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We report the investigation of the spin-valve effect through a resonant level between a ferromagnetic
electrode in the presence of an external ac bias. We use the current conserving and gauge invariant theory
developed by Büttiker to calculate the dynamic conductance. Specifically, we have calculated the tunneling
magnetoresistance(TMR) ratio as a function of various system parameters such as the angle between magne-
tization of the left and right leads, ac frequency, and the Fermi energy. We found that the TMR ratio can be
modulated by ac frequency. At large frequency, the TMR ratio can be negative.
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I. INTRODUCTION

Quantum transport in tunnel magnetoresistance(TMR)
systems provides an exciting arena for various new spin-
related phenomena such as spin-valve effect.1,2 Due to the
large TMR ratio produced at room temperature3 this research
field has attracted much attention in recent years. Basically
TMR (Ref. 2) arises as a result of the mismatch of the energy
levels in both ferromagnetic electrodes due to the change of
the relative orientation of the magnetic moments. The region
between the electrodes is nonmagnetic such as an insulating
layer or a double barrier structure. While the dc transport
properties of ferromagnetic-nonmagnetic-ferromagneticsF
-N-Fd systems have been investigated extensively,4–16 less
attention has been paid to the corresponding ac case.17 As
pointed out by Büttikeret al.18 the transport property a time-
dependent system is more complicated to study because one
has to include the effect of the charge build up due to the
internal Coulomb interaction inside the scattering region.
This charge build up gives rise the displacement current
which makes the total current conserve in the ac case. Given
the fact that most of the spintronic devices operate under ac
signals, there is a need to examine the transport behavior of
a F-N-F tunnel junction under the influence of an external ac
voltage. In this work, we consider the dynamic spin valve
effect through a resonant between two ferromagnetic elec-
trodes. In particular, with the help of nonequilibrium Green
functions method, we calculate the dynamic conductance as
a function of the angle between magnetization of two elec-
trods at finite frequency using a phenomenological theory
first developed by Büttikeret al..18 We find that the TMR
ratio can be modulated by ac frequency. At large frequency,
the TMR ratio can be negative.

The rest of this paper is organized as follows. In Sec. II,
we present the general theory by deriving an expression of
dynamic conductance for TMR junctions. In Sec. III, we
apply our theory for various situations and a summary is
given at the end.

II. THEORY

The TMR device that we consider consists of a scattering
region with a resonant level connected by two ferromagnetic

electrodes. The magnetic momentM of the left electrode lies
in the z direction while the moment of the right electrode
points at an angleu with respect to thez axis in thex-z plane.
Due to the spin-flip mechanism the system is not spin con-
serving. Under an external ac voltageva cosvt that is ap-
plied at leada, the Fermi energyeka of lead a varies with
time and is written asekLstd=ekL+qva cosvt. We want to
calculate the dynamical response of the system to the exter-
nal ac bias. Thus we use the following Hamiltonian to model
our system:

H = HL + HR + H0 + HT, s1d

whereHL andHR describe the left and right electrodes where
an ac bias is applied,

HL = o
k

ckL
† fekLstd + s ·M LgckL = o

ks

fekLstd + sMgckLs
† ckLs

s2d

and

HR = o
k

ckR
† fekRstd + s ·M RgckR

= o
ks

fekRstd + sM cosugckRs
† ckRs + o

ks

M sinuckRs
† ckRs̄,

s3d

wherecka=s cka↑
cka↓

d. In Eq. (1), H0 describes the scattering re-
gion with resonant levels aten,

H0 = o
ns

endns
† dns. s4d

HT models the coupling between electrodes and the scatter-
ing region with hopping matrixTkan. To simplify the analy-
sis, we assume the hopping matrix to be independent of spin
index, hence

PHYSICAL REVIEW B 70, 205316(2004)

1098-0121/2004/70(20)/205316(8)/$22.50 ©2004 The American Physical Society70 205316-1



HT = o
kans

fTkanckas
† dns + c.c.g.

In these expressionsckas
† (with s= ↑ ,↓ or ±1 ands̄=−s) is

the creation operator of electrons with spin indexs inside
thea lead. Similarlydns

† is the creation operator of electrons
with spin s at energy leveln for the scattering region. In
writing down Eqs.(2) and(3), we have made a simplification
that the value of molecular fieldM is the same for the two
leads, thus the spin-valve effect is obtained2 by varying the
angleu. Essentially,M mimics the difference of density of
states(DOS) between spin up and down electrons2 in the
electrodes. Using the Bogoliubov transformation14

ckRs = cossu/2dCkRs − s sinsu/2dCkRs̄, s5d

ckRs
† = cossu/2dCkRs

† − s sinsu/2dCkRs̄
† ,

HR can be diagonalized. We have

Ha = o
ks

fekastd + sMgCkas
† Ckas

with a=L ,R. The spin-flip term inHR has been transformed
into the the coupling Hamiltonian between the scattering re-
gion and the leads

HT = o
kns

FTkLnCkLs
† dns + TkRnScos

u

2
CkRs

† − s sin
u

2
CkRs̄

† Ddns

+ c.c.G .

With this new Hamiltonian, we are able to calculate the ac
current and hence the dynamic conductance using the stan-
dard nonequilibrium Green’s function(NEGF) method.19

Briefly, we start from the equation of motion method

Ia = dNa/dt = − ikfNa,Hgl s6d

and then define the lesser and greater NEGFG, andG. with
properly contour ordered operators, and apply the theorem of
analytic continuation20 so that the contour Green’s functions
are extended to the real time axis. This standard and widely
used NEGF technique allows us to obtain the exact expres-
sion for the dynamic conductanceGab

c (its expression will be
given below).21 However, the dynamic conductance obtained
this way will not satisfy the current conservation condition.
This is because in Eq.(6) only the conduction current is
considered and the displacement current has been left out.
The physical origin of the displacement current is due to the
charge accumulation in the central scattering region which
has to be solved through Poisson equation. To avoid solving
Poisson equation we consider the Coulomb interaction im-
plicitly by using the theory developed by Büttikeret al.18

which conserves the current by partitioning the total dis-
placement current into each lead. In the language of the
NEGF, the dynamic conductance is23

Gab = Gab
c − Gb

d
og

Gag
c

og
Gg

d
, s7d

where

Gab
c swd = − qE dE

2p
Trfḡb

,sS0a
a − S̄0a

r d + ḡb
r S0a

, − S̄0a
, ḡb

a

+ sḠ0
r s̄a

, − s̄a
,G0

a + Ḡ0
,s̄a

a − s̄a
r G0

,ddabg s8d

is the dynamic conductance due to the contribution from the
conduction current and

Ga
dsvd = − qvE dE

2p
Trfga

,sE + v,Edg

is the contribution from the displacement current. Here we
have used the abbreviationg asgsEd and ḡ asgsE+vd and
similarly for other quantities.23 In the above equation,Gr,a,,

and Sr,a,, are the equilibrium Green’s function and self-
energy, respectively.s̄r,a,, are the first-order correction
to the self-energy components due to the ac signals̄a

,

=siq /vdfGaf −Ḡa f̄g and s̄a
r,a=sq/vdfSa

r,a−S̄a
r,ag, where fsEd

is the equilibrium Fermi distribution function. The first-order
correction to the retarded, advanced and lesser Green’s func-

tions are ḡa
r,a=Ḡr,as̄a

r,aGr,a and ḡa
,=Ḡrs̄a

,Ga+Ḡrs̄a
r G,

+Ḡ,s̄a
aGa, respectively. All of these equations are expressed

in terms of 232 matrices(in spin space) because the spin
degree of freedom manifests itself in theF-N-F system. To
simplify the calculation we use the wideband
approximation19 so that the self-energy does not depend on
the energy. As a result,s̄r,a and ḡr,a are zero. This results in
the vanishing of all retarded and advanced small-signal com-
ponents(i.e., Green functions and self-energy) and so Eq.(8)
simplifies as follows:

Gab
c swd = − qE dE

2p
Trfḡb

,sSa
a − S̄a

r d + sḠrs̄a
, − s̄a

,Gaddabg.

s9d

Here the equilibrium self-energySr ;SL
r sE−qVLd+SR

r sE
−qVRd is a 232 matrix in spin space, which describes the
coupling of the central scattering region to the two ferromag-
netic electrodes and is written as

Sa
r sEd = R̂aSSa↑

r 0

0 Sa↓
r DR̂a

† s10d

with the rotational matrixR̂a for electrodea defined as

R̂a = S cosua/2 sinua/2

− sinua/2 cosua/2
D . s11d

Here angleua is defined asuL=0 anduR=u. The spin-valve
effect is closely related to the magnetic field-dependent self-
energySas

r :

Sasmn
r = o

k

Tkam
* Tkan/sE − eka − sM + i0+d. s12d
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The equilibrium lesser self-energy isS,=SL
,sE−qVLd

+SR
,sE−qVRd given by the following expression at equilib-

rium:

Sa
,sEd = i f aR̂aSGa↑ 0

0 Ga↓
DR̂a

† , s13d

whereGas=−2 ImsSas
r d is the linewidth function.

To proceed further, we need the equilibrium Green’s func-
tions. We assume that in the energy range of interest there is
only one single energy level with energyE0 in the scattering
region. Hence in the wideband approximation19 the matrix
elements are reduced to scalars:14

G11
r =

A↓
A↑A↓ − B2 , s14d

G12
r = G21

r =
− B

A↑A↓ − B2 , s15d

G22
r =

A↑
A↑A↓ − B2 ,

where

A↑ = E − E0 + iG1, s16d

A↓ = E − E0 + iG2, s17d

B = si/2dfGR↓ − GR↑gsinsu/2dcossu/2d

and

G1 = fGL↑ + cos2su/2dGR↑ + sin2su/2dGR↓g/2, s18d

G2 = fGL↓ + cos2su/2dGR↓ + sin2su/2dGR↑g/2.

The matrix elements of retarded Green functions have a
simple physical meaning: the diagonal elements represent the
density of states of the up-spin and down-spin separately
while the nondiagonal terms are a measure of the scattering
rates from up-spin to down-spin and vice versa.24 In the
wideband limit, self-energy matrix elements are reduced to
coupling constants that depend on the spin index

ĜL = SGL↑ 0

0 GL↓
D, ĜR = SR1 R2

R2 R3
D ,

where

R1 = cos2su/2dGR↑ + sin2su/2dGR↓, s19d

R2 = sinsu/2dcossu/2dfGR↓ − GR↑g, s20d

R3 = cos2su/2dGR↓ + sin2su/2dGR↑.

With the Green’s function and self-energy already obtained,
we calculate the conduction part of dynamic conductance

G11
c svd =

q2

v
E dE

2p
fivsḠ11

r G11
a GL↑ + Ḡ22

r G22
a GL↓ − Ḡ12

r G21
a GL↑

− Ḡ21
r G12

a GL↓d + s− Ḡ11
r G11

a GL↑R1 − Ḡ22
r G22

a GL↓R3

+ Ḡ12
r G21

a s2GL↓ + R3dGL↑ + Ḡ21
r G12

a s2GL↑ + R1dGL↓dg

3sf − f̄d s21d

and

G12
c svd =

q2

w
E dE

2p
fḠ11

r G11
a GL↑R1 + Ḡ22

r G22
a GL↓R3 + Ḡ12

r G21
a

3s− 2GL↓ − R3 + 2iwdGL↑ + Ḡ21
r G12

a s− 2GL↑ − R1

+ 2iwdGL↓gsf − f̄d

and the contribution from displacement current

G1
dsvd = − iq2E dE

2p
sG11

r G11
a GL↑ + Ḡ22

r G22
a GL↓ + Ḡ12

r G21
a GL↓

+ Ḡ21
r G12

a GL↑dsf − f̄d

and

G2
dsvd = − iq2E dE

2p
fḠ11

r G11
a R1 + Ḡ22

r G22
a R3 + Ḡ12

r G21
a s− 2GL↓

− R3 + 2ivd + Ḡ21
r G12

a s− 2GL↑ − R1 + 2ivdgsf − f̄d.

In all subsequent analysis we will deal with zero-temperature
phenomena and so the energy integration will be fromE
=Ef to Ef −v.

III. NUMERICAL RESULTS

Now we present the numerical calculations of the dy-
namic conductance as different external parameters vary.
Since the Buttiker’s formalism is current conserving and
gauge-invariant, the dynamic conductanceGab satisfies
oaGab=0 andobGab=0. As a result, there is only one inde-
pendent coefficient. In the following, we choose to calculate
G=G11=−G12 because its real part is positive and corre-
sponds to a(positive) measurable quantity. In the dc limit,G
is a real quantity. As frequency is turned on, it becomes a
complex quantity with real partGR which is related to the
dissipation and imaginary partGI describing the phase dif-
ference between current and voltage. In the subsequent cal-
culation, we will fix Ef =E0=5 meV and investigate the dy-
namic conductance for the Fermi energy at resonance. For
simplicity, we only consider the symmetric case thatGLs

=GRs=Gs and that G↑ùG↓ and setG↑=0.5 meV andG↓
=0.1 meV unless otherwise specified.

The angular dependence ofGRsu ,vd at different frequen-
cies v is shown in Fig. 1. We see that at small frequencies
v=0.05 meV,GR has a minimum atu=p and is peaked at
u=0 (or 2p). As the frequency increases, the minimum ofGR
does not change much whereas its maximum value decreases
quickly. This can be understood as follows. In the dc case,
only the electron on the Fermi level contributes to the con-
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ductance. In the ac case, the electrons with energyfEF

−"v ,EFg can absorb a photon and participate the transport
process. This photon assisted tunneling is reflected in the

weighting factorsf − f̄d /v in Eq. (21) which gives −df /dE in
the dc limit. Because of this inelastic channel, the resonant
feature is smeared off. As a result, the dynamic conductance
decreases near the resonance as the frequency is increased.
When the frequency is aroundv=0.4 meV, two maxima for
GR occur atu=0.8 and 5.2(see the inset of Fig. 1). As the
frequency increases further, two maxima move towards each
other and their magnitude decrease. Whenv=0.5 meV, two
maximum start to merge and the minimum atu=p gradually
turns to a maximum. From this figure, we conclude that the
maximum of GR can occur at different angles if the fre-
quency is modulated. As frequency is varied,GR changed its
convexity from concave atv=0.05 meV to convex at
v.0.5 meV. The imaginary part of the dynamic conduc-
tanceGI as a function ofu is depicted in Fig. 2 at different
frequencies. We see that the shape ofGI is concave for all
frequencies. In addition,GI’s are positive indicating induc-
tivelike response of the system.25,26

To discuss the spin-valve effect we examine the tunneling
magnetoresistance (TMR) ratio defined as fGRs0d
−GRspdg /GRs0d (Ref. 12) which can be calculated analyti-
cally as follows. From Eqs.(7) and (9) we obtain

Gs0d = −
iG↑ − 2G↑

2/v

2iG↑ + v
fln G↑ − lnsiw − G↑dg

−
iG↓ − 2G↓

2/v

2iG↓ + v
fln G↓ − lnfsiw − G↓dgg,

Gspd = −
iG − 4G↑G↓/v

iG + v
flnsG/2d − lnfsiw − G/2dgg,

where G=G↑+G↓. Note that lnsa+ ibd=flnsa2+b2dg /2
+ i tan−1sb/ad. The real part of the above equations yield

GRs0d = − sG↑/2vdf2 tan−1sG↑/vd − pg − sG↓/2vd

3f2 tan−1sG↓/vd − pg s22d

and

GRspd = −
sG↑ − G↓d2flnsG2/4d − lnsv2 + G2/4dg

2sv2 + G2d

−
Gsv/2 + 2G↑G↓/vdf2 tan−1sG/2vd − pg

v2 + G2 .

s23d

In the low-frequency limit, we have

GRs0d = 2 +Osv2d,

GRspd = 8G↑G↓/G2 + Osv2d s24d

which agrees with the dc limit in Ref. 14. From Eq.(24), we
conclude thatGRs0d is always greater thanGRspd regardless
of the choices ofG↑ andG↓. In the high-frequency limit, we
expand Eq.(23) in terms of 1/v up to the second order

GRs0d =
Gp

2v
−

sG↑
2 + G↓

2d
2v2 ,

GRspd =
Gp

2v
+

sG↑ − G↓d2 ln v

v2 −
G2

2v2 . s25d

Hence in the large frequency limit,GRspd is larger than
GRs0d. This explains is the change in convexity ofGR shown
in Fig. 1. From Eqs.(22) and(23), the TMR ratio is shown in
Fig. 3. We see that as the frequency is turned on the TMR
ratio drops sharply, goes to zero atvc=0.46 meV, and be-
comes negative whenv.vc. The change of the TMR ratio
from positive to negative cannot happen in the dc case be-
cause the conductance when magnetizations of two leads are
parallel is always larger than that of antiparallel case, i.e., the
TMR ratio is positive definite. We note that the negative

FIG. 1. The real part of dynamic conductanceGR vs angleu at
different frequencies. The solid, dashed, dotted, short-dashed, and
short-dotted lines correspond tov=0.05, 0.4, 0.4615, 0.5, and
2.0 meV, respectively. Inset: amplified feature ofGR vs u at v
=0.4, 0.4615, 0.5 meV(solid line, dashed line, and dotted line).

FIG. 2. The imaginary part of dynamic conductanceGI vs u at
different frequencies. The solid, dashed, dotted, short-dashed lines
correspond tov=0.05, 0.40, 0.4615, and 0.5 meV, respectively.
Inset:GI vs u at v=2.0 meV.

LUI, WANG, AND WANG PHYSICAL REVIEW B 70, 205316(2004)

205316-4



TMR ratio can also occur in FM/I /FM/ I /FM double barrier
magnetic layered structures which is controlled by the bias
voltage.12 The physics behind the transition from positive
TMR to negative TMR due to an increase in frequency is the
following. In the dc case, whenu=0 the tunnelings for elec-
trons with both spins are through symmetric system whereas
for u=p the tunneling processes are asymmetric. Hence near
the resonanceE,E0, we haveGRs0,v=0d.GRsp ,v=0d or
a positive TMR. In a way,E,E0 for u=p is almost off
resonance foru=0. As pointed out by Annatram and Datta22

that on the resonance the dynamic conductance decreases
much faster that off the resonance as the frequency is turned
on leading to a negative TMR. The generalized TMR ratio
fGRs0d−GRsudg /GRs0d at different frequency vsu is shown
in Fig. 4 which resembles the behaviors in Fig. 1. It is also
interesting to vary the ratio of the spin-dependent coupling
constantsk=G↑ /G↓ and examine how the corresponding
TMR ratio [denoted as TMRskd] changes. In Fig. 5, TMRskd
is plotted at a fixedG↓=0.1. SinceGs0d=Gspd when G↑

=G↓, the TMR ratio vanishes atk=1. In general, the further
awayk from one, the larger TMR ratio is.

Let us now focus onGR as a function of the Fermi energy
at two different frequenciesv=0.05, 2 meV. We see from
Fig. 6(a) that at small frequencyv=0.05 meV,GR shows the
resonant behavior for bothu=0 andp with Lorentz-like line
shape. The width of the resonant peaks are determined by the
larger linewidth functionG↑. At much larger frequencyv
=2 meV [inset of Fig. 6(a)], the line shapes deviate signifi-
cantly away from Lorentzian. In addition, the peaks ofGR
are much broader with much smaller peak values. In Fig.
6(b), we plot the imaginary part of dynamic conductanceGI.
At small frequencyv=0.05 meV,GI at u=0 shows typical
resonant feature.25,26At the resonanceE=E0, the system con-
ducts very well and shows inductivelike behavior with posi-
tive GI and when the energy is away from the resonance the
capacitivelike behavior dominates andGI turns to negative.
At u=p, the system is less transmissive atE=E0 so that the
peak ofGI is much smaller. At larger frequency[inset of Fig.
6(b)], similar behaviors are observed.

The behavior ofGR andGI at smallv can also be under-
stood qualitatively from a classical circuit model.27 Due to
both inductivelike and capacitivelike responses, our system
can be considered as an inductor in series with a parallel
connection of a capacitor and a resistor. For this classical
circuit the dynamic conductance can be written27 in the fol-
lowing form in the small frequency limitse2/h=1d:

Gsvd =
1

R
− ivFC −

L

R2G + v2L

R
S2C −

L

R2D . s26d

The term linear inv, which corresponds toGI, shows a
competition between two different dynamic responses. If
C.L /R2, the response is capacitivelike with a negativeGI.
A similar argument forGI applies to the inductivelike region
when C,L /R2. On the other hand, the dissipative compo-
nentGR, near the resonance, can increase or decrease withv
depending on the sign of the term of orderv2 in Eq. (26).
According to this pictureGR decreases whenC,L / s2R2d

FIG. 3. The TMR ratio vs frequencyv.

FIG. 4. The generalized TMR ratio TMRsud vs u at different
frequencies. The solid, dashed, dotted, short-dashed, and short-
dotted lines correspond tov=0.05, 0.4, 0.4615, 0.5, and 2.0 meV,
respectively.

FIG. 5. The TMR ratio vsk at different frequencies. The solid,
dashed, dotted, short-dashed, and short-dotted lines correspond to
v=0.05, 0.4, 0.4615, 0.5, and 2.0 meV, respectively.
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and increases otherwise. In particular, for the transport
through a single resonant level, the system is very transmis-
sive so that the capacitanceC,0. Hence near the resonance,
the real part of the dynamic conductanceGR decreases when
the frequency is switched on as we have observed in Fig. 1.
Note, however, that when the frequency is so large thatv3 or
higher order terms cannot be neglected, Eq.(26) breaks
down. To relate the classical circuit model to our system we
expand the ac conductance coefficientsGRs0d andGRspd up
to the second order in frequency. By comparing the coeffi-
cients of expansion with Eq.(26) and noting that 1/R
=GRsv=0d we obtain the following results atu=0:

R=
1

2
,

C =Î5

4
S 1

G↑
2 +

1

G↓
2D +

1

2

1

G↑G↓
,

L =
C

2
+

1

2
S 1

G↑
+

1

G↓
D . s27d

For G↑=0.5 meV andG↓=0.1 meV, we haveC=11.8/meV
and L=11.9/meV(note that the unit of the conductance is
e2/h has been set to 1). While for u=p the corresponding
parameters are

R=
G2

2G↑G↓
,

C =ÎS 5

G
−

G

G↑G↓
D2

+
2

G↑G↓
,

L =
CG2

2G↑G↓
+

5

G
−

G

G↑G↓
. s28d

For G↑=0.5 meV andG↓=0.1 meV, we haveR=3.6, C
=7.3/meV andL=22.6/meV.

To get more information,GR versus frequency foru=0, p
is plotted in Fig. 7 whenE=E0. DenoteGRs0d=GRsu=0d.
We see thatGRs0d drops quickly whenv,1 and saturate at
larger frequencies whereasGRspd is flat for frequency be-
tweenf0,0.5g meV and then decreases in a similar fashion as
GRs0d. Note thatGRs0d is greater thanGRspd only when
v,0.5 meV. In Fig. 7(b), we plotGR vs v when the system
is off resonanceE=E0+1.34 meV. We see thatGR increases

FIG. 6. The dynamic conductance vs the Fermi energy when
u=0,p (a). GR vs E. Main panel: v=0.05 meV. Inset: v
=2.0 meV. (b). GI vs E. Main panel: v=0.05 meV. Inset:v
=2.0 meV.

FIG. 7. GR vs v at u=0 (solid line) and p (dashed line). (a)
E=E0, (b) E=E0+1.34 meV.
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upon increasing the frequency. This is consistent with Eq.
(26) because when off the resonance the system is capaci-
tivelike. Figure 8 shows andGI vs frequency at different
energies. We see that on the resonanceE=E0, GI is always
positive. As the frequency is turned on,GI increases quickly
and reaches maximum. Upon further increasing the fre-
quency,GI decreases slowly. When off the resonance, how-
ever, GI becomes negative at small frequencies and then
turns to positive values at large frequencies.

In conclusion, we have studied spin valve effect through a
resonant level between two ferromagnetic leads in the pres-
ence of an ac voltage. In particular, we have investigated the
dependence of the dynamic conductance on various param-
eters such as the angle between magnetizations of two leads
u, the ac frequencyv, and spin-dependent coupling constants
Gs. We found that the TMR ratio can be modulated by ac
frequency and the negative magnetoresistance can occur at
large frequency. The frequency range considered in this work
is in the THz regime which is within the reach of present
technology.28 Our theory is suitable for describing noninter-
acting systems which is phase coherent and operating at a
small bias. Finally, our theory can be extended to the cases
such as the Coulomb-blockade regime in double barrier
F-N-F systems29 and the inclusion of elementary excitations
similar to phonons and magnons.30
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