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Spintronic Faraday rotation spectroscopy and geometrical modulation of spin current
in an Aharonov-Casher ring

Zhongshui Ma,1,2,3 Peng Li,3 and Shun-Qing Shen3

1State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, China
2Advanced Research Center, Zhongshan University, Guangzhou 510275, China

3Department of Physics, The University of Hong Kong, Pukfulam Road, Hong Kong, China
(Received 7 March 2004; published 24 September 2004)

We study the ballistic spin transmission through an AC ring between two ferromagnetic filter-electrodes in
the presence of spin-orbit interaction, theoretically. It is shown that the spin precession of polarized electrons
can be controlled via a cylindrically symmetric electric field, and the sequence of the polarized conductance
depends on the relative orientation of magnetization between the left and right filters. The injected spin-
polarized electrons can be blocked completely for the special values of electric field and angle of texture,
which makes the magnetoresistance to be drastically enhanced. We also propose an interference scheme to
detect the geometric phase.

DOI: 10.1103/PhysRevB.70.125318 PACS number(s): 73.23.2b, 73.40.Gk

Stimulated by the pioneering proposal of spin-transistor
by Datta and Das,1 much effort has been spent on an efficient
mechanism for achieving spin-polarized electron injection
into semiconductors. The original idea came from the spin-
resolved conductance manifested itself as the modulation of
spin current, which is produced by spin precession via the
spin-orbit(SO) interaction or Rashba coupling when the spin
carriers transport through a narrow-gap semiconductor. Be-
cause the strength of Rashba coupling depends on the exter-
nal gate voltage, therefore, it evidently makes the spin modu-
lation controllable. The studies have covered over from the
semiclassical diffusive regime to the ballistic regime of spin-
dependent transport. Presently, how to control and to utilize
the well-known materials and well-controlled structures are
intrigued more and more from both the experimental and
theoretical sides, inspired by the promises of its application
in magnetoelectric devices and quantum computation. Ex-
perimentally, the electric control of spin coherence2 and co-
herent spin precession during transport3 were studied by us-
ing the optical generation and detection techniques in
semiconductors. Spin-valve transistor structures have been
proposed.4 To achieve a high-spin polarization, various struc-
tures of semiconductor heterostructures, which relied on spin
degeneracy of conduction electron band lifted by SO inter-
action or Rashba coupling, have been studied. In the multi-
layered configuration of nonmagnetic semiconductors, the
nonmagnetic current was predicted to induce spin precession
in various multilayers, which consist of the ferromagnetic
layers.5 Quantum effects in novel spintronic devices, such as
the quantum coherence and interference, have also been
taken into account recently.6 However, most works in the
investigation of spintronic devices are practically demon-
strated with some kinds of semiconductor heterostructures.
The extraneous effect, risen from a resistance mismatch be-
tween these quite different materials, makes the results con-
troversial. Alternatively, based on the magnetic semiconduc-
tor, the spin-switch7 and spin-dependent filter8 effects have
been demonstrated, theoretically. Spin-polarized current in
ballistic mesoscopic rings is raised due to the Zeeman cou-

pling in the presence of magnetic textures. It is shown
that the modulation of the current was interpreted as a
possible manifestation of Aharonov-Bohm effect. Therefore,
the geometric modulation of spin-polarized current emerges
its possibility in the control function of polarization. How-
ever, there is also practical difficulty in the experimental
achievement to low temperature and in the uncertain control-
lable effect for the local inhomogeneous magnetic field.
In a recent paper9 we have exploited this geometric analogy
to show that the spin precession can be induced by the
Aharonov-Casher(AC) effect.10 It is shown that the process
of spin-resolved current in the incoming spin-polarized
electron is emerged through the AC effect. In such an AC
ring, the ballistic transport regime is more easily fulfilled
experimentally and even at higher temperatures. The modu-
lation originates from quantum spin interference with a
specific phase difference risen by a geometric phase, i.e.,
Aharonov-Anandan(AA ) phase,11 which is acquired by the
spin carrier as it travels around the ring. We have shown a
scheme of the geometrical control of spin precession, which
differs from the common electrical control of spin precession
in the semiconductor heterostructures. The preferentially
particular spin electrons in the detectors are, therefore,
modulated by the geometric phase. This has raised a hope for
the realization of geometrically modulated semiconductor
nonmagnetoelectronic devices. We believe geometric control
of a spin degree of freedom in solid-state physics to have
sound potential in the applications of quantum spintronic
devices.

In this paper we study thegeometric spintronic Faraday
rotation spectroscopyby means of the geometrically con-
trolled strength of polarization, which describes the complete
polarization of electrons by means of spin precession in elec-
tron propagation direction in a special setup structure. A ba-
sic structure is nonmagnetic ballistic mesoscopic rings con-
nected with two ferromagnetic filters as spin injector and
detector. A textured electric fieldE, generated by a perpen-
dicular charged line through the ring, as well as a point
charge near the center of the ring and a circular gate voltage,
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are applied on the ring, which is shown in Fig 1. In this
design configuration, it is possible to let only one kind of
polarized spin enter and the specific polarized spin, corre-
sponding to a certain polarization switched from parallel P
(ferromagnetic) to antiparallel AP(antiferromagnetic) align-
ment, and leave the ring through the contacts. When the in-
coming polarized electron travels along the ring, it suffers
the spin flip due to the SO interaction and acquires an AC
phase in its wave function. It is worth pointing out that the
polarized electrons, whose polarized directions are different
from the polarization in ferromagnetic filters, prefer to by-
pass the intersections between ring and ferromagnetic
electrodes rather than to propagate around the ring as a per-
sistent current. As a result of the constraint in polarizations
of both incoming and outgoing electrons, the spin precession
in the spin conduction is completely determined by the
polarized alignments of electrodes. This polarization rotation
sP→APd changes the transport properties of the system.
Note that in the ring region, the polarized electrons in the
reverse direction of ferromagnetic filter, although not passing
the contacts, are still present to travel in the ring. Because
SO interaction makes spin flip during their travel on the
ring, these carriers with a reverse polarization may be modu-
lated to the polarization parallel to that in the filter by
precession and leave the ring through the contact. The output
polarized current is sensitive to the spin degree of freedom
and its sign can be switched from zero to finite value,
depending on the relative magnetization of the ferromagnetic
filter electrodes. The interference of polarized electrons
makes the polarized conductances to be characterized by
geometric phases which originate from the interplay between
an electron’s spin and orbital degrees of freedom. It makes
sense that the spin interference manifests itself as the spin
AA phase associated with the spin-polarized states arising
from SO interaction. The geometric phases are robust against
any decoherence source. Based on this property, the
geometric phase control of large magnetoresistance can be
anticipated.

The essential ingredient of the ballistic electron transport
is the Landauer-Büttiker formula,12 which expresses the con-
ductanceGss8 in the form

Gss8 =
e2

h
Tss8sEFd, s1d

whereTss8sEFd is a transmission probability for the incident
polarized electrons with spins ss= ↑ , ↓ d being transmitted
to the outgoing spin states8ss8= ↑ , ↓ d, andEF is the Fermi
energy of electrons in the ferromagnets. In a free-electron
approximation of the conduction electrons inside each ferro-
magnet, the energy of longitudinal motion of polarized elec-
tron is equal toEF. The resistance is arisen from the elec-
tronic scattering by SO interaction in the ring. In the
following calculations we can show thatTss8sEFd is notably
filter-alignment-dependent and also depends on the texture
electric field. First, we will calculate the transmission prob-
ability for the different set up of ferromagnetic filter elec-
trodes, which are switched from parallel P(ferromagnetic) to
antiparallel AP(antiferromagnetic) alignment. We begin with
the longitudinally effective one-electron Hamiltonian, in-
cluding the spin degree of freedom of ferromagnets along the
x axis

Hfilter = Sp2/2me + U↑sxd 0

0 p2/2me + U↓sxd
D , s2d

whereme is the effective mass of electron.Ussxd ss= ↑ , ↓ d
is the constriction potential assumed to allow those electrons
with a certain orientation to be transmitted. If the ferromag-
netic filter electrodes are switched in a parallel alignment(P),
U↑sxd=0 andU↓sxd=`, or U↑sxd=` andU↓sxd=0, x,0 and
x.2a. If the ferromagnetic filter electrodes are switched in
an antiparallel alignment(AP), U↑sxd=0 and U↓sxd=`,
x,0, and U↑sxd=` and U↓sxd=0, x.2a; or U↑sxd=`
and U↓sxd=0, x,0, and U↑sxd=0 and U↓sxd=`, x.2a.
Therefore, outside of the left and right boundaries of
ring (scattering region), the wave functions of electrons are
plane wave with the polarized-spin corresponding to these
switched alignment. In brief, we consider an incident
plane wave with spin-si and a unit incident particle flux in
the left region. It can be regarded as initial state of spin
carrier prepared for being injected and transmitted through
the ring.

Cl
ssxd = eikxusil + e−ikxrP/AP

ss8 usi8l,

Cr
ssxd = eikxtP/AP

ss8 us f8l, s3d

wheretP/AP
ss8 srP/AP

ss8 d is the transmission(reflection) coefficient,
usi8l and us f8l label the spin states of incoming and outgoing
electrons withsi/f =↑, ↓ (spin quantized along thez axis).
The subscriptP sAPd represents a parallel(antiparallel)
alignment of ferromagnetic filter electrodes so thatsi =s f
ssi =s̄ fd.

In order to calculate the transmission probabilities

Tss8sEFd s=utP/AP
ss8 u2d and to demonstrate the modulation of

spin precession as a function of the angle and the strength of
texture electric field in the scattering region, we explain how
the geometric control parameters are arisen when an electron
transmits through the AC ring. We consider a symmetric one-
dimensional(1D) ballistic mesoscopic ring lying in thex-y

FIG. 1. Schematic picture of the ring geometry with two
ferromagnetic filter electrodes in the presence of a texture electric
field. The spin carrier travels around the ring with the spin-orbit
interaction. The arrows represent the magnetization vectors of
electrodes. In the right electrode, the filled(hollow) arrow repre-
sents the magnetization vector for the parallel(antiparallel)
alignment.

MA, LI, AND SHEN PHYSICAL REVIEW B 70, 125318(2004)

125318-2



plane. We assume that the length of the ring, while possibly
large in comparison to a typical carrier wavelength, is
smaller than the mean-free path and the spin diffusion length
Ls, which is, in turn, smaller than the geometric size of the
system. The effective Hamiltonian for the noninteracting
electrons in the ring reads

Hring =
1

2me
Sp −

e"

4mec
2s 3 ED2

, s4d

where the electron charge is taken to be −e, s (sx, sy, and
sz) denote the Pauli matrices, andp is the momentum of
electron. The coupling between electron spin and the electric
field is included via the SO interaction term, i.e.,
se" /4me

2c2ds ·E3p. In the cylindrical coordinate system, the
cylindrically symmetric electric fieldE can be expressed as
E=Escosxer −sinxezd. With the help of the transformations
er =cosuex+sinuey and eu=−sinuex+cosuey, the Hamil-
tonian (5) becomes13–16

Hring =
"2

2mea
2F− i

]

]u
+ assinxsr + cosxszdG2

s5d

with sr =sx cosu+sy sinu and a=−eaE/4mec
2, wherea is

the radius of ring andu is the angular coordinate. For a
ballistic 1D ring the eigenstates of Hamiltonian(6) can be
obtained analytically asctsud=s1/Î2pdeinuutl, in which the
exponent factor describes the motion along the ring andutl
refers to the spin statest=±,

u + l = S cosb/2

eiu sinb/2
D and u− l = S sinb/2

− eiu cosb/2
D , s6d

whereb is given by

tanb =
2a sinx

2a cosx + 1
. s7d

For clarity, we consider the nonadiabatic geometric evolution
of eigenstatesctsud with t=±. From the theory of the
nonadiabatic Aharonov-Casher phase, the quantum
mechanical wave functionctsud accumulates a phase,FAC

std ,
upon a cyclic evolution when the electron undergoes a
nonadiabatic evolution along a closed curve in the presence
of an orientationally inhomogeneous electric field. The origin
of the phase is so-called the AC effect, and the phase can
been written as a sum of its geometric phaseFAA

std and
dynamic SO phaseFSO

std, i.e., FAC
std =FAA

std +FSO
std, which are

given by

FAA
std = − ps1 − t cosbd andFSO

std = − tp2a cossb − xd,

s8d

respectively. The geometric and dynamic phases associated
with the cyclic evolution of states can thereby be identified
for all the energy eigenstates to determine the whole energy
spectrum

2En,t

"v0
= Sn −

1

2p
FAC

stdD2

−
1

2p
FAC

stdS1 +
1

2p
FAC

stdD
+ asa − cosxd, s9d

wherev0=" /mea
2. In this expression, the first two terms are

the orbital and spin energies, and the third term is the zero-
point energy.14

Now let us return the implement that the ring is connected
to two ferromagnetic filter-electrodes. For convenience, we
use the local coordinate system in the circuit such that the
coordinate x is taken along the direction of electron
current. The origin of the local coordinate is taken at the left
intersection. In fact, the choice of the coordinate origin is
trivial because it differs by only a phase factor on the trans-
mission amplitude. We label the upper and lower arms of
ring with the subscripts 1 and 2, respectively(see Fig. 1).
Once the spin-up electrons transmit into the ring through one
of the contacts from electrodes, they are transmitted along
two arms to arrive the contact at the another end. We expand
the incoming state(of a spin-up electron) in terms of the
eigenstates ofHring. Because of a spin-up incident plane
wave having a unit incident particle flux in left region,
the part for the spin degree of freedom of the state can be in
their superposition states:u0l=cossb /2du+l+sinsb /2du−l.
So the wave function of electrons in the ring will
be evolved by means ofutlst= ± d. The statesutlst= ± d
pick up a phaseFAC

std /2, when electrons from one of
the intersections move to another intersection along one
arm in the clockwise direction while picking up a phase
−FAC

std /2 if they move in the counter-clockwise direction
along another arm. The total phase changes around the
whole loop is FAC

± as expected. In the ring, the electric
field may change the momenta of electrons into the
same energy as in the ferromagnets in two different
spin eigenstatesu± l, k1

±=k+FAC
± /2pa andk2

±=k−FAC
± /2pa.

Therefore, in the AC ring, the wave functions have the
general form of a plane wave with the modified wave vectors
for electrons on the arma,

Ca
P/APsxd = o

t=±
sCa,t

P/APeika
stdx + Da,t

P/APe−ikā
stdxdutl, s10d

(a=1 and 2), where ā indicates that it takes 2(1) if
a=1s2d. In this expression we have rewritten the azimuthal
angle u in the spin stateu± l in terms of the coordinate
x along the direction of electron current. To solve the
Schrödinger equation, one must find the unknowns
rss8

P/AP, Ca,t
P/AP, Da,t

P/AP, and tss8
P/AP for the parallel alignment

s=s8s=↑ , ↓ d and for the antiparallel alignment
s8=ss=↑ , ↓ d by matching the boundary conditions of the
wave functions(3) and (10), and their derivatives at the left
and right intersections(x=0 andpa). They are the Griffith’s
boundary conditions at each intersection, in which the corre-
sponding polarized wave function is continuous and the cor-
responding current component density is conserved.17 In our
consideration, we assume that the electrons, once injected,
have a negligible probability to lose their spin information by
escaping into the left electrode. More explicitly, in the left
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intersectionx=0, the continuity of the wave functions and
the current conservation lead

uCl
ssxdux=0 = uC1ssxdux=0 = uC2ssxdux=0,

uC1s̄sxdux=0 = uC2s̄sxdux=0,

U ]Cl
ssxd

]x
U

x=0
= U ]C1ssxd

]x
U

x=0
+ U ]C2ssxd

]x
U

x=0
,

0 =U ]C1s̄sxd

]x
U

x=0
+ U ]C2s̄sxd

]sxd
U

x=0
s11d

because only spin polarizeds electrons in the left filter. In
the right intersectionx=pa, the continuity of the wave func-
tions and the current conservation give the boundary condi-
tions as

uCr
s8sxdux=pa = uC1s8sxdux=pa = uC2s8sxdux=pa,

uC1s̄8sxdux=pa = uC2s̄8sxdux=pa,

U ]Cr
s8sxd
]x

U
x=pa

= U ]C1s8sxd

]x
U

x=pa
+ U ]C2s8sxd

]x
U

x=pa
,

0 =
]C1s̄8sxd

]x
+

]C2s̄8sxd

]sxd
s12d

because only spin polarizeds8 electrons flow outward
the right filter, where we have chosen the derivatives toward
the positive direction along the coordinate axis ofx in
the boundary conditions(11) and (12); s=s8= ↑ or ↓
corresponds to the parallel magnetizations in filters while
s8=s= ↑ or ↓ corresponds to the antiparallel magnetiza-
tions in filters. For the parallel(P) magnetic configuration,
i.e., the orientations of the magnetic filters of the left and
right ferromagnetic electrodes are parallel; the spin transmis-
sion coefficientstP

s are determined by the boundary condi-
tions (11) with incoming and outgoing electrons with the
polarizations ss= ↑ or ↓ d. In this case those electrons in
the spin states̄, which precesses from the spin states,
would remain and evolve in the ring. They leave the ring
until that they precess to the same spin state as the filters.
Only those electrons whose spin polarization is parallel to
the magnetization of right filter are transmitted through the
whole system. For the antiparallel(AP) magnetic configura-
tion, i.e., the orientations of the magnetic filters of the left
and right ferromagnetic electrodes are antiparallel, those
electrons in the same spin state as the incoming electron on
the right intersection would evolve in the ring. Differing
from those in parallel(P) magnetic configuration, only the
incoming electrons whose spin polarization is completely
flipped in the right intersection are transmitted through the
contact to the right electrode. During the flight time from
injector to detector, the spin direction of electrons can there-
fore only be altered by coherent precession through SO in-
teraction in the presence of an external electric field. Then,
the spin-polarized tunnelling conductance depends on the

relative phase between the magnetizations of two ferromag-
netic electrodes, the applied electric field, which produces an
AC phase to make the spin precession on the ring when
polarized electrons move alone the ring with SO interaction,
the bias voltage, and the temperature.

The transmission coefficients of an incoming electron
with spin s for the parallel(P) and antiparallel(AP) align-
ments are given by

tP/AP
s = utP/AP

s uei QP/AP
s

, s13d

where utP/AP
s u=GP/AP

s sMP/AP
2 +NP/AP

2 d−1/2 and tanQP/AP

=MP/AP/NP/AP. It is found that

GP
s = sinkap cosb sin

D

2
Ssin2 D

2
− cos2 kapD ,

GAP
s = sinkap sinb sin

D

2
Ssin2 D

2
− cos2 kapD ,

MP = Ssin2 D

2
− cos2 kapD2

+
1

4
sin2 kapScos2 b sin2 D

2

− cos2 kapD ,

MAP = Ssin2 D

2
− cos2 kapD2

+
1

4
sin2 kapSsin2 b sin2 D

2

− cos2 kapD ,

NP = NAP = sinkap coskapSsin2 D

2
− cos2 kapD ,

andD = pÎsa sinxd2 + s1 + a cosxd2. s14d

Figure 2 shows the transmission of a polarized electron
through the AC ring. We choose the typical values of the
material parameters for ferromagnetic metals of Ni, Co, and
Fe [16]; the Fermi energy is taken to beEF=3.8 eV
skF=1.0 Å−1d. The circumference of the circuit is taken to be
2pa=200 Å sa,30 Åd about 50–100 atoms in size. We in-
ject the spin-up polarized electrons into the ring and measure
the output flux of spin-up(parallel filter-electrode alignment)
and spin-down(antiparallel filter-electrode alignment) elec-
trons. In Fig. 2, the curves for the double polarizations in
electrodes are drawn for comparison. In comparison with the
transmission of ferromagnetic electrodes(no-filters), we no-
tice that these oscillations are not in the same structure as
those with two possible outgoing polarized electrons. The
oscillations exhibit an extra structure that depends on the
range of electric field. Sweeping the electric field from nega-
tive to positive, the transmission can be modulated more ef-
ficiently: we can flip the spin of the incident electrons or
block it completely when the magnetization of device
switches from a parallel to antiparallel configurations, and
thus, a spin transistor is established. The transmission is pe-
riodic with respect to the electric field. Also found is a
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square-type transmission curve with a shape dip, which has
been found for the modulation of spin-current in the structure
of periodically stubbed electron waveguides,18 but with a
narrow gap. Differing from the cases with changing the
width of the waveguide and the asymmetry parameter, the
transmissions here are the function of electrical fieldE and
the tilt anglex. Looking at the curvesTP andTAP in Fig. 2,
we notice that they are quite different from each other. We
found the followings:(1) both TP andTAP oscillate with the
same periodic rate as that of double polarizations in outgoing
electron, although the amplitudes of the square-type trans-
mission curves are different;(2) the amplitudes of the
square-type transmission curves decay with increase of
strength of electric field for parallel alignment while that
enhances with the increase of the electric field for antiparal-
lel alignment, as a sequence of the spin-flip transmission that
contributes toTAP with increasing Rashba coupling. It is
found that the spin-flip is blocked in the case ofx=0. It is
known that the spin has not precessed when the electric field
is along the radial direction, where the AA phase disappears.
Because no spin current is modulated when the AA phase
vanishes, the spin polarizability remains unchanged. So the
transmissions for the antiparallel polarization filters are com-
pletely blocked. With increase of the tilt anglex, the AA
phase is presented. The transmissions for the parallel polar-
ization filters are decreased when the electric field is in-
creased, which is equivalent to an increase in the SO inter-
action, while the transmissions for antiparallel polarization
filters are increased. This is an explicit signal of spin-flip. At
x=p, it is again that the spin-flip is blocked. It is noted that
x=p is a mirror point.

From plots of transmissions in Fig. 2, it is observed

that there are the extra structures in the square-type transmis-
sion curve. It is found that near of the edges of the square-
type transmission curves there are the peaks accompanied
to the main curves. Between them there appears the blocking
of transmissions at appropriate values of electric field.
It is found that the small change of electric field near of
these edges the transmissions start to increase steeply.
Such kind of the extra structure have also been observed
in the semiconductor heterostructures.18 To demonstrate the
extra structure corresponding to blocked transmission via a
manifestation of Berry’s phase in a system with SO interac-
tion, we cut the section ofTP/AP=0. In Fig. 3 we have shown
the completely blocked incident electrons for both the
parallel to antiparallel configurations for appropriatea and
x. Blocking transmission in parallel alignment is at cosb
=0 (dashed line), sinD /2=0 (solid line), and sin2 D /2
−cos2 kap=0 (dashed-dot line), while it is at sinb=0 (dot-
ted line), sinD /2=0, and sin2 D /2−cos2 kap=0 for antipar-
allel alignment.

In Fig. 4, we plot the magnetoconductance ratio, which is
given by the relative changeDG/Gav=sTP−TAPd / sTP+TAPd.
The magnetoconductance ratio in Fig. 4 can be controlled
via a cylindrically symmetric electric field. The oscillating
magnetoconductance is observed due to spin precession.
This feature is equivalent to the spin-field-effect transistor
proposed by Datta and Das.1 In comparison with the
magnetoconductance ratio in the general ferromagnetic
electrodes,9 we found the distinct differences in the presence
of the filter electrodes. The filters provide intrinsic AA
phase-dependent peaks that give rise to the extra oscillating
effect in magnetoconductance. These extra structures
correspond to the blocking points in the transmissions
(see Fig. 5), i.e., cosb=0, sinb=0, and sin2 D /2
−cos2 kap=0.

In the remainder of the paper, we comment on the possi-
bility for measurement of AA phase in the present spin-filter
system. Mathur and Stone pointed out that the observable

FIG. 2. The transmission coefficientssTP/APd vs. the applied
electric field (in the unit ea/4mec

2) for several values of texture
anglex (0, p /6, p /3, p /2, 2p /3, 5p /6, and 11p /12). Dashed line
is for parallel alignmentTP and dotted line is for antiparallel align-
mentTAP. The solid line corresponds to the case with double polar-
ization in the ferromagnetsT.

FIG. 3. A section of the transmission coefficientssTP/AP=0d for
the completely blocked incident electrons. A parallel configuration:
(a), (b), and (c); while an antiparallel configuration:(a), (b), (d),
where(a) sinD /2=0, (b) sin2 D /2−cos2 kap=0, (c) cosb=0, and
(d) sinb=0.
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phenomena induced by SO interactions are essentially the
manifestation of the AC effect and proposed an experiment
to observe the AC oscillation of the conductance in semicon-
ductor samples.19,20 In the above description, the geometric
manipulation of electron spin in a mesoscopic ring by the
electrical approach and detection of the geometric phase
have been discussed. The device can be regarded as ageo-
metric spintronic Faraday rotation spectroscopy, which is
used to describe the phenomenon of the polarization of a
polarized electron, after it has been transmitted through a
system being precessed around the electron propagation or
the wave-vector direction. In order to show the geometric
manipulation of electron spin and the detection of the geo-

metric phase via the extremely sensitive geometric spintronic
Faraday rotation spectroscopy, we discuss the spin motion
acquiring a geometric phase that, in turn, generates an ob-
servable effect in spin transport in filter. We check the con-
sequence of the spin precession on the eigenstates ofsz,
u0l=cosb /2u+l+sinb /2u−l and u1l=sinb /2u+l
−cosb /2u−l. When an electron processes the evolution from
one intersection to another in the ring, the stateu+l acquires

a phaseeiFAC
s+d

/2 and the stateu−l acquires a phaseeiFAC
s−d

/2.
As the mix states the quantum-state evolutions for
CS

T=su0l , u1ld are described byCS→MCS, where

M = sin
FAC

s+d

2
Stan−1 FAC

s+d/2 + i cosb i sinb

i sinb tan−1 FAC
s+d/2 − i cosb

D .

s15d

From these expressions, it is seen that the AC phase
plays a role of precessing the spin statesu0l andu1l into their
superposition states. As a consequence, the geometric
modulation of electron polarization is realized. Unfortu-
nately, the phases accumulated in this way have both the
geometric and the dynamic contributions. To detect merely
the geometric phase via the interferometry, it is necessary
to eliminate the dynamic phase. To implement the elimina-
tion of the dynamic phase, we can make the polarized
electrons evolve twice by suddenly changing the bias
between two filters for the antiparallel alignment after
the first evolution has been completed. Then the second
cyclic evolution of the polarized electrons retraces the first
one, but following the reverse path. Taking the precession
of the initial state u0l as an example for demonstrating
the detection of geometric phase, two steps are described as
follows:

u0l → 1
2 sinbseiFAA

s+d
e−iEs+dt + eiFAA

s−d
e−iEs−dtdu1l

→ i

2
sin2 b sin 2FAA

s+de−isEs+d−Es−ddtu0l. s16d

Thus we found that the net effect of this compound operation
is to cancel the dynamic phase and maintain the geometric
one.

The generalization of the geometric phase associated
with the evolution of the mixed state is one important
problem in a quantum system, which relates to generalize
the parallel transport condition. The geometric phase associ-
ated with the no-jump trajectory is the same as the one
acquired by an isolated system evolving under the same
Hamiltonian. In fact, the geometric phase is actually robust
against all of the polarizations of filters but spin flip. The
final geometric phase is affected by spin flips manifested
by the SO interaction during the polarized electron transport-
ing in the ring. From Fig. 2 we have found that in this
geometric evolution, i.e., modulatingx andE, the geometric
phase associated with the strength of flips during the
transport is sensitive for the transport of the spin-polarized
electrons. This can be regarded as a simple geometrical
explanation for AA phase associated with the spin
precession.

In summary, the polarized spin transmissions across an

FIG. 4. The magnetoconductance ratio, p=DG/Gav, as the func-
tion of electric field in the unitea/4mec

2 and its angle of texturex
(0, p /6, p /3, p /2, 2p /3, 5p /6, and 11p /12).

FIG. 5. The contour plot for the magnetoconductance ratio,
DG/Gav, as the function of electric field in the unitea/4mec

2 and
its angle of texturex.

MA, LI, AND SHEN PHYSICAL REVIEW B 70, 125318(2004)

125318-6



AC ring with the parallel and antiparallel magnetized align-
ments of electrodes have been studied. We have shown that
the spin filtering can be fully manipulated with the AC effect.
The origin is the spin flip via spin precession, which can
easily be controlled via a cylindrically symmetric electric
field. There are several advantages to the present investiga-
tion. As a precise representation ofgeometric spintronic
Faraday rotation spectroscopy, we present a geometric ex-
planation as to the phenomenon of the polarization of spin-
polarized electrons being precessed around the electron

propagation or the wave-vector direction during its transmit-
ting through a system. We propose it to be an interference
scheme based on the ring setup for detection of the geomet-
ric phase.
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