
Title Parity problem with a cellular automaton solution

Author(s) Lee, KM; Xu, H; Chau, HF

Citation Physical Review E (Statistical, Nonlinear, And Soft Matter
Physics), 2001, v. 64 n. 2, p. 026702:1-4

Issued Date 2001

URL http://hdl.handle.net/10722/43328

Rights Physical Review E (Statistical, Nonlinear, And Soft Matter
Physics). Copyright © American Physical Society.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37882625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PHYSICAL REVIEW E, VOLUME 64, 026702
Parity problem with a cellular automaton solution

K. M. Lee, Hao Xu, and H. F. Chau*
Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong

~Received 21 February 2001; published 11 July 2001!

The parity of a bit string of lengthN is a global quantity that can be efficiently computed using a global
counter in O(N) time. But is it possible to find the parity using cellular automata with a set of local rule tables
without using any global counter? Here, we report a way to solve this problem using a number ofr 51 binary,
uniform, parallel, and deterministic cellular automata applied in succession for a total of O(N2) time.

DOI: 10.1103/PhysRevE.64.026702 PACS number~s!: 02.70.2c, 89.20.Ff, 05.65.1b, 89.75.2k
o

lle
e-
rm

th

on
n-
e

ta
te
a

th

ed
m
rs

th
th
-

ug
or

o
en
t

e
w
g
ng
so
-
e
in

av

a

e
sim-
r

ing
n
in-

d-
me
ite

allel
ion
ider
ith-

o
di-
PP
d
g,
g.
the
f
rity
t
ing

lve

ros
an
the
gh

s

Cellular automaton~CA! is a simple local interaction
model used to study the evolution and self-organization
various physical and biological systems@1#. And at the same
time, CA can also be viewed as a restrictive model of para
computation without common global memory. In fact, r
cently there is an increasing interest in using CA to perfo
certain computational tasks@2#. It is therefore natural to ask
if CA can be used to perform a task that depends on
global information of an input state.

An example of this kind is called the density classificati
problem~DCP!. In this problem, we are given an one dime
sional array of bit string in periodic boundary conditions. W
are required to apply some CA rules so as to evolve the s
to all zero if the number of zeros in the input state is grea
than that of ones. Similarly, we have to evolve the state to
one if the number of zeros in the input state is less than
of ones.

After a number of fail attempts, Land and Belew prov
that no single CA can solve the DCP without making so
mistake @3#. And yet later on, Capcarrere and co-worke
argued that a single CA rule can solve the DCP provided
we modify both the required output of the automaton and
boundary conditions used@4,5#. Nonetheless, we do not com
pletely agree with their approach for we have to scan thro
the states of the entire final bit string, in general, bef
knowing the answer. This requires either global memories
a table that scales with the system size in the read out; h
it somehow defeats the purpose of restricting ourselves to
use of CA in the first place.~In contrast, the read out in th
original DCP can be determined by looking at any one or t
bits in the final string.! Although DCP cannot be solved usin
one CA rule, Fuks´ showed that this can be done by applyi
two CA rules in succession. More precisely, he found a
lution to the DCP by applying the CA rule 184 a fixed num
ber of times depending only on the string length and th
followed by the CA rule 232 a fixed number of times aga
depending only on the string length@6#. A number of related
problems depending on the global density of a string h
also found to have CA solutions@7#.

Another challenge for CA is the parity problem~PP!,
namely, to evolve a given input bit strings using a sequence
of CA rules to allPss wherePs is the parity ofs. ~Then the
parity of the input bit string can be determined by looking

*Email address: hfchau@hkusua.hku.hk
1063-651X/2001/64~2!/026702~4!/$20.00 64 0267
f

l

e

te
r
ll
at

e

at
e

h
e
r
ce

he

o

-

n

e

t

any one of the final bit string.! This problem appears to b
much harder than the DCP because the output is altered
ply by a flip in any one of the input bits. In fact, Sippe
proved that no singler 51 CA rule can solve the PP with
fixed boundary conditions@8#.

In this paper, we show that PP can be solved by apply
a number ofr 51 CA rules in succession. The term CA i
this paper shall mean a local synchronous uniform determ
istic binary CA rule with parallel update in periodic boun
ary conditions. That is, the state of each bit in the next ti
step depends deterministically only on the state of its fin
neighborhood. The states of all sites are updated in par
and the rule table of the CA is covariant under translat
along the bit string. Besides, we restrict ourselves to cons
only those sequence of CAs that solves the PP exactly w
out making any misclassification.

To have a feeling of the difficulty of this problem, tw
remarks are in place. First, except for the boundary con
tions, relaxing any of the above conditions makes the
trivial. For example, applying the CA rule 60 first to the 2n
bit, then the 3rd bit, and so on till the last bit in the bit strin
the value of the last bit is the parity of our input strin
Second, one set of local CA rules is not sufficient to solve
PP for input string ofany length. The reason is simple: i
such a set could solve the PP, it would evolve an odd pa
bit strings to all one. The uniformity condition implies tha
this set would evolve the concatenated even parity bit str
ss to all one as well. But this is absurd.

Thus, we need to invoke more than one CA rules to so
the PP. In fact, all we need is a fewr 51 CA rules reported
below in Wolfram’s notations@9#.

~1! R222 is the Wolfram elementary CA rule 222.

R222:
000 001 010 011 100 101 110 111

0 1 1 1 1 0 1 1
.

This rule replaces the two ending zeros of a string of ze
by ones, if the number of zeros in the string is more th
two. Since we are using periodic boundary conditions,
~global! parity of the configuration does not change althou
locally parity does change. If we apply the rulebN/2c times,
then there will be no more consecutive zeros.

~2! R132 is similar toR222, but it replaces the ending one
by zeros. It also conserves parity.
©2001 The American Physical Society02-1

ct

e

n

e

l

e

g
is

en
y
ing
es
g.

we

is

y

ral

he
m-

f
of
lude
two
t

K. M. LEE, HAO XU, AND H. F. CHAU PHYSICAL REVIEW E64 026702
R132:
000 001 010 011 100 101 110 111

0 0 1 0 0 0 0 1
.

~3! R76 will flip a configuration of all ones to all zeros.

R76:
000 001 010 011 100 101 110 111

0 0 1 1 0 0 1 0
.

~4! R254 preserves the configuration of all zeros. In fa
careful application ofR254 together withR76 will put our
result to the desired form.

R254:
000 001 010 011 100 101 110 111

0 1 1 1 1 1 1 1
.

~5! R184 is the so-called traffic rule. It tries to move a on
to the right if the site at right is a zero.

R184:
000 001 010 011 100 101 110 111

0 0 0 1 1 1 0 1
.

~6! R252 is an auxiliary rule to change a zero right of a
one to one.

R252:
000 001 010 011 100 101 110 111

0 0 1 1 1 1 1 1
.

Let s be an arbitrary input bit string of lengthN, andPs

its parity. We writeRs the resulting configuration after th
rule R is applied tos once, for any CA ruleR.

Theorem. Let

s1[~R132
bN/2cR222

bN/2c! bN/2cs, ~1!

which means that we applyR222 to s bN/2c times, then apply
R132 bN/2c times and back toR222, and so on. The tota
number of time steps is 2bN/2c2.

~a! If N is odd, then

s15H 0N if Ps50,

1N if Ps51,
~2!

where 0N denotes a string ofN consecutive zeros, that is, th
state at all the sites is zero; and similarly for 1N. Total num-
ber of time steps is (N21)2/2.

~b! If N52q, whereq is odd, then

s15H 0N or 1N if Ps50,

other than 0N and 1N if Ps51.
~3!

Applying the CA rulesS[R254
dN/2eR76, we can transforms1

to the form given in~a!:

Ss15H 0N if Ps50,

1N if Ps51.
~4!

The total number of time steps is (N2/21N/211).
~c! If N52mq, wherem>2 andq is odd, let

T[R132
bN/2cR222

bN/2cR184R252 ~5!
02670
,

and

s2[Tm21s1 , ~6!

then

s25H 0N or 1N if Ps50,

other than 0N and 1N if Ps51.
~7!

Similar to ~b!, Ss2 is either all zeros or all ones, dependin
on whetherPs is even or odd. The total number of steps
N2/21(m21)(N12)1N/211.

Remark. If we are allowed to change the lattice size, th
we do not need~b! and~c! of the Theorem to solve the parit
classification problem. Suppose we are given a bit str
with even length. To find out the parity of the number of on
in it, we just concatenate a single zero bit to the bit strin
The resultant bit string will be in odd length and hence
are back to~a! of the Theorem.

The following two Lemmas are required to prove th
Theorem.

Lemma 1. For anyN, s1 could only be one of the follow-
ing three forms: 0N, 1N or (102l 21)k, wherel ,k>1 are inte-
gers, 2lk5N and Ps5k ~mod 2!. @The notation (102l 21)k

means, for example, ifl 52 and k53, the bit string is
100010001000.#

Proof. It is obvious that both 0N and 1N are fixed points of
R222 andR132. Thus, in the rest of this proof, we shall onl
consider configurationss with both zeros and ones.

As we have discussed above, for any configurations, the
string R222

bN/2cs has no consecutive zeros. Thus, its gene
form will look like

R222
bN/2cs5•••101n101n201•••, ~8!

where the numbers of ones between two zerosni are greater
than or equal to one.~The trivial configuration 1N is also
possible.!

SinceR132 replaces the ending ones by zeros, if any of t
ni is even, the corresponding string of ones will be co
pletely annihilated after applyingR132

bN/2c. For example,

R132
2~•••0101111010••• !5R132~•••0100110010••• !

5•••0100000010•••. ~9!

This example also shows that after a single pass oR
[R132

bN/2cR222
bN/2c, we cannot conclude that the number

zeros between two ones is odd. However, we can conc
that if there is a string of even number of zeros between
ones, after a single pass ofR, the number of zeros in tha
string will increase by at least two. Thus,RbN/2cs must be of
the form

•••102n1811102n28111•••, ~10!

whereni8 are non-negative integers~or the trivial cases 0N or
1N).

We still need to show that theni8 are all equal. This can be
illustrated by an example, consider the caseN58,
2-2

d
e

-
g

e
is

ea
f
ic

f
c

he
e

.
be

d

nd

ny
bit
P

orst
the
ur
of
te

#
e
a

to
r

k
g

R
lso
ard

PARITY PROBLEM WITH A CELLULAR AUTOMATON . . . PHYSICAL REVIEW E64 026702
R132
bN/2cR222

bN/2c~10100000!5R132
bN/2c~10111011!

5~00010001!. ~11!

We see that the numbers of zeros between the ones ten
equalize, from one and five zeros to three zeros in this

ample. More precisely, R222
bN/2c(102n1811102n28111•••)

equals 01n181n281101n281n38110••• up to a translation. So, af
ter applyingR for sufficiently long time, the resultant strin
will be in the form 1N, 0N or Eq. ~10!. Since the first two
cases are fixed points ofR, we only need to focus on th
third case. If the resultant string is in the third form, then it
easy to check that the total number of ones does not incr
after each application ofR. Hence, eventually the number o
ones in the string will stay constant under repeated appl
tion of R. And this happens if and only ifni8 are all even or
all odd. In this case,

R~102n1811102n28111••• !

51011n281(n181n38)/21011n381(n281n48)/21••• ~12!

up to a translation. Hence, the repeated application oR
equalizes the number of zeros between the ones; and a
figuration in the form (102n11) l is a fixed point ofR. Finally,
it is straight forward to check that at mostbN/2c applications
of R is enough to bring a bit string to the fixed points of t
form 0N, 1N, or (102l 21)k. @One of the worst cases is th
configuration 1(10)(N21)/2 for N odd.#

SinceR132 andR222 conserve parity,k ~mod 2! is equal to
the parity of (102l 21)k, which is justPs . This completes the
proof of Lemma 1.

Lemma 2. With the notations of the Theorem, we have

T 0N50N, ~13!

T 1N51N, ~14!

T~102l 21!k5H ~10l 21!2k if l is even,

1N if l 51,

0N if l>3 is odd,

~15!

wherek>1.
Proof. Eq. ~13! and Eq.~14! are trivial. For Eq.~15!, we

consider two cases. Ifl>2,

T~102l 21!k5~R132
bN/2cR222

bN/2cR184R252!~102l 21!k

5~R132
bN/2cR222

bN/2cR184!~1102l 22!k

5~R132
bN/2cR222

bN/2c!~10102l 23!k

5H ~10l 2110l 21!k if l is even,

~02l !k if l is odd.
~16!

If l 51,
02670
to
x-

se

a-

on-

T~10!k5~R132
bN/2cR222

bN/2cR184R252!~10!k

5~R132
bN/2cR222

bN/2cR184!1
N

51N. ~17!

This concludes the proof of Lemma 2. j
Proof of the Theorem. ~a! If N is odd, among the three

forms provided by Lemma 1, (102l 21)k cannot be reached
Since parity is conserved, the final configuration can only
0N or 1N according to the initial parity.

~b! If N52q, parity of 0N and 1N are even, but the parity
of (102l 21)k must be odd becausek is odd. Thus, we have
proved Eq.~3!. Now, by flipping the all ones to all zeros an
changing all other configurations to all ones by the rulesS,
we put the final configuration to a form similar to~a!.

~c! If Ps51, then Ps515k ~mod 2!, and l 52m21q8
whereq8 is odd. By Lemma 2, we have

Tm21~102l 21!k5Tm21~102mq821!k

5Tm22~102m21q821!2k

5•••5~102q821!2m21k. ~18!

If Ps50, thenl 52m821q8 wherem8,m andq8 is odd. The
above equation does not reach the last line a
Tm21(102l 21)k is 0N or 1N. This completes the proof of the
Theorem. j

To summarize, we show that it is impossible for a
single set of CA rules to correctly compute the parity of a
string. But surprisingly, we find a CA solution to the P
using a sequence ofr 51 CAs. For an input bit string of
lengthN, the worst case run time scales as O(N2). However,
we have no idea if the present method has the shortest w
case run time or not. And since the PP is equivalent to
computation of the sum of a given bit string modulo two, o
result implies that CA can be used to count the number
ones in a bit string modulo two. In other words, if we deno
the number of ones in a bit strings by #s, then one can use
a sequence of CAs to compute the least significant bit ofs
written in binary notation. Besides, the CA solution of th
DCP for a bit string 2n21 long can then be regarded as
way to compute the most significant bit of #s. Therefore, it
is instructive to investigate the possibility of using CAs
compute any given bit of #s and hence to count the numbe
of ones in a bit string provided that we have O(logN) copies.
Along a similar line of thought, it is also worthwhile to loo
for CA solutions to the problem of addition over a finite rin
or field.

This work was supported in part by the Hong Kong SA
Government RGC Grant No. HKU 7098/00P. H.F.C. is a
supported in part by the Outstanding Young Research Aw
of the University of Hong Kong.
2-3

,

st
s

ev

ys.

E
.

K. M. LEE, HAO XU, AND H. F. CHAU PHYSICAL REVIEW E64 026702
@1# See, for example, B. Chopard and M. Droz,Cellular Automata
Modeling of Physical Systems~Cambridge University Press
Cambridge, 1998!.

@2# M. Mitchell, P.T. Hraber, and J.P. Crutchfield, Complex Sy
7, 89 ~1993!; S.C. Benjamin and N.J. Johnson, Appl. Phy
Lett. 70, 2321~1997!; M. Sipper, Computer32, 18 ~1999!.

@3# M. Land and R.K. Belew, Phys. Rev. Lett.74, 5148~1995!.
@4# M.S. Capcarrere, M. Sipper, and M. Tomassini, Phys. R

Lett. 77, 4969~1996!.
02670
.

.

.

@5# M. Sipper, M.S. Capcarrere, and E. Ronald, Int. J. Mod. Ph
C 9, 899 ~1998!.

@6# H. Fukś, Phys. Rev. E55, R2081~1997!.
@7# H.F. Chau, K.K. Yan, K.Y. Wan, and L.W. Siu, Phys. Rev.

57, 1367 ~1998!; H.F. Chau, L.W. Siu, and K.K. Yan, Int. J
Mod. Phys. C10, 883 ~1999!.

@8# M. Sipper, Phys. Rev. E57, 3589~1998!.
@9# S. Wolfram, Rev. Mod. Phys.55, 601 ~1983!.
2-4

