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Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate

H. F. Chau*
Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong, China

~Received 13 May 2002; published 20 December 2002!

A secret key shared through quantum key distribution between two cooperative players is secure against any
eavesdropping attack allowed by the laws of physics. Yet, such a key can be established only when the
quantum channel error rate due to eavesdropping or imperfect apparatus is low. Here, a practical quantum key
distribution scheme by making use of an adaptive privacy amplification procedure with two-way classical
communication is reported. Then, it is proven that the scheme generates a secret key whenever the bit error rate
of the quantum channel is less than 0.520.1A5'27.6%, thereby making it the most error resistant scheme
known to date.
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Quantum key distribution~QKD! is the process of sharin
a secret bit string, known as the key, between two coop
tive players, commonly called Alice and Bob, by exchang
quantum signals. Since an unknown quantum state canno
perfectly cloned@1,2#, any eavesdropping attempt by Ev
will almost surely disturb the transmitted quantum stat
Thus, by carefully estimating the error rate of the transmit
quantum states, Alice and Bob know with great confiden
the quantum channel error rate, which in turn reflects
eavesdropping rate.~In contrast, Alice and Bob can never b
sure if Eve has eavesdropped in classical key distribu
because classical signals can be copied without being ca
in principle.! If the estimated eavesdropping rate is hig
they abort the scheme and start all over again. On the o
hand, if the estimated eavesdropping rate is low, privacy
plification procedure such as quantum error correction or
tanglement purification can be used to distill out an alm
perfectly secure key@3–5#.

It is instructive to devise a secure QKD scheme that
erates as high a quantum channel error rate as possible
subject that scheme to a vigorous cryptanalysis. Inde
Mayers @5# and Bihamet al. @6# proved the security of the
so-called Bennett-Brassard 1984~BB84! QKD scheme@7#
against all kinds of attack allowed by the laws of quantu
physics. Following Mayers’ proof, a provably secure key
established whenever the channel error rate is less than a
7%. Lo and Chau proved the security of an entangleme
based QKD scheme@3#. By scrambling the qubits befor
transmission and using the quantum Gilbert-Varshamov
gument for a general quantum stabilizer code@8#, the Lo and
Chau scheme tolerates up to about 18.9% channel e
Nonetheless, the Lo and Chau scheme requires quan
computers and hence is not practical at the present mom
By properly combining the essences of the Mayers as we
Lo and Chau proofs, Shor and Preskill gave an ingeni
security proof of the BB84 scheme that applies up to 11.
channel error@9#. The most error resistant QKD schem
known to date was recently found by Gottesman and
Built upon the Shor-Preskill proof, Gottesman and
showed that a carefully designed privacy amplification p
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cedure with two-way communication increases the error
erant level of a QKD scheme. In particular, they proved t
the six-state QKD scheme introduced by Bruss@10# tolerates
up to about 23.7% bit error rate~or equivalently up to abou
35.5% channel error rate! @11#. Recently, Gottesman and L
further improved their two-way communication protocol a
showed that it generates a provably secure key up to 26
bit error rate@12#. ~Here, the channel error rate and bit err
rate refer to the rate of quantum and spin-flip errors occ
ring in the insecure noisy quantum channel, respectively!

Here, I report an adaptive privacy amplification procedu
for the six-state scheme. Then, I prove that this proced
enables the six-state scheme to generate a provably se
key up to 0.520.1A5'27.6% bit error rate~or equivalently
up to 0.7520.15A5'41.4% quantum channel error!, break-
ing the 26.4% bit error rate record of Gottesman and
This scheme is also practical, requiring no quantum co
puter or search for asymptotically good quantum cod
Since no BB84-based scheme can tolerate more than 25%
error rate@12#, the 27.6% bit error rate tolerable six-sta
scheme reported here convincingly demonstrates the ad
tage in error tolerability of the six-state scheme over BB8

Before reporting the adaptive procedure, let me brie
review the privacy amplification procedure introduced
Gottesman and Lo@11#. In the first step of the Gottesman-L
privacy amplification procedure, Alice and Bob perform e
tanglement purification with local quantum operation a
two-way classical communication~LOCC2 EP!. Specifically,
they randomly pair up their corresponding bits in the stri
and compare the result of a bilateral exclusive or~BXOR! in
each pair. They keep their corresponding control bits in e
pair only if their parities agree. In the second step, Alice a
Bob apply the@3,1,3#2 phase error correction~PEC!. This is
equivalent to randomly forming trios of the remaining b
and replacing each trio by their corresponding parities@11#.
Alice and Bob apply LOCC2 EP and PEC alternatively un
the error rate of the resultant signal can be handled by
asymmetric Calderbank-Shor-Steane~CSS! quantum code
@13,14# with great confidence. Then, they apply the Sh
Preskill error correction procedure@9# to the remaining bits
using the above CSS code. By doing so, they end up sha
a secret key with exponentially close to 100% confiden
©2002 The American Physical Society02-1
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Gottesman and Lo further showed that their procedure br
down the error rate whenever the channel error rate is
than about 23.7%@11#.

The Gottesman-Lo two-way privacy amplification proc
dure reviewed above can be improved in two ways. Fi
there is no reason why one must apply LOCC2 EP and P
alternately. Instead, Alice and Bob should devise a suita
privacy amplification procedure based on the estimatedsx ,
sy , andsz error rates of the qubits transmitted through t
insecure noisy channel. Besides, they may use@r ,1,r #2 for
somer .3 as their phase error correction code. In fact, us
this approach, Gottesman and Lo proved that the six-s
scheme can tolerate a bit error rate up to 26.4%@12#. Second,
although the asymmetric CSS code used by Gottesman
Lo is known to exist using Gilbert-Varshamov type of arg
ment @13#, explicitly finding that it may be difficult, in gen-
eral. Fortunately, concatenated quantum CSS code is alr
sufficient in handling the final error correction in the priva
amplification procedure. More importantly, various conc
enated quantum CSS codes and their decoding algorit
are known.

Before I report my six-state scheme, I first call upon tw
propositions below to study the effects of LOCC2 EP a
PEC on the error rates of the signal.

Proposition 1. Suppose Alice sends Bob several qub
through a quantum channel whosesx , sy , and sz error
rates due to either noise or eavesdropping arepx , py , and
pz , respectively. LetpI512px2py2pz . If the error suf-
fered by each qubit is independent of the other then the e
rates of the resultant qubits after going through one aro
of LOCC2 EP are given by

pI
EP5

pI
21pz

2

~pI1pz!
21~px1py!2

,

px
EP5

px
21py

2

~pI1pz!
21~px1py!2

,

~1!

py
EP5

2pxpy

~pI1pz!
21~px1py!2

,

pz
EP5

2pIpz

~pI1pz!
21~px1py!2

.

Furthermore, the error rate in each of the resultant qubit a
the LOCC2 EP is independent of each other.

Proof. Recall that in the LOCC2 EP, Alice and Bob ra
domly pair up their corresponding shares of the qubits
apply BXOR to each pair. During theBXOR operation, anysx
error in the control qubit remains unaltered. In contrast,
sz error of the resultant control qubit is inherited from bo
the original control and the target qubits@15#. Since Alice
and Bob reject the pair if the measurement results of th
share of target qubit differ, hence the remaining control qu
is error-free if the error operator acting on the original co
trol and target qubits equalI ^ I or sz^ sz . Similarly, the
remaining control qubit sufferssx , sy , andsz errors if the
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error operator acting on the original control and target qub
equalsx^ sx or sy^ sy , sx^ sy or sy^ sx , and I ^ sz or
sz^ I , respectively. Since error suffered by each qubit
independent of the other, hence Eq.~1! holds. The indepen-
dence of resultant error rates after the LOCC2 EP proced
follows directly from the independence of channel error
the qubits received by Bob. j

By Proposition 1 and mathematical induction, it is straig
forward to check that the error rates of the resultant qu
after going throughk rounds of LOCC2 EP are given by

pI
kEP5@~pI1pz!

2k
1~pI2pz!

2k
#/2D,

px
kEP5@~px1py!2k

1~px2py!2k
#/2D,

~2!

py
kEP5@~px1py!2k

2~px2py!2k
#/2D,

pz
kEP5@~pI1pz!

2k
2~pI2pz!

2k
#/2D,

where D5(pI1px)
2k

1(px1py)
2k

. So wheneverpI.1/2,
pI

k EP.1/2, and pz
k EP,1/2. Further,pI

k EP,pz
k EP→1/2 and

px
k EP,py

k EP→0 as k→`. That is, repeated application o
LOCC2 EP reducessx andsy errors at the expense of pos
sibly increasingsz and perhaps also the overall error rate

Proposition 2.We use the notations in Proposition 1. Su
pose Alice and Bob divide their shared pairs inton sets each
containingr shared pairs. And then they perform one rou
of PEC using the@r ,1,r #2 majority vote phase error correc
tion code. The resultant error rates of the signal after o
round of PEC satisfy

px
PEC1py

PEC<r ~px1py!,

py
PEC1pz

PEC<@4~pI1pz!~px1py!# r /2<e22r (0.52pz2py)2
,
~3!

provided thatpI.1/2. Also, the error rate in each of th
resultant qubit after PEC is independent of each other.

Proof. The idea of the proof is the same as that in Prop
sition 1. Recall that the error syndrome of the@r ,1,r #2 phase
error correction code is given by

F 1 1

1 1

A �

1 1

G . ~4!

So, after measuring this error syndrome, thesz error stays on
the control qubit while thesx error propagates from the con
trol as well as all target qubits to the resultant control qu
@15#. Therefore, upon PEC, the resultant control qubit
spin-flip error-free whenever there is an even number of
bits amongst ther of them in the same set suffering spin-fl
error. Hence, the first inequality in Eq.~3! holds. Similarly,
the resultant control qubit suffers from phase-shift error p
vided that at leastd(r 21)/2e out of ther qubits are suffering
2-2
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from phase-shift error. Such a probability of occurren
equals (a>@(r 21)/2#(a

r )(py1pz)
a(pI1px)

r 2a. Combining
with the inequality@16#

(
k50

ln S n
kD pk~12p!n2k<l2ln~12l!2(12l)n

3pln~12p!(12l)n ~5!

for 0,l,p, we conclude that the probability of having
phase error is upper bounded by@4(pI1px)(py1pz)# r /2.
Thus, the first line of the second inequality in Eq.~3! is
satisfied. To arrive at the second line, one simply consid
the Taylor-series expansion of ln@11(2pI12px21)#1ln@1
1(2py12pz21)# and uses the observation that all odd pow
terms in the expansion are canceled. j

Proposition 2 tells us that if 0.52pz2py@Apx1py, the
phase error can be greatly reduced after one round of PE
choosingr'0.01/(px1py). Specifically, with this choice of
r, Eq. ~3! implies that py

PEC1pz
PEC is exponentially small

while px
PEC1py

PEC is at most about 1%.
Alice and Bob may exploit the dynamics of LOCC2 E

and PEC to perform their privacy amplification. Specifical
they first repeatedly apply LOCC2 EP until 0.52pz2py

@Apx1py. Then, applying PEC once will bring the overa
error rate px1py1pz down to an acceptable value. An
then, Alice and Bob may choose to use the concaten
Steane’s seven-qubit code in the Shor-Preskill procedure.
call that Steane’s seven-qubit code corrects one error ou
seven qubits@14#. Thus, as long as Alice and Bob random
permute the bits before applying the Shor-Preskill proced
the overall error rate that is almost surely tolerated by
concatenated Steane’s seven-qubit code is equal to the s
est positive root of the equation

12l5~12l!717~12l!6l, ~6!

namely, about 5.8%. The upshot is that the error correc
algorithm for the concatenated Steane’s seven-qubit cod
known and can be carried out efficiently.

With these two improvements in mind, I write down m
modified six-state scheme below.

~1! Alice preparesN qubits each randomly chosen fro
u0&, u1&, u0&6u1&, and u0&6 i u1& and sends them to Bo
@10#. Bob acknowledges the reception of the qubits and m
sures each of them randomly and independently along on
the following three bases:$u0&,u1&%, $u0&6u1&%, and $u0&
6 i u1&%. Then, Alice and Bob publicly announce the bas
they have used to prepare or measure each qubit. They
only those qubits that are prepared and measured in the s
basis.

~2! Alice and Bob estimate the channel error rate by s
rificing a few qubits. Specifically, they divide the qubits in
three sets according to their bases of measurement. T
randomly pickO(ln@1/e#) qubits from each set and publicl
compare the preparation and measurement results of
chosen qubit. In this way, they know the estimated chan
error rate with standard deviatione. ~A detailed proof of this
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claim can be found in Ref.@4#.! If the estimated channe
error rate is too high, they abort the scheme and start all o
again.

~3! Using the convention thatu0&, u0&2u1&, and u0&
2 i u1& represent a logical 0 while theu1&, u0&1u1&, and
u0&1 i u1& represent a logical 1, Alice and Bob convert the
untested measured qubits into secret strings. Then, they
form the following privacy amplification procedure on the
secret bit strings.

~a! They apply the LOCC2 EP procedure proposed
Gottesman and Lo in Ref.@11#. Specifically, they randomly
pair up their corresponding secret bits and announce the p
ties of each pair. They keep the control bit in each pair o
if their announced parities for the pair agree. They repeat
above LOCC2 EP procedure until there is an integerr .0
such that the estimated quantum channel error given by
~3! is less than 5%. They abort the scheme either when s
an integerr is greater than the number of remaining bits th
have or when they have used up all their bits in this pro
dure.

~b! They apply the PEC procedure introduced by Gott
man and Lo in Ref.@11# using the@r ,1,r #2 majority vote
phase error correction code once. Specifically, Alice and B
randomly divide the resultant bits into sets each containinr
bits. They replace each set by the parity of ther bits in the
set.

~c! Alice and Bob randomly permute the order of the
remaining bits and apply the Shor-Preskill privacy ampl
cation procedure@9# to these bits with the concatenated S
ane’s seven qubit code. The level of concatenation depe
on the estimated worst casepx1py1pz given by Eq.~3! and
the final required fidelity of the state. Specifically, suppo
that the concatenated Steane’s seven qubit code is
structed from two binary classical codesC1 andC2 satisfy-
ing C2,C1. Alice randomly picks a codeworduPC1 and
publicly announces the sum ofu and her remaining bit string
modulo 2. Bob subtracts Alice’s announced bit string fro
his own remaining bit string modulo 2; and then he appl
theC2 error correction to recover the codeworduPC1. They
use the cosetu1C2 as their secret key.

To prove the security of the above scheme, I follow t
arguments of Refs.@3,9,11,17#. First, since this is a prepare
and-then-measure scheme, any Eve’s quantum cheating
egy can be reduced to a classical one@3,17#. Second, Eve
does not know how Alice and Bob group the qubit pairs
LOCC2 EP and PEC beforehand. Hence, the resultant e
rate after going through either LOCC2 EP or PEC depe
only on the probabilities ofsx , sy and sz errors and the
number of qubits transmitted@3,11#. Thus, to study the
asymptotic error tolerable rate of the above scheme, it s
fices to consider cheating strategies characterized only
px , py andpz respectively. Since Alice chooses the six sta
randomly and uniformly, the untested qubits can be regar
as having passed through a depolarizing channel@11#. Hence,
Alice and Bob almost surely know thatpx5py5pz for their
untested qubits.

From Eq.~3! in Proposition 2, I know that after applying
LOCC2 EP k times, PEC will bring the quantum error ra
down to, say, 5% if r 50.04/(px

k EP1py
k EP) and 2r (0.5
2-3
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2pz
k EP2py

k EP)@1. Puttingpx5py5pz5(12pI)/3 into Eq.
~2!, I conclude that this is possible whenk→` and (pI
2pz)

2.(pI1pz)(px1py). This condition implies that
20pI

2210pI21.0 or pI.0.2510.15A5. In other words,
the above scheme tolerates a bit error rate up topx1py

50.520.1A5'27.6% ~which corresponds to a quantu
channel error rate ofpx1py1pz50.7520.15A5'41.4%).

Besides, once Alice and Bob estimate the channel e
rates, then they can efficiently compute the number
LOCC2 EP to be applied as well as the level of concate
tion for the Steane’s seven qubit code to be used. Finally,
error syndrome of the concatenated Steane’s seven-q
code as well as the corresponding Shor-Preskill proced
are straight forward to compute.

The 27.6% bit error rate bound reported here shows
the six-state scheme is more noise resistant than the B
scheme since no BB84 scheme can tolerate more than
bit error @12#. In addition, the adaptive privacy amplificatio
idea can be applied to increase the error tolerant level
://
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-
o

gn
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number of QKD schemes. For instance, the above adap
privacy amplification procedure enables the BB84 to gen
ate a provably secure key whenever the bit error rate is
than 20.0%~or equivalently, a quantum channel error rate
less than 39.9%!. Besides, one can show the existence o
biased entanglement-based QKD scheme requiring quan
computers, whose key is provably secure whenever the
error rate is less than 33.3%@18#.
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