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We study a spin-orbital model in which the spin-spin interaction couples linearly to the orbital isospin.
Fluctuations drive the transition from a paramagnetic state to aC-type-ordered state into a strongly first-order
one, as observed in V2O3. At T=0, there is a ferro-orbital-C-spin to ferro-orbital-G-spin transition. Close to the
transition point, the system shows dynamically generated dimension reduction and crossover, resulting in one
or more spin reentrant transitions.

DOI: 10.1103/PhysRevB.70.100405 PACS number(s): 75.10.2b, 75.25.1z, 75.30.Kz

Recently, there has been growing interest in the effects of
orbital degeneracy on the physics of transition-metal oxides.
The effective spin Hamiltonian of the insulating phase of
such systems may depend crucially on orbital short- and
long-ranged correlations. As a result, magnetic ordering can
become anomalous or may even be suppressed altogether. At
the same time, orbital physics is also affected by spin fluc-
tuations and correlations. The interplay between spin and
orbital degrees of freedom is fundamental to much of the
physics of transition-metal oxides.1,2 In this rapid communi-
cation we investigate certain aspects of this interplay, empha-
sizing on the effects of thermal and quantum spin fluctua-
tions on orbital ordering and the effects of orbital ordering on
spin physics. Our most interesting result is that the system
can exhibit dimension reduction and dimension crossover of
spin physics as a function of temperature due to orbital
ordering.

In the insulating phase of transition-metal oxides, the
dominating energy scales for the transition-metal ions are the
on-site Coulomb repulsion, Hund’s rule coupling, and the
crystal field due to the surrounding oxygen ions. Neglecting
weak spin-orbit effect, the general spin Hamiltonian with
twofold-degenerate orbitals(represented by pseudospint
=1/2) is of the form,3 H=oki j lsJijSi ·Sj +Kijd, whereJij and
Kij are functions ofti and t j. This Hamiltonian has global
SU(2) invariance in spin space and a lower and discrete ro-
tational symmetry int space.4–8 Out of the general class of
such Hamiltonians, we will focus on those on a cubic lattice
of the form

H = J0o
ki j l

Si ·Sj − Ko
ki j l

Si ·Sjsti · n̂i j + t j · n̂i jd. s1d

Here, the unit vectorsn̂i j = n̂1,n̂2,n̂3 for i , j nearest neighbor
in thex,y,z directions, respectively. In this model, the inter-
play between spins and orbitals arises from the second term
which is linear int. This linear term will be present provided
the two eigenvalues of the hopping matrix are different,
while the n̂i’s will depend on how the two degenerate orbit-
als transform under lattice rotations. For specificity, we take
the n̂3’s to be unit vectors in thex−z plane, withn̂3= ẑ, while

n̂1 and n̂2 are rotated fromn̂3 by 120° and 240°. More gen-
erally, there are also quadratic int terms, which we assume
to be weak compared to the two terms kept. This implies that
any orbital ordering in the system will be due to spin-orbital
coupling rather than the Jahn–Teller effect. Assuming this is
the case, and with the choice ofn̂i’s above, this spin-orbital
Hamiltonian can serve as a model for one electron or hole
per site in the doubly degenerateeg levels of cubic
perovskites,4 as well as a possible model for V2O3.

9 For the
latter, each site on the cubic lattice is the topological equiva-
lence of a vertical pair of sites on the corundum lattice of
V2O3. The couplingJ0 depends strongly on and decreases
with the Hund’s coupling, whileK is only weakly dependent
on it. We considerJ0.0, and with an appropriate definition
of t, we also haveK.0. The calculation shown here will be
for S=2, the value ofS for the V2O3 bond model, but the
results are qualitatively the same for otherS. The results are
also applicable to other lattices and other choices of then̂i’s.

While J0 favors conventional(G-type) antiferromagnetic
(AF) correlations so that nearest-neighbor spins are all AF
correlated,K favors, along with orbital ordering, anomalous
magnetic correlations that break the cubic lattice rotational
symmetry, for example,C-type ordering with AF correlation
in the ab plane and ferromagnetic(FM) correlation in thec
direction. In this paper, we investigate the phase diagram of
this model in the temperatureT and J0/K plane. Our main
results are as follow:(1) At low T, orbital ordering gives rise
to effective dimension reduction of the spin physics forJ0/K
close to 2.(2) The weakening of orbital ordering with in-
creasingT can lead two dimension crossover from two-
dimensional(2D) to three-dimensional(3D) and vice versa.
(3) The dimension crossover effect together with thermal
fluctuation effects on the spins can lead to an order by dis-
order mechanism and one or more reentrant transitions.(4)
The strongly first-order nature of the magnetic transition in
V2O3 is explained.10 The underlying physics behind these
results are orbital ordering coupled with spin short-ranged
correlations and quantum fluctuations.

Within the context of the bond model for V2O3, our
model has been studied by Joshiet al.6 using a single-site
mean-field theory. In order to include short-range spin corre-
lation and quantum fluctuations, we use a modified mean-
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field approach to decouple the spin-orbital Hamiltonian. We
begin with the Bogolyubov–Peierls variational theorem,11

F ø F0 + kH − H0l. s2d

Here, F is the true free energy of the system andH is the
actual Hamiltonian given in Eq.(1). H0 is a variational
Hamiltonian andk l0 is the thermal expectation value with
respect toH0. F0 is the free energy of the system with Hamil-
tonianH0. We take our variational Hamiltonian as

H0 = HS+ Ht, s3d

HS= J'o
ki j l

z

Si ·Sj + Jo
ki j l

x,y

Si ·Sj ,

Ht = − 2KAo
i

tiz,

whereJ'=J0−2Kt and Ji=J0+Kt, with tù0. In HS above,
the first sum is for nearest-neighbor pairs along thez direc-
tion and the second sum is for pairs on the samexy plane.t
andA are variational parameters. The forms ofJ' andJi are
based on the expectation that orbital ordering will be ferro-
orbital.

Minimization of free energy with respect to the varia-
tional parameters gives two self-consistent equations,A
=DB and t=ktzl=tanhs2KbAd. DB=B'−Bi, with B'

=kSi ·Sjlz and Bi=kSi ·Sjlx,y as out-of-plane and in-plane
nearest-neighbor spin-spin correlation obtained fromHS.
Thus, the variationalapproach is equivalent to a mean-field
decoupling of Si ·Sjti → kSi ·Sjlti +Si ·Sjktil−kSi ·Sjlktil.
Note that while a nonzero value oft signifies long-range
orbital order, a nonzero value ofB only signifies short-range
spin correlations. IfB'ÞBi, spin correlations will be differ-
ent from isotropicG-type antiferromagnet. In particular, if
Bi ,0, andB'.0, that would correspond toC-type mag-
netic correlations. Our decoupling scheme thus allows us to
study the effects of short-ranged spin-spin correlations, but
not short-ranged orbital correlations. However, we expect
spin fluctuations to be dominant because of its continuous
symmetry. Joint spin-orbital correlations are also ignored,
but we expect these to be weak compared to spin fluctuations
far away from the SU(4) limit.12 Based on these arguments,
our choice ofH0 should provide a good approximation for
the relevant physics.

Note thatJi .0, butJ' can be either positive or negative
in HS, depending on the value of orbital order parametert.
HS is an Heisenberg Hamiltonian with spatial anisotropy. In
order to include short-ranged correlations and quantum fluc-
tuations, we use renormalized spin-wave theory
(RSWT),13–15 which, unlike traditional spin-wave theory
(SWT), is applicable to both a magnetically ordered and dis-
ordered phase. For the Heisenberg antiferromagnet on the
square lattice, Hirsch and Tang14 have shown that this
method can provide quantitatively accurate results. In
RSWT, magnon-magnon interactions are approximated by
introducing a constraint that the total staggered magnetiza-
tion be zero;M =oiPASi

z−o jPBSj
z=0, or equivalently, that the

average number of spin waves per site isS. This constraint

can be implemented by introducing intoHS a Lagrange mul-
tiplier l,

HS= J'o
ki j l

z

Si ·Sj + Jo
ki j l

x,y

Si ·Sj − lM . s4d

The modifiedHS [Eq. (4)] is then solved using the usual
spin-wave theory by expanding to quadratic order in
Holstein–Primakoff bosons.

Classically, the spins will order asC and G type for the
J',0 and J'.0 cases, respectively. Thus, the sublattice
designation will differ in the two cases and the spin-wave
calculation must be done separately. Let us defineQ=J' /Ji

andvk
+ andvk

−, magnon energies forQ.0 andQ,0 cases,
respectively. We see thatQ is a dimensionless measure of the
effective spin-spin coupling anisotropy. Note that
−2,Q,1. The chemical potentialm is obtained from the
constraint equation,

S+
1

2
=E ddkW

s2pddS 1

ebvk
±
− 1

+
1

2DF±sm,kd, s5d

where b is the inverse temperature andvk
± are given by

vk
+=6JiSÎm2−gk

2 and vk
−=6JiSÎfm−suQu /3dgk'g2−f 2

3gkig2

with effective magnon chemical potential,m= 1
3f2+uQu

+sl /4SJid. gk= 1
3scoskx+cosky+Q coskzd, gk'=coskz, and

gki=
1
2scoskx+coskyd. F+sm ,kd=msm2−g

kW
2d−1/2 and F−sm ,kd

=fm+sQ/3dgk'gf(m+sQ3dgk')2−s 2
3gkWid2g−1/2 should be used

for Q.0, ,0, respectively.
After solving for m, DB can be calculated, and the self-

consistent equation fort can be solved using an iterative
scheme. When there is more than one solution fort, we
compare their free energies to choose the stable solution for
each temperature. One anomaly of the RSWT approach is
that B' and Bi need to be calculated to one order of 1/S
higher than the free energy to ensure the correct sign for spin
correlation at high temperatures.13,16 This difference is not
significant for the self-consistent solutions close to and be-
low the temperature of the first phase transition in our model.

In Fig. 1, we show the resulting phase diagram for the
case ofS=2, the value ofS for the V2O3 bond model. In
what follows, P stands for para(i.e., disordered), F stands for
ferro-ordering, C stands forC-type ordering, G stands for
G-type ordering, and O and S refer to orbital and spin, re-
spectively. Five phases are possible in the model. These
phases are POPS, FOCS, FOPS(may be GS or CS short-
ranged correlations), POGS[isotropic AF long-range order
(AFLRO)] and FOGS(anisotropic AFLRO). The phase con-
sistent with the magnetic and orbital ordering observed in
V2O3 is the FOCS phase.9,10,17,18The phase transitions that
the system undergoes as the temperature is lowered depend
on the parameterJ0/K and can be grouped into six regimes
discussed below. In all cases, the orbital transition is first
order while the spin transitions are second order, unless ac-
companied by the orbital transition.

For regime If0øJ0/Kø0.506g, the regime relevant for
V2O3, the transition is a direct one from the disordered phase
into the FOCS phase with both spins and orbitals ordered.
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Experiments showed this transition to be strongly first order.
While single-site mean-field theory(SSMFT) for our Hamil-
tonian is able to obtain a first-order transition in this param-
eter regime, it was only weakly first order. By including
short-ranged correlations in the present theory, the POPS
phase is stabilized, and the first-order nature of the transition
is significantly enhanced. Entropy jump calculated from the
free-energy derivative is larger than 1kB per site throughout
regime I, with, e.g., a value of 1.28kB for J0/K=0.25, which
compares favorably with the experimental value of 1.4kB
(each site on the bond model corresponds to a pair of V
ions). We should note that the mechanism for a large entropy
jump here is quite different from the usual fluctuation driven
first-order transition, where the dominant fluctuations are
from modes close to the mean-field free-energy minimum.
For this system, however, the dominant fluctuations are
G-type magnetic ones, and very far from theC-type mag-
netic ordering. Another issue in V2O3 is why spins and or-
bitals order at the same temperature. In principle, it is pos-
sible to have a spin Peierls transition driven by FO ordering
instead of a FOCS transition.6 This issue cannot be addressed
by SSMFT, but can be using our modified MFT, which
shows that forJ0/K appropriate for V2O3, there is no FO
driven spin Peierls phase. However, we will see below that
such a phase can indeed occur in other parameter regimes of

our model, but it will necessarily be preceded by a POGS
ordering at higher temperature. Thus, a phenomenological
explanation of the concurrence of orbital and CS ordering in
V2O3 is that there is no GS ordering at a higher temperature.

Regimes II and VI (0.506,J0/Kø1.976 and
2.013,J0/K, respectively) show two phase transitions. The
system first undergoes an isotropicsQ=1d POGS ordering.
Then, at a lower temperature, the spin-orbital coupling
causes a first-order FO transition that converts the spin or-
dering to CS sQ,0d in regime II and anisotropic GS
sQ.0,Þ1d in regime VI. Rather more interesting, however,
are regimes III, IV, and V, corresponding to 1.976,J0/K
ø1.987, 1.987,J0/Kø2, and 2,J0/Kø2.013, respec-
tively. These regimes show multiple transitions, including
reentrance. These transitions are consequences of effective
dimension reduction and dimension crossover in spin physics
caused by orbital ordering.

To see this, let us first considerT=0, where within our
MFT the orbital is always fully ordered. As a result, the
effective spin Hamiltonian from our decoupling scheme pa-
rametrized byQ changescontinuouslyto smaller positiveQ
and then eventually to negativeQ as J0/K is decreased. At
J0/K=2, Q=0 and the spins on different planes become de-
coupled, i.e., the spin Hamiltonian is that of a 2D Heisenberg
antiferromagnet. This is the orbital driven dimension reduc-
tion effect atT=0. Current wisdom is that the ground state of
the 2D Heisenberg antiferromagnetic Hamiltonian is ordered
at T=0 in 2D even forS=1/2. Thus, there is spin LRO
(anisotropic GS or CS) for all values ofJ0/K at T=0. At
finite temperature, thermal fluctuations will weaken both the
spin ordering and the orbital ordering, with the latter giving
rise to effective temperature-dependent spin Hamiltonian.
The spin physics is best understood by considering howQstd
changes withT together with the dependence of the spin
transition temperatureTcsQd on Q. For small uQu, TcsQd
,uQuu RSWT givesu=1/2. Because orbital has a discrete
symmetry, its order parametert, and henceQ changes expo-
nentially slowly at lowT, and the physics is dominated by
thermal disordering of the spin. At higherT, the reduction in
t becomes significant, and the corresponding change inQ can
give rise to dimension crossover in spin physics. These fea-
tures are shown in Fig. 1(b) and discussed below, whereQ0
denotes the value ofQ for t=1, i.e., atT=0.

We first considerJ0/K=2 right at the decoupling point
[point C in Fig. 1(b)], so thatQ0=0 atT=0. As T increases,
t decreases andQ becomes increasingly positive, and the
planes become increasingly coupled, implying a crossover
from 2D to 3D. However, this crossover is exponentially
slow at low T, and since Heisenberg spins cannot order at
any T.0 in two-dimensions, the spin LRO is immediately
destroyed at infinitesimalT. As temperature increases,Q be-
comes large enough thatTcsQd exceedsT, and there is a
reentrant transition into an anisotropic GS phase. The resto-
ration of spin LRO due to temperature-induced dimension
crossover can be viewed as a new kind of order by disorder
mechanism. ForQ0.0 but small(regime V), the physics is
basically the same with one difference. Since now
TcsQ0d.0, the GS order is stable at lowT but will disorder
for T*TcsQ0d.

FIG. 1. (a) Phase diagram of spin-2 doubly degenerated spin-
orbital model.(b) Blowup of the region close toJ0/K=2. Regimes
III, IV, and V described in the text correspond to values ofJ0/K
between AB, BC, and CD, respectively. The dotted line givesT2,
the dimension reduction temperature. To its left(right), the spin
coupling anisotropy parameterQ,0s.0d.
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The behavior is even richer forQ0,0 but small(regimes
III and IV). Now asT increases,Q gets first less negative,
becomes 0 at some temperatureT2, then becomes positive.
That is, we have dimension crossovers first from anisotropic
3D to 2D, and then back to anisotropic 3D asT increases.
Correspondingly, the spins first undergo a transition from CS
LRO to CS short-ranged order atT<TcsQ0d The interplane
ferromagnetic correlation continues to decrease asT in-
creases, crossing over into GS short-ranged order forT.T2
In regime IV, there is yet another reentrant transition into
anisotropic GS LRO. Throughout regimes III–V, the PS
phases have short-ranged spin correlations that are spatially
anisotropic and so break the lattice rotational symmetry. In
effect, these are orbital driven spin Peierls phases. Eventu-
ally, in all these regimes, the system switches back in a first-
order jump back into isotropic GS ordering when the orbital
becomes disordered. PointX is where this transition coin-
cides with the dimension reduction temperatureT2, so amaz-
ingly there is a jump directly from isotropic 3D behavior just
above the transition to exactly 2D just below.

In summary, we have investigated the problem of the in-
terplay between spins and orbitals in transition-metal oxides
concentrating on the competition between spin-spin interac-
tions and spin-orbital coupling. In addition to illuminating

the phase-transition properties of magnetic ordering in insu-
lating V2O3, our model shows a mechanism for dynamically
generated dimensional reduction and dimension crossover.
Although the results presented are forS=2, the same quali-
tative behavior will hold for otherS. Also, while our calcu-
lations are restricted to the Hamiltonian[Eq. (1)], these ef-
fects will be present in other spin-orbital models as long as
orbital ordering results in vanishing spin-spin coupling in
one or more spatial directions. Since these dimensional re-
duction and crossover effects are present only close to the
decoupling point, to observe them one would need to find
systems with the appropriate Hund’s coupling so as to pro-
duce the properJ0/K range. ForS=2, there is the additional
problem that this range is very narrow. Larger range will
occur for smallerS. Therefore, it will be interesting to search
for effective S=1/2 peroskite transition-metal oxides with
double orbital degeneracy and weak Jahn–Teller coupling.
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