser. A454, 447 (1998).

[31] S. Lloyd, Phys. Rev. A57, R1473(1998).
[32] R. Laflamme, E. Knill, W. H. Zurek, P. Catasti, and S. V.S.

Mariappan, Philos. Trans. R. Soc. London, Ser. A356, 1941
(1998).

[33] R. J. Nelson, D. G. Cory, and S. Lloyd, Phys. Rev. A61,
022106(2000).

[34] E. Knill, R. Laflamme, R. Martinez, and C. H. Tseng, Nature
(London) 404, 368 (2000).

[35] N. Boulant, E. M. Fortunato, M. A. Pravia, G. Teklemariam,
D. G. Cory, and T. F. Havel, Phys. Rev. A65, 024302(2002).

[36] S. Lloyd, Sci. Am. 273, 140 (1995).
[37] J. A. Jones, Prog. Nucl. Magn. Reson. Spectrosc.38, 325

(2001).
[38] J. Du, M. Shi, J. Wu, X. Zhou, and R. Han, Phys. Rev. A63,

042302(2001).
[39] G. P. Berman, D. K. Campbell, G. D. Doolen, G. V. López, and

V. I. Tsifrinovich, Physica B240, 61 (1997).
[40] G. P. Berman, G. D. Doolen, G. V. López, and V. I. Tsifrinov-

ich, Phys. Rev. B58, 11 570(1998).
[41] M. N. Leuenberger and D. Loss, Nature(London) 410, 789

(2001).
[42] M. N. Leuenberger, D. Loss, M. Poggio, and D. D. Awscha-

lom, Phys. Rev. Lett.89, 207601(2002).
[43] B. Zhou, R. Tao, S.-Q. Shen, and J.-Q. Liang, Phys. Rev. A

66, 010301(2002).
[44] A. Abragam,The Principles of Nuclear Magnetism(Claren-

don, Oxford, 1961).
[45] A trivial term s«1+V1dI has been ignored in the Hamiltonian

(I is a 333 unit matrix), which does not affect the final results
we discuss.

[46] L. Emsley and G. Bodenhausen, Chem. Phys. Lett.168, 297
(1990).

[47] F. Bloch and A. Siegert, Phys. Rev.57, 522 (1940).
[48] N. F. Ramsey, Phys. Rev.100, 1191(1955).
[49] M. Steffen, L. M.K. Vandersypen, and I. L. Chuang, J. Magn.

Reson.146, 369 (2000).

MULTIQUBIT MAXIMALLY ENTANGLED STATES IN … PHYSICAL REVIEW A 70, 022311(2004)

022311-9


