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Generalized valence bond state and solvable models for spinsystems with orbital degeneracy

Shun-Qing Shen
Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong
(Received 6 May 2001; published 12 September 2001

A spin-% system with double orbital degeneracy may possesglS&ymmetry. According to the group
theory a global S(#) singlet state can be expressed as a linear combination of all possible configurations
consisting of four-site S4) singlets. Following Andersion’s idea for spé1-system, we propose that the
ground state for the antiferromagnetic @Umodel is an S#)-resonating valence-bonRVB) state. A
short-range SU)-RVB state is a spin and orbital liquid, and its elementary excitations has an energy gap. We
construct a series of solvable models that ground states are short-rageRMB states. The results are
generalized to the antiferromagnetic &) models.

DOI: 10.1103/PhysRevB.64.132411 PACS nunt§er75.10—b, 71.70.Ej, 71.2%*a
Electron configurations in transition metal oxides usually 1 1
have an orbital degeneracy in additional to spin degeneracy. H 2; Jij| 25§+ 35| 2n- 1+ 5 2% JijPij. (D

Strong Coulomb interaction in these systems may produce
spin systems with orbital degenerafpr an overview see . .
Refs. 1, 2. Several coupled spin-orbital models arise forT[E1e three operators for sp", three operators for orb;;tal
many kinds of relevant materials. At a symmetric point the”i - @nd nine operators for their direct multiplication§z
Systematic study of the symmetric models may help us t&"oup.

understand physical properties for realistic systems(4sU

spin-orbital model is a good candidate to investigate coupled {Tim}:{zga,zﬂﬁ,@%f} (m=1,2,...,15, 2
spin-orbital system. It can be solved exactly in one dimen-

sional case by means of Bethe anathere are a lot of with 3, T™T™=15 and Pij=(EmTimTJm+l)/4. To explore

numerical and analytical calculations, and most are limited ir}he physical meaning d®; , we define four-possible states
ij

?Or;ethcglsmsensmn or small clusters. _Very few rigorous result?iw on each lattice site according to the eigenvalues?of
ystem are known. Oppositely we have deep under-_ +1/2 and7?= + 1/2, whereu = (s, 7) or simply 1, 2, 3

Coivable modas are esablihed. For nstance  was provel] 4 Defne the olal ) spin T =21, Due (o the
v ! : : » It Was prov mmetry of the model we haveH, T, ]=0. The total

that the spin antiferromagnetic periodic chain of length : :
has a low-energy excitation of orderL1/ In the case of .SU(4) SPiNTio IS @ good guantum number. The operar

SU(2) system, Anderson proposed a resonating valence—bonlsa alpe|f_act_a permutation operator when it is applied on the
(RVB) state as the ground state for a spin- i)
antiferromagnet. In each configuration all spins form spin-
singlet pairs, and the RVB state is composed of all possible Pijlim,jvy=liv,ju), )
configurations. In fact the state is a completely general de-
scription for a global singlet stafeHis idea was applied to  with Pﬁ =1, where we have used the standard relation for
explain unconventional properties of spin liquids. Somespin4 system'! The two eigenvalues oPj; is =1. This
solvable models were constructed based on the'flethis  gives an upper and lower bound for energy per bond in Eq.
paper we generalize Anderson’s RVB idea to a coupled spintl), i.e., —J;;<J;;(P;;)<J;; for any state. For a two-site
orbital system. We first derive several identities for(8J  problem, there are six eigenstates Ry with eigenvalue
symmetric spin-orbital system, and then prove a rigorous-1, (|iM,jy>—|iV,j,u>)/\/§ where u#v. The total (T;
statement on the SVY) isotropic state. The state consists of +T,-)2=20, which indicates that a S4) singlet cannot be
SU(4) singlets, which can be regarded as a generalizegormed at two sites. The minimal number of lattice sites to
SU(4)-RVB states. To illustrate the idea, we construct twoform SU4) singlet is four as shown by Lét al® An SU(4)
types of solvable models and evaluate the ground-state enefinglet is written as
gies. One ground state is a short-rangd8tRVB solid, and
another one is highly degenerated.

We start with a Hamiltonian fOIf a spib-system with su(i,j,k,1)= E rwyahﬂij,k%m),
double-fold orbital degeneracy, which was derived by Cas- w,y,8
tellani et al® By neglecting the Hund's-rule coupling be-
tween different on-site orbitals, the system possessdd)SU whereI" is an antisymmetric tensor. Alternatively, denote
symmetry. The symmetric spin-orbital Hamiltonian is ex- spin and orbital S(2) singlets for sites andj by s(ij) and
pressed in terms of two sets of independent spin- 7(ij), respectively. An S(¥) singlet can be expressed in
operatorg, terms of spin and orbital S@) singletd?
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2 Several remarks are in order.
sU(i,j, k)= \[g[s(ij )s(kh) #(il) 7(jk) (1) Following the Lanczos method we can re-construct the
Hamiltonian in a tridiagonal form on a set of complete and
—s(il)s(jk)7(ij) r(kD]. (4) orthogonal basis by utilizing Eq$5) and (7). Each of the

o . basis can be expressed in a linear combination of4gU
Exchange of the order af j, k, andl gives the same state. RyB states.

For any two sites” andj’ amongi,j,k, andl, we have (2) In one-dimensional chain withM site the short-range
. _ . SU(4)-RVB state composed by nearest-neighbor four-site
Pirjrsug(i,] kD ==su (i, k1. 5 su@4) singlets has the energy per bordd.75), which is

The exchange of the positions of four sites in the singletery close to the exact energy of Bethe ansaf.82511.°
keeps the singlet unchanged. Sineé is the smallest eigen- This is a good starting point to calculate the ground-state
values of P;;, for a four-site problem with all;;=0, the  energy. The two identities Eq5) and(7) provide a possible
lowest energy state issu,(1,2,3,4) with eigenvalues Way to evaluate thg ground—s_tate energy. In practice it is hard
—%;;J; - It is worth noting that the conclusion is indepen- t include all possible SW) singlets. It is possible to con-
dent of the values of the couplinl . Furthermore, by using Struct the wave function by including some finite-size($U

Eq. (5), it is not hard to check, singlets such that the average energy of the wave function is
closer to the true ground state.
(Ti+ T+ T+ T)3suy(i,j,k,1)=0. (6) (3) On a SU?2) antiferromagnetic model on a hypercubic

o o ) lattice, it was shown that the ground state is a spin sirftglet.
This identity indicates that the total S Ti=2T; IS zero.  \ye postulate that this result is valid for 80 systems if the

There exists another important identity for two @Wsin-  |attice can be decomposed intbsublattices. Numerical cal-
glets in eight sites when indicég andj, in P; ; belong to  ¢yjations for finite clusters supports this idea.
different singlets We now make use of the identities to construct two types
o S of solvable models with S(4) symmetry. The method we
Pij,SUa(i1,i2,13,14)SUs(j1,]2,)3,]4) use here is that, if we can write the Hamiltonian in the form
S L of the sum of semipositive operators, and find a state that has
=SU(J1:l2:13.14)SUs(i1,)2.03,)4)- @ Jowest eigenvalues for each semipositive operator, the state

To prove the identity we utilize the permutation properties ofMust be the ground state of the Hamiltonian. The method
P as shown in Eq(3). The resulting state is obtained by Was used for spin- system by Majumdar and GhOéﬁThe
exchanging two positions of andj; in different singlets. ~ first type of solvable model is defined ondedimensional

To proceed further we introduce a concept of generalizedlyPercubic lattice. Label the lattice site by: A. Each site
RVB state. An SW)-RVB state is composed of $4) sin-  contains four SW) spins. The S(U4) operators is denoted by
glets, instead of S(2) singlet. In principle an SW-RvVB  Ti,. (¥=1,2,3,4). Assume the number of lattice sitas N.
state consists of all possible configurations, which containfhe total number of S4) spins is . The model Hamil-
either the nearest-neighbor 81 singlets or the long-range tonian is
SU(4) singlets. Depending on the Hamiltonian and the un-

derlying lattice an SU)-RVB state as a ground state may 1

have a different form. For instance in the example we shall H=2J > ) (ZSWSV'+ 2 2Tiy Tiyr + 2

present later the state is a short-range RVB state. The com- Ly Y

pleteness of the RVB states as a basis for a global singlet 1 1

state can be shown from the group theory. Take the direct +J E , (237'Sjy'+ 5]\ 271y Ty T 5). (8)
product ofN,(=4M) states|iu) as basis. Young Tableaux Ly

s usgd to represent Fhe .i”edl."Cible representation. If the ir\7vhere the intrasite coupling is larger than the intersite cou-
reducible representation is a singlet the Young tableaux m“ﬁling J'=3(a?+1/a?)2=1], « is an arbitrary number, ang

be .Of the fo_rm of a 4<.M rectanglg. _In each co_lumn it is. is the coordination number. To find the lowest-energy state,
antisymmetrized, and in each row it is symmetrized. In thlsWe rewrite the Hamiltonian in the form

way the Young tableaux represents a generalized RVB state,

as in the case for SW) systent Since the irreducible rep- 4
resentation forms a complete set, a linear combination of & _ i > {Z
RVB state is another one. The number of the generalized 16 4

RVB states are (K1)!/(M!).* It is over complete and non-

orthogonal. The Lanczos method can re-organize the states \F(mere[Ef/: 1(UaT; +aT, y)]2 is semipositive definite. Its
form a complete and orthogonal set of basis. Thus, we havgigenvalues are always not less than zero. Thus, the Hamil-

the following conclusion, o _ tonianH is semipositive definite except for a constant. If we
Given that the number of lattice sités,=4M (M is an  can find a statéd) such that

integey, the SU4) isotropic state of the symmetric spin-
orbital model that can be expressed as a linear combination
of configurations consisting four-site ) singlets, i.e.,
SU(4)-RVB state.

2
1
—Tiyt+aT, y) } - <2> (6la+6a2—4),
1]

y=1

4

> (%Ti,/-FaTJ-,/)rM)):O,

y=1
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for any nearest-neighbor pairsndj, this state must be the pair ofi andj. Therefore the state is also the ground state of
ground state of the HamiltoniaH. Here we construct an the second-type of solvable modé®s. Its ground energy per

SU(4)-valence bondVB) state bond isEy=(6—9)J. The state is highly degenerated since
o each sitg has fourfold degeneracy. The total degeneracy is
|SVB)=suy(i11i12i,3,,4) 4Ni where N; is the number of lattice sites Among the

degenerated states some are(8lsinglets, which can be
expressed as SY)-RVB states, and some are not.
sU(in, Lin, 2in 3in,4). For the SW4) symmetric spin-orbital model, mathemati-
. . cally, we can write the Hamiltonian in terms of the genera-
It means that at each sitefour T;, form an SU4) singlet,  tors of SU4) groups in the fermion representation. It pro-
vides us a routine to generalize the main results in this paper
> Ti,|SVB=0. to the systems with the M) symmetry®® For a SUN)
Y group there areN? generators S, with a constraint
We can regard the state as an(8Jsinglet solid or VB solid Sh-1Sm=1. On each site there amd-possible statesm)
at the lattice. Therefore we have (m=1,2,...N). In the fermion representation, we intro-
duceN species of fermionsﬁm, and the SN) generators
can be expressed as|, = f mfin  With a constraint
[SvB=0 sN_ 1 fim=1. In this way we generallze the $4) model
to the SUN) one

X SU4(i 21,i 22,i 23,i 24)

4

1
El —TiytaT),

v=

2

for any pair ofi andj. Alternatively,

|SVB> H:izj J'JSm(l)Sn(J)E; Jijpij(N). (11

1
E’ ( 2P|y|yr+a PJ}/JV’ +E' Plyjy’
y#y \ & Yy

=—(6la’+6a°—4)|SVB).

Hence|SVB) is the ground state of the modélq. (8)]. The

ground-state energy per bond is ¢6# 6a®—4)J. In this o

state there does not exist long-range correlation. The short-  SUn(izsiz, ... in)= v f

range RVB state is a typical quantum frustrated spin-orbital

liquid. When we break an S¥) singlet it will cost a finite  where the sum runs over all of the permutationNoites

energy. Thus the elementary excitation on this state has g, j,,...jn)=(1,i2, .. .,n). cn=1//N! is a normal-

energy gap. ized constant. The SM) singlet is the eigenstate for the
The second type of solvable model is defined on a latticyermutation operator

that is decomposed into two sublattices. The sublatfice

labeled by{j} has one S T on each site. A lattice site

The operatoP;; (N) is a permutation operator as shown in
the case of SU). An SUN) singlet can be defined as

122’ " jNN|O>

belonging to sublattic® (labeled by{i}) is located on the Pij(N)suy(iq,iz, -« in)=—SUy(i1,iz, - in)s
middle of two sitesj. Each sitei contains fourT;, (y . o _

=1,2,3,4). The model Hamiltonian is defined as if i andj belong toi4,iy, ... iy, and

H:2J E (23 S‘y ZTI’}/ |’Y'+§ Pizjl(N)SUN(ilain ...,iN)SUN(jl,jz, ...,jN)
iy#y'
1 1 :SUN(i1!j11---viN)SuN(iZ!jZI---le)y
+J52 (2sy-sj+— 27,1+ =], (9
{0y 2 2 for any two sites in different singlets. Due to the @)

symmetry in the model Hamiltonian, we can generalize the

with 0< < 1. Similarly, the Hamiltonian can be rewritten as "'
main result to the SIN) system:

J 4 2 3 Given that the lattice is connected by the hopping matrix,
H=g > E Tiy+6Tj| =5 > e and all J;=0 andN,=Nm (m is an integer, the SUN)
{n {5 isotropic state of the S®) model(11) can be expressed as

with €,=12—26+156%/4. We can construct a stafe) a linear combination of configurations consistimgsite

such that all fourT;,, at sitei form SU4) singlets andr; at ~ SU(N) singlets, SUN)-RVB state.
sitej are in any state. We have When N=2, this result is reduced to the usual spin-

SU(2) antiferromagnetic Heisenberg model. In this sense our
main result can be regarded as a generalization of Anderson'’s
|P) =155 D). (10 RVB idea to SWUN) system. The solvable models are simply
modified in this way: the sité containsN SU(N) spins. On
The eigenvalue 1 is the lowest energy of the squared the ground state the $N) spins at theN site form a SWUN)
operator in Eq(10) when §<1. The equation holds for any singlet. Hence we construct the two types of solvabléNgU

4
> Ti+ 6T,
y=1

2
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models. The coupling coefficients should be modifiedenergies. One ground state is a(8)JRVB solid, and an-

slightly according to the structures of different lattices. other one is a spin-orbital liquid.
In summary, we propose a generalized($RVB pic- )
ture for spin-orbital model. A state with global $4) singlet The authors thank Fu-Chun Zhang and Michael Ma for

can be expressed as a @JRVB state. The idea is also their helpful discussions. This work was supported by a RGC
generalized to systems with $\) symmetry. We construct grant Hong Kong and a CRCG grant of The University of
two types of solvable models, and evaluate the ground-statdong Kong.
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