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ABSTRACT
As a rapidly rotating neutron star spins down due to the loss of its angular momentum, its central

density increases and the nuclear matter in its core converts to quark matter, which leads to a drastic
decrease of the stellar moment of inertia, and even results in an era of spin-up of the pulsar
(Glendenning, Pei, & Weber 1997). We Ðnd that given a certain equation of state in the liquid core, even
if the backbending of the moment of inertia as a function of the rotating frequency occurs, an increase of
the total moment of inertia by only 1% could carry adequate angular momentum and stop the star
spin-up. This small discrepancy in the total moment of inertia might be due to the di†erent properties of
subnuclear matter in the crust, especially to di†erent transition density and pressure at the inner bound-
ary of the solid crust between various models. The strong dependence of the phenomenon of back-
bending on the physical state of the crust provides, in principle, a new observational approach to check
and constrain theories on subnuclear matter.
Subject headings : dense matter È stars : evolution È stars : interiors È stars : neutron È stars : rotation

1. INTRODUCTION

The solid crust of a neutron star plays an important role
in neutron star evolution and dynamics. For instance, it
insulates the neutron star surface from its hot interior, or it
releases its gravitational potential energy and heats the
neutron star by cracking the crust during the spin-down
(Cheng et al. 1992), and therefore a†ects the starÏs cooling.
Furthermore, transitions of nuclear compositions in the
crust result in heat generation during the spin-down, which
also signiÐcantly inÑuence the cooling of neutron stars (Iida
& Sato 1997). The crust serves as one of two independent
components of the stellar moment of inertia that is
responsible for glitches in pulsar timing (Alpar, Cheng, &
Pine 1990 ; Link, Epstein, & Van Riper 1992). Given the
equation of state (EOS) of neutron star matter, the mass
and moment of inertia of the crust depend strongly on the
transition density, and pressure, (Lattimer & Prakashn

t
, P

t
,

2001) at its inner boundary. The transition density isn
taround 0.07È0.10 fm~3 (Lorenz, Ravenhall, & Pethick

1993 ; Krivine, Treiner, & Bohigas 1980 ; Pethick, Rav-
enhall, & Lorenz 1995 ; Cheng, Yao, & Dai 1997 ; Douchin
& Haensel 2000). However, the crust does not signiÐcantly
a†ect the gross properties of the star, such as the mass,
radius, moment of inertia, and so on, which are determined
mainly by the physical state of neutron star matter at den-
sities beyond This is the reason why the EOS of the crustn

t
.

is often not mentioned in the literature when the gross
properties of compact star are discussed (Glendenning et al.
1997).

The composition of matter in the interior of neutron stars
is essentially unknown. Some exotic states, such as hyper-
onic matter (Glendenning 1985), quark matter (Collins &
Perry 1975 ; Baym & Chin 1976 ; Chapline 1976 ; Dai, Lu, &
Peng 1993 ; Dai, Peng, & Lu 1995), kaon condensation
(Kaplan & Nelson 1986 ; Brown et al. 1994), or pion con-
densation (Baym & Pethick 1975, 1979), have been investi-
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gated. Having abandoned the assumption of local charge
neutrality, Glendenning (1992) put forward that mixed
phase of nuclear matter and quark matter, or kaon conden-
sation (Glendenning & Scha†ner-Bielich 1998 ; Glenden-
ning 2001), is favored in the interior of neutron stars. The
phase transition might occur during spinning down of an
isolated millisecond pulsar. Glendenning et al. (1997) found
that a drastic softening of the equation of state, e.g., by a
phase transition to pure quark matter, or Bose conden-
sation at a critical angular velocity, alters the stellar
moment of inertia and shows up in a backbending moment
of inertia as a function of the rotating frequency.

It is complicated to deal with the rotation of a neutron
star with an arbitrary angular velocity in the framework of
general relativity. If the angular velocity ) is small com-
pared to the critical value where G is the)0\ J4nGo0 ,
gravitational constant and is the mass density at theo0center of the star, then the stellar rotation is treated as a
perturbation to the metric of the nonrotation case. This is
the essential idea of the HartleÏs perturbation theory (Hartle
1967 ; Hartle & Throne 1968 ; Chubarian et al. 2000). Glen-
denning & Weber (1992a, 1992b) improved HartleÏs method
by considering the e†ects of centrifugal stretching and frame
dragging. On the other hand, there have existed several
independent numerical codes for obtaining accurate models
of rotating neutron stars in fully general relativity
(Stergioulas 1998). Recent work has been based on the BI
code (Butterworth & Ipser 1976), the KEH code (Komatsu,
Eriguchi, & Hachisu 1989a, 1989b), the WMSHR code (Wu
et al. 1991), and the BGSM spectral method (Bonazzola et
al. 1993). Using a large number of models and EOSs, an
extensive direct comparison of the BGSM, SF (Stergioulas
& Friedman 1995) which is based on KEH code, and the
original KEH codes were investigated. More than 20 di†er-
ent quantities for each model are compared and the relative
di†erences range from 0.1% to 0.01% or better for smooth
EOSs (Nozawa et al. 1998). It is evident that the accuracy of
these codes is better than 0.1% to 0.01%.

Glendenning et al. (1997) used their own improved
HartleÏs method to investigate observational characteristics
of phase transition in the interior of a rapidly rotating
neutron star, but their method shows large discrepancies

909



910 CHENG, YUAN, & ZHANG Vol. 564

compared to corresponding models computed with fully
rotating schemes. Thus, HartleÏs formalism is not suitable
for computing models of rapidly rotating relativistic stars
with sufficient accuracy (Salgado et al. 1994). Using Ster-
gioulas & FriedmanÏs KEH code (Stergioulas & Friedman
1995 ; Komatsu, Eriguchi, & Hachisu 1989a, 1989b ; Cook,
Shapiro, & Teukolsky 1992, 1994a, 1994b), which is avail-
able as a public domain code, we reconsider the problem in
this paper.

2. QUALITATIVE ANALYSIS

During spin-down of a millisecond neutron star, the
central density increases with decreasing centrifugal force ;
therefore, phase transition from the relatively incompress-
ible nuclear matter to the highly compressible quark matter
occurs in the stellar core. After the pure quark matter domi-
nates in the core, the star would contract signiÐcantly and
its moment of inertia would decrease sharply, which is the
common sequence of phase transition from conÐned to
deconÐned matter (Glendenning et al. 1997 ; Chubarian et
al. 2000). Observationally, this kind of phase transition
might signal at the jump behavior of the brake index of the
pulsar. It should be noted that although the neutron star
must rotate initially at millisecond intervals before slowing
down to the phase transition period (D4 ms) in order for its
central density to be strongly sensitive to the rotation rate,
its initial period need not be close to the break-up period

ms). However, whether or not there exists an era of([1
spin-up due to phase transition depends upon the charac-
teristics of the nuclear matter and quark matter in the inte-
rior. In the original work of Glendenning et al. (1997),
nuclear matter consisting of the octet of baryons was
described in the relativistic mean-Ðeld theory (RMF), and
the interaction between baryons in matter through three
meson Ðelds (the isoscalar-scalar meson p, isoscalar-vector
meson u, and isovector-vector meson o) and quark matter
consisting of three-Ñavor (u, d, s) quarks was described in
the MIT bag model. Constrained by the conservation of
total baryon number and electric charge, mixed phase of
nuclear matter and quark matter exists in the range of
0.245È0.859 fm~3 . Nuclear matter that contains only
nucleons, p, and u mesons was described in the RMF.
Quark matter that contains only two-Ñavor quarks was
described in the MIT model in a recent work of Chubarian
et al. (2000) which did not show the backbending of I()) as
a function of ).

In our opinion, even though the equations of state of
hybrid stars are given, the backbending is also dependent
on the properties of the crust and is especially sensitive to
the transition density and pressure between the solidn

t
P
tcrust and the liquid core. The reason is sketched in Figure 1.

The solid line represents the result with a backbending of
moment of inertia in the region between points a and b (see
also Fig. 2 of Glendenning et al. 1997) in a certain model
(model A), while the dotted line shows the result of the other
model (B) in which spin-up marginally does not exist ; that
is, the angular velocity at point b@ marginally equals that at
point a@, On the other hand, (see below).)

b{
\ )

a{
. )

a{
Z )

aModel A and Model B di†er in their EOSs at subnuclear
densities. The disappearance of the spin-up is mainly due to
the increase of the moment of inertia contributed by the
stellar crust after the pure quark matter dominates the inte-
rior of neutron star. After the domination of the deconÐned
matter, the central pressure is larger than before the phase

FIG. 1.ÈSketch of the evolution of moment of inertia as a function of
rotational angular velocity from large to small I()). The solid line shows
the result of a model (A) in which the spin-up of the pulsar takes place
(between points a and b). The dotted line shows the result of the other
model (B) in which the spin-up marginally does not occur due to the
variation of the moment of inertia. Model A and Model B di†er in their
EOSs at subnuclear densities.

transition, and the di†erence between the moment of inertia
of the cores in di†erent models can be overlooked. Hence,

\ ] ^ [ 0 ;dI()
b,b{) dIcore()b,b{) dIcrust()b,b{) dIcrust()b,b{)here d denotes the di†erences of the quantities between

model B and model A. Before the domination of the decon-
Ðned matter, the central pressure is far less than that of the
static star and is closer to the transition pressure so theP

t
,

di†erence of the moment of inertia of the cores comes near
to and even goes beyond that of the crusts, i.e.,

Thus,[dIcore()a,a{) Z dIcrust()a,a{). dI()
a,a{) [ 0.

Keeping the angular momentum at b@ equal to that at b,
point b wouldI()

b{
))

b{
\ (I()

b
) ] dI()

b,b{)))b{
\ I()

b
))

b
,

be moved to point b@. The moment of inertia, whichdI()
b,b{),should be added to the total at point b is obtained as

dI()
b,b{)

I()
b
)

\)
b
[ )

b{
)

b{
[

*)
ba

)
a

. (1)

According to Glendenning et al. (1997), rad s~1,)
b
D 1376

and rad per second. Therefore,*)
ba

D 15

dI()
b,b{)

I()
b
)

^ 1.1% . (2)

As in the above discussions, because)
a{

Z)
a
, dI()

a,a{)[ 0.
Consequently, if the total moment of inertia I()) in other
models di†ers by 1.1% from that in the model of Glenden-
ning et al. (1997), the backbending phenomena of Glenden-
ning et al. (1997) might disappear. The e†ects of the crust
are estimated as follows : The ratio of the moment of inertia
of the crust to the total one at point b or b@ is approximately
written as (Lattimer & Prakash 2001)

Icrust
I

()
b,b{) ^

Icrust
I

()\ 0)

^
28nP

t
R3

3Mc2
(1[ 1.67b [ 0.6b2)

b

]
C
1 ] 2P

t
(1] 5b [ 14b2)

n
t
m

b
c2b2

D~1
, (3)
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where M is the gravitational mass, R is the corresponding
radius for the static star, b 4 GM/Rc2, and denotes them

bbaryon mass. The above approximation is good, because
the pure quark core dominates in the interior when 0 ¹

and the gross properties of the neutron star are)¹)
b,b{insensitive to ). For instance, for a hybrid star with

M \ 1.413 R\ 11.15 km, we choose fm~3,M
_

, n
t
\ 0.0725

MeV fm~3 for model A, and fm~3,P
t
\ 0.229 n

t
\ 0.0957

MeV fm~3 for model B, thusP
t
\ 0.392 dI)b,b{

/ID 1.0%.
Observationally, the glitch constraint (Link,Icrust/Iº 1.4%
Epstein, & Lattimer 1999). It is evident that the equation of
state for subnuclear matter could provide a sufficient
moment of inertia to a†ect the timing structure of pulsar
spin-down in some situations.

3. NUMERICAL RESULTS

In our calculation, the physical state of the interior
neutron star matter is the same as that described in Glen-
denning et al. (1997). For the description of neutron star
matter at subnuclear densities, we make three comparisons
(shown in Fig. 2). The Ðrst is labeled as BPS. In this sce-
nario, at the ““ low ÏÏ densities fm~3, wheren

b
\ 0.01 n

bdenotes the baryon number density, we choose the EOS of
BPS (Baym, Pethick, & Sutherland 1971 ; Baym, Bethe, &
Pethick 1971) which is matched to the equation of state of
nuclear matter described in the relativistic mean Ðeld theory
at high densities fm~3. This example is the samen

b
º 0.01

as that in the monograph of Glendenning (1997), but it
should be noted that this kind of example might be unreal-
istic. Compared to the other choices, the resulting EOS is
much softer, in the range of 0.01 fm~ 3 \ \ 0.1 fm~3.nbThe second scenario is labeled FPS in Figure 2. In this
situation, in the outer crust fm~3, the EOSn

b
¹ 8.5] 10~4

of BPS (Baym, Pethick, & Sutherland 1971) is chosen, while
in the inner crust 8.5] 10~4 fm~3 thefm~3 \ n

b
¹ 0.0957

EOS of FPS is used (Lorenz, Ravenhall, & Pethick 1993).
At the inner boundary of the solid crust, the pressures of the
subnuclear matter and the liquid core are smoothly

FIG. 2.ÈEOSs of neutron star matter in the inner crust and the liquid
core. The di†erence between these EOSs is only in the inner crust consist-
ing of the subnuclear matter. The solid line corresponds to the BPS model,
the dashed line to the FPS model, and the dotted line to the SKM model.
The di†erence between SKM and FPS models is mainly due to the uncer-
tainty of the transition density n

t
.

matched to each other in a narrow range of the baryon
number density. The third situation is labeled as SKM in
Figure 2. The di†erence between SKM and FPS models is
mainly due to the uncertainty of the transition density Inn

t
.

the SKM model, fm~3 and the correspondingn
t
\ 0.0725

transition pressure MeV (Krivine, Treiner, &P
t
\ 0.229

Bohigas 1980). In the FPS model, fm~3 andn
t
\ 0.0957

MeV (Lorenz, Ravenhall, & Pethick 1993).P
t
\ 0.392

Given the EOS of a neutron star, Stergious & FriedmanÏs
(1995) KEH code which is named ““ rns ÏÏ is applied to calcu-
late the gross properties of a rapidly rotating neutron star.

Figure 3 shows the moment of inertia as a function of the
rotating frequency. The phase transition from the mixed
phase of nuclear matter and quark matter to pure quark
matter takes place at two critical frequencies which are
chosen as two representative cases : s~1 and 1640)

c
\ 1400

s~1. It is evident that the moment of inertia I()) drops
sharply after the phase transition at a certain frequency,
which is characteristic of this kind of phase transition. From
this point, our result is consistent with that of Glendenning
et al. (1997). The local magniÐcations of Figure 3 at two
inÑections are shown in Figure 4 s~1) and()

c
\ 1400

Figure 5 s~1), respectively. When phase tran-()
c
\ 1640

sition occurs at a lower frequency (see Fig. 4), we do not see
the backbending of I()) as described in Glendenning et al.
(1997) ; the di†erence might be due to discrepancies between
HartleÏs perturbation methods and the models in the frame-
work of fully general relativity. In the original HartleÏs
theory, when the central density is given, the stellar moment
of inertia is a constant and does not change with angular
velocity ! It is obvious that the original HartleÏs theory is
inadequate here. Glendenning & Weber (1992a, 1992b)
improved HartleÏs theory by including the e†ects of cen-
trifugal stretching and frame dragging. Unfortunately, their
improved HartleÏs model shows great discrepancies com-
pared to corresponding models computed with fully rotat-
ing schemes (Salgado et al. 1994). As we mentioned above,
the accuracy of the numerical codes we require here is 1%
or better. Our results in Figure 4 also evidently show that
the accuracy of HartleÏs method must be better than 1%.
The ““ S ÏÏ curve of I()) as a function of ) just appears in
Figure 5 for BPS and SKM models. In Figure 5, )

b
\ 1593

FIG. 3.ÈMoment of inertia I()) vs. rotational angular velocity ). The
pure quark matter appears at two critical frequencies : and 1640)

c
\ 1400

s~1. The solid line corresponds to the BPS model, the dashed line to the
FPS model, and the dotted line to the SKM model.
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FIG. 4.ÈSame as Figure 3, but only the case when s~1 is)
c
\ 1400

presented in a narrower range of ), at which the pure quark core grows up.

s~1 and s~1 for the SKM model, thus*)
ba

\ 2.4
according to equation (1). The poly-*I()

b
)/I()

b
)D 0.15%,

tropic indices of the EOSs of the inner crust for SKM and
FPS models are the same, but the di†erence between these
two models is due to the di†erent crust transition densities
and therefore di†erent transition pressures. According to
equation (3), the contribution of the crust to the total
moment of inertia is 2.57% in the SKM model and 1.6% in
the FPS model, respectively. The di†erence in the total
moment of inertia between these two models should be of
the same order. Namely, in the FPS model, the crust con-
tributes an additional 1% to the total moment of inertia,
which is larger than the dI that needs to be added to stop
the spin-up of the pulsar in the SKM model. The numerical
results are consistent with those based on our qualitative
analysis.

The distinctive decrease of the moment of inertia after
phase transition is reÑected in the timing structure of the
pulsar spin-down that is, the jump behavior of the()0 , )� ) ;
braking index, n()), of the pulsars. The braking index is
deÐned as follows (Glendenning et al. 1997) :

n())\)� )
)0 2 \ 3 [ 3I@()))] I@@()))2

2I())] I@()))
, (4)

FIG. 5.ÈSame as Figure 4 for case s~1)
c
\ 1640

FIG. 6.ÈThe braking index n()) vs. rotational frequency ) for the
SKM model at two critical frequencies, and 1640 s~1 when the)

c
\ 1400

phase transition to pure quark matter occurs.

where I@4 dI/d) and I@@4 d2I/d)2. The constant 3 in the
above equation is due to magnetic dipole radiation. We plot
the braking index as a function of angular velocity for the
SKM model in Figure 6. It shows clearly that the braking
index n()) comes to departure signiÐcantly from the canon-
ical value 3 after emergence of the pure quark core. When
phase transition happens at lower frequency, )

c
\ 1400

s~1, there is not an era of spin-up, which means that n())
reaches a very large value but is Ðnite. However, when the
phase transition happens at higher frequency, )

c
\ 1640

s~1, there is an era of spin-up of the pulsar, which shows
that n()) switches from ]O to [O at two turning points
(see Fig. 1, Fig. 5). The braking indices of other models,
which are not shown here, are similar to those of the SKM
model.

Finally, it is interesting to estimate the fraction of the
lifetime of pulsar which is spent in the spin-up phase. The
duration of backbending is where is*T ^ [*)ba/)0 , *)bathe frequency interval of spin-up phase (see ° 3). For
instance, s~1 in the SKM model, and a typical*)ba\ 2.4
period derivative of millisecond pulsars s perP0 D 10~19
second is taken, then *T D 2 ] 106 yr. The dipole age of
the pulsars is about 109 yr. Thus, the spin-up would last for
0.1% of a typical active pulsar lifetime. At present, more
than 1000 isolated pulsars have been discovered and only
one of them might be in an era of spin-up In a(P0 \ 0).
word, the probability of Ðnding the phenomenon of
““ backbending ÏÏ is presently small, but this e†ect might be
detected in the future with an increase in the number of
known pulsarsÈespecially of millisecond pulsars.

4. SUMMARY AND DISCUSSION

We have investigated the change of the internal structure
of a hybrid star due to the decrease of its rotating velocity.
Our calculation is based on Stergioulas & FriedmanÏs
(1995) KEH code which is developed to compute the gross
properties of rapidly rotating neutron stars in fully general
relativity. Though the softening of the EOS due to phase
transition in the core of a neutron star must lead to a drastic
decrease of its moment of inertia, it was found that the
so-called analogous phenomenon of ““ backbending ÏÏ is
mainly dependent on the EOS of the interior neutron star
matter (Chubarian et al. 2000). We have found that even
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when the EOS of the stellar core is given, the physical state
of the crust, including its EOS, its transition density, andn

t
,

pressure, signiÐcantly a†ect the evolution and dynamicsP
t
,

of the star in some situations, such as when the spin-up of
the pulsar takes place during the rotation of the compact
star slowing down. The reason is whether or not the pulsar
spins up depends on about 1% or even less of a change in
the magnitude of the stellar moment of inertia. It is well
known that glitches of pulsars provide a lower limit on

and further provide a lower limit on the transitionIcrust/Idensity of the inner crust (Link, Epstein, & Van Riper 1992).
On the other hand, in our opinion, if there is an era of
spin-up after phase transition, the moment of inertia of the
crust should be not so large, which might provide an upper
limit on Icrust/I.It is further noted that the accuracy of some perturbative
methods of computing the structure of rotating neutron
stars might exceed 1% or even more compared to fully

rotating scenarios. Therefore, in order to understand the
physical processes that happen possibly in a millisecond
pulsar, the accurate numerical codes should be applied. It
should also be pointed out that if the millisecond pulsars
are formed by accretion-induced spin-up of a neutron star,
the accreted material may be a source of variability in the
moment of inertia from star to star. However, speciÐc e†ects
will be veriÐed by careful calculation in the future.
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We beneÐt from the numerical code developed by N. Ster-
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