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Exact analytical solution of a polariton model: Undetermined coefficient approach
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Using a concise approach with undetermined coefficients, instead of the conventional diagonalization
method, we obtain rigorously the energies and analytical wave functions of the ground state and excited states
of a polariton model. The results indicate that our method is not only equivalent to the conventional one, but
also has its own advantage. We also study several interesting properties of the polariton ground state.
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Polaritons[1] are collective excitationgphonons, exci- The polariton model has been reviewed in several text-
tons, magnons, efcof a crystal generated from a coherent books, such as in Refl14]. When only linear effects are
linear interaction between a polar material mode and théaken into account for the dielectric medium interacting with
electromagnetic field. Since several pieces of pioneering photon field, the Hamiltonian of the system regtis|
work published half a century ag@—-4], polaritons have 1
been extensively studied both theoretically and experimen- |2|:2 [Elk(clkaclka+ —
tally for the bulk, layer, as well as interface systems. Artoni ka 2
and Birman[5] developed a quantum-mechanical Hamil-
tonian formulation to treat the exciton polariton in the frame-
work of quantum optics. They studied the conventional . N
Hopfield Hamiltonian and a more general one, demonstrating +C1-kaC2ka) |» @
that the polaritons are squeezed with respect to states of an
intrinsic, nonpolaritonic, mixed photon-exciton boson. where ¢y, (cIka) is the annihilation(creatior) operator
Ghoshal and Chatterje¢6,7] discussed two quantum- for a photon with wave vectork and polariza-
mechanical models of phonon polaritons. Their resultgion @, Cyy, (c;ka) represents the corresponding operator
showed that both the photon and phonon subsystems cdar a polarization quantum, andE;=%ck, Ej
exhibit nonclassical behaviors. In these investigations the ca= \efiwy, Eg=i%[(e—1)ckno/4e]*? with k=|k|, ¢
nonical Bogoliubov transformation is used to diagonalize thehe light speed# the reduced Plank constaatthe dielectric
definite positive Hamiltonian with the creation and annihila-constant, ando, the eigenfrequency of the free oscillators
tion operators in bilinear forf8—10], where the correspond- standing for the medium. For simplicity, we shall use the
ing eigenstates are the general multimode squeezed stat@slexk for the combination of the summation indices. Physi-
related to the original free states by a unitary operfto—  cally, the first and second terms represent the energy spectra
12]. of the free photon field and the free polarization field, respec-

On the other hand, Wanet al. [13] solved the model in tively, an_d the third term describes the interaction between
Ref.[7] by a concise approach, where the wave function ofhe two fields. _
the ground state is priori taken as a squeezed form. The . SiNce coupling exists only between a photon and polar-
ground energy and the parameters of the squeezed form c tion quantum W'.th the same or opposite wave vector and
be solved by comparing the coefficients of each independerli € same polarl_zatlon, we shall pay atten_tlon only to_ the_ po-
term of both sides of the Schiimger equation. We refer to lariton states with specifie k. Correspondingly, the simpli-

this concise approach as the undetermined coefficient agl-ed Hamiltonian is

+ Ep

. 1
CokaCoka T 5

T t
+ E3k(C1xaC2ka— C1kaCoka ~ C1kaC2—ka

proach(UCA). . + N
In the framework of the conventional diagonalization H:i:Elz[Ei(ci+ci++cifci*+1)]
method (CDM), the canonical transformation between the '
new and old operators is first solved as the eigenvectors of +Ej[(cl,—ci)(ch_+cyy)
the Hamiltonian matrix, and the polariton energies are just
the corresponding eigenvalues. Then the polariton wave +(cl_—cp)(ch +ep)l. (2

functions are derived using the theory of multimode

squeezed statd$,10]. In this Brief Report, we solve a po- Also, for simplicity, we here use the index (—) to denote
lariton model using the UCA. We first obtain the energy andthe indexk (—k).

wave function of the ground state, based on which we derive  Assuming the polariton ground state to take the form
the canonical transformation, and consequently the energies

and wave functions of the excited states. As a comparison |0)p=Ncex;{pchcI_erchc;_
with the results in Refd.5—7], we also study several inter- M- R
esting properties of the ground state. +p3(Ci4Cp_+C1-C5,)](0), (€)
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where|0) is the vacuum state for the free photon and polarwhere Q) is the quantized energy for the upper or lower
ization field, andN, is the normalization constant, we can branch polariton, ang (g") are the annihilatior(creation

prove that(see the Appendjx
INe[?= (1= |pal®=|pal)(1=[p2l?~[ps|?)

~|p1p3 +p3 pal®, (4)

where thep;’s are constrained by the following relations:
2+(p1—p2)>0, 1=(p1—py)—p1pa+p53>0. (5)

Substituting Eqs(2) and (3) into the Schrdinger equa-
tion for the ground state

R|0),=E[0);. ()
and reducing it by the identity c,,|0),=picl
+paCh_[0)y, C24]0)p=poCh_+pscl_|0),, we obtain an
expanded form of Eq(6). Then by comparing the coeffi-
cients of the termg0),, ci,cl_[0),, ci,c} |0),, and
(cl,c) +c] cl,)|0), of the two sides of this equation, we

have

E,+E,— 2E3ps=E, @)
Eip1tEspa(1—p1)=0, 8
E2po—Esps(1+p5) =0, C)

(E1+Ep)ps+Eq[(1=p1)(1+py)—p3]=0. (10
The solutions of Eqs(7)—(10) are
E=+ \/E§+ E5+2\ESE3+4E,E,E3, (12)
E,+E,—E E,+E,—E E,+E,—E
PMTE—E,—E' PP E,_E+E P 28,
(12

We can prove that only the largest value Bfin Eq. (11)
satisfies the constrairtb). As a result, the polariton ground
state energy is

E= \/E§+ E5+2\ESE3+4E,E,E3, (13

and the corresponding wave function is given by Egsand
(12).

operators for the polariton. The indices 1 and 2 correspond
to the upper and the lower branch polariton, respectively;
while the indices+ and — represent different combinations
of the =k photons and thetk polarization quanta, which
can be seen clearly from the transformation in a matrix form

as
Cy
ch |’

where ¢, (c') is short for [cqy ¢, 17([cl_ cl_1T),
9. (") for[g;- g2 17([g7- g5_1"). Here, bothu andv
are 2x 2 matrices, and the indic8sand* denote the trans-
pose and the complex conjugate of a matrix, respectively.
From the well-known commutation rule§g; . ,ng]
=6,[9+.,9;-1=0,i,j=1,2, we have

uuT—va=1,

9+

gl

u v
=l 4 (15

v* u*

uvT=ou'. (16)

The inverse form of the transformation is then found to be

Cy ut —oT[gy

et Tl=ot T gt 0
For the polariton ground sta{@),,

gl+|0>p:gz+|0>pzo- (18)

Substituting Eqs(3) and(15) into Eq. (18), it is found that
v=—up, (19
P1

P3

P3
P2

where p= . (20)

Therefore only is the independent matrix to be determined.
Substituting Eq. (15 into the commutation relation
[gi+,H]=Q,0;., and then comparing the coefficients of
termsc,, andc,, as well as eliminating by Eq.(19), we

obtain the secular equation

Having obtained the wave function of the polariton From Eq.(21), we find

ground state, we are able to find the canonical transformation
from the free photon operators and polarization quantum op-
erators to the polariton operators. The Hamiltonian in the

polariton operators is a diagonalized one:

|:|=i=§l:29i(gfgi+g;[gi,+1), (14

Ei—p3Ez —(1+py)E; U=y Q; 0 (21)
(1-p1)Es  Ez—p3Es 0 Q)
E2+E2+ (E2—E2)2- 16E,E,E2| "

127 > , (22

which is the same as the result obtained by the C[1M].
Moreover, combining Eq19) and the first equation dfL6),
we obtain

[ [E2(Qy+Ey) i [E1(Q1+Ep)
Q,(Q,—Ey) 0,(Q,-Ey)

: (23

Ve
" Noi-a3

| \/E2(92+ Ey)
L Q,(E;—Qy)

\/E1(92+ E»)
Q,(Ex—Qy)
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/Ez(Ql |E1(Q1—E3)
\/ -E; (91+E 04(0;+Ep)
o=
/ 2(E1 [E1(E2— Q)
2+ E Q,(Q,+Ey)

(24)

It is straightforward to check that the original Hamiltonian canonical transformation is actually an eigenvalue problem
(2) is simplified to the diagonalized forrf14) if we substi-  of a 2X2 matrix, much simpler than the eigenvalue problem
tute Egs.(17), (23), and(24) into it. Furthermore, from Egs. of a 4X4 matrix obtained by using the CM@or ann-mode

(14) and(22), the polariton ground energy is polariton system, the eigenvalue problems solved by the
UCA and the CDM are connected to<X n and 2nX2n ma-
Ep(0)=Q,+0, trices, respectively
The energy of the excited state is
—E E3+2\ESEZ+4E,E,ES, (25

Ep(Ng+ N2y Ny ny)
recovering Eq.(13) and implying self-consistency of our
methOd g Q( ) py g y :(n1++nl,+l)91+(n2++n2,+1)92

We also checked that all the above results can be retrieved (26)
by using the CMD, so the UCA and the CMD are actually
equivalent. The advantages of our approach appear to Heom Eg.(14), wheren,. (n,.) is the quantum number of
that, on one hand, we can obtain the energy and wave funthe upper (lower) branch polariton corresponding to
tion of the ground state without the knowledge of the canonig;+ (g,-). The corresponding wave function can be de-
cal transformation; on the other hand, the derivation of theived as[10]

|nl+ N2y, Ng— 1n2*>p
(91)™ (93)" (9])™ (9)-)"2
\/n1+! \/n2+! \/nl—! \/an

ghi++ni- epTu*u_1q+p u TcJr +q'u -t

10)p

10),. 27

pi=9g;=0

ni_

i= ldenH'dq ni+!ni,!

For example, [0,1,0,0,=(u""c'),/0),, and [0,2,0,2, , , 1 L1 1

= (WN2)[(uTeD)3(uTeh )y + 20 u)p(u~Teh),110),. AXg=\eAXi>7, AYp= oY= 30
Now we pay more attention to the properties of the po-

lariton ground state. We mtroduce the quadrature operator§mceAx AY2>1/16 (=1,2), it is never the minimum un-

[16] X,=(ci.+ci_+c/ +cl )/2y2, Yi=(ci.+ci_—c, certainty state.
—Ci T)/2\/—|- For the polariton ground sta}e),, the uncer- The uncertainty relations of the photon and polarization
tainties of the photon coordinate and momentum quadratureguantum numbers for the polariton ground state are found to
are given by be

AX2 x+1 <1 (28) ANZ (e—1)(4x+e—1) (Ny) (31)

| = > ]
Vs oxte 4 I 16(x%+2x+e¢) 1
(e—D)x[(e—1)x+4¢e]
2__
>
AYZ X+ e (29) AN 168(X2+ 2X+8) <N2>1 (32)
4+ 2x+e "

where(N;) ({(N,)) is the average number of photofmolar-
wherex=ck/ wq. Clearly the polariton ground state is always ization quantain the ground state,
squeezed in the photon coordinate quadrature. In fact, it is
! L 2X+e+1 1
also squeezed in the polarization quantum momentum _Z (33

Np)= e
quadrature for (N2 4x%+2x+e 2
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(e+1)x+2¢ 1 f daj, daf, da;_daf- B
s et R B 0 B T T B L A
(A1)
Therefore both photon and polarization quantum subsystentsetween the bra and the ket of the normalization relation
of the ground state exhibit super-Poissonian statistics. p(0|0),=1 for the polariton ground stat@), and with the
All the above statistical properties are qualitatively con-help of the relatiore; . |, ,a; )= a;+|a;, ,a;_), we have
sistent with the results presented in R¢-7]. da: . da*. da da*
It is interesting to compare the energy of the polariton [N 2= [] J a'2+ ia'+ a'; ia'_e*VTAV/2:|A|*1/2,
i=1 o™ o

vacuum with that of the free vacuum. From E(R5),
E,(0)<E;+E,=E(0), whereE(0) is the energy of the free (A2)
vacuum. Thus the energy of the polariton vacuum is alway§vherev=[a’l‘+

* * * T
: a5, aj_ a5_ aq. ap, a1 a, |, and
lower than that of the corresponding free vacuum, as ex- 2t Tim 2

pected, which was also discussed in REf§,13. Hence it is lz 0 0 »p

the polariton vacuum rather than the free vacuum that exists 0 I, p O

in the dielectric, even if there is no photon at all. A=l o ¢ 1. ol (A3)
To conclude, we have rigorously derived analytical ener- p 2

gies and wave functions of the ground state and excited p* 0 0 I

states for a simple polariton model using an undetermine%
coefficient approach instead of the conventional diagonaliza- 5 .
tion method. Our method is not only equivalent to the con- INe[*=[12—p*pl. (A4)

ventional one, but also has its own advantages in Obtamin%ubstituting Eq(20) into Eq. (A4), we obtain Eq(4).

the energy and wave function of the ground state and solving The constraint on the coefficiénts stems from the conver-
the eigenvalue problem to get the canonical transformatio nce of the integral expressioA2), which requires all the
We proved that the polariton ground state is always squeez%al parts of the eigenvalues of 'Lhe»<8 matrix A to be

in the photon coordinate quadratures and polarization gua ositive. An eigenvalua satisfies the determinant equation
tum momentum quadratures. We also found that both th —>\|=.0 ie..|(1,—\)2— p* p|=0, which is simplified to
photon and polarization quantum subsystems of the groun PEmil2 PP ’ P
state always exhibit super-Poissonian statistics. Finally, we 4 ) ) ) )
indicate that the polariton vacuum is stable in the dielectric. (1=N)*=(lpal*+|p2l*+2|ps|*)(1—N)

guation(A2) can be simplified to

We are grateful to Professor S. L. Wan for useful discus- +[p1p—p3l°=0 (AS5)

ions. Th k i t R I L
slons. 1he work was In part supported by a CRCG grant a’E)y substituting Eq(20) into it. From Eq.(12), we know that
the University of Hong Kong. . ) : . :
p12is real andps is purely imaginary, so EqAS) is reduced

to
APPENDIX: NORMALIZATION AND CONSTRAINT ON N2—[2% (py—p)IN+ 1= (p1—pa)
COEFFICIENTS OF THE POLARITON
GROUND STATE —p1p2+p3=0, (AB)

Inserting the overcompleteness relation of the coherenfrom which the constraints) is necessary to ensure that the
state real part of\ is positive.
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