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Parity problem with a cellular automaton solution

K. M. Lee, Hao Xu, and H. F. Chdu
Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong
(Received 21 February 2001; published 11 July 2001

The parity of a bit string of lengtiN is a global quantity that can be efficiently computed using a global
counter in ON) time. But is it possible to find the parity using cellular automata with a set of local rule tables
without using any global counter? Here, we report a way to solve this problem using a numbet dinary,
uniform, parallel, and deterministic cellular automata applied in succession for a totaNgj @e.

DOI: 10.1103/PhysReVvE.64.026702 PACS nunid)er02.70—c, 89.20.Ff, 05.65:b, 89.75-k

Cellular automaton(CA) is a simple local interaction any one of the final bit string.This problem appears to be
model used to study the evolution and self-organization ofnuch harder than the DCP because the output is altered sim-
various physical and biological systefiid. And at the same ply by a flip in any one of the input bits. In fact, Sipper
time, CA can also be viewed as a restrictive model of paralleproved that no single =1 CA rule can solve the PP with
computation without common global memory. In fact, re-fixed boundary conditionf8].
cently there is an increasing interest in using CA to perform In this paper, we show that PP can be solved by applying
certain computational taskg]. It is therefore natural to ask a number ofr=1 CA rules in succession. The term CA in
if CA can be used to perform a task that depends on théhis paper shall mean a local synchronous uniform determin-
global information of an input state. istic binary CA rule with parallel update in periodic bound-

An example of this kind is called the density classificationary conditions. That is, the state of each bit in the next time
problem(DCP). In this problem, we are given an one dimen- step depends deterministically only on the state of its finite
sional array of bit string in periodic boundary conditions. Weneighborhood. The states of all sites are updated in parallel
are required to apply some CA rules so as to evolve the sta@nd the rule table of the CA is covariant under translation
to all zero if the number of zeros in the input state is greateglong the bit string. Besides, we restrict ourselves to consider
than that of ones. Similarly, we have to evolve the state to albnly those sequence of CAs that solves the PP exactly with-
one if the number of zeros in the input state is less than tha@ut making any misclassification.
of ones. To have a feeling of the difficulty of this problem, two

After a number of fail attempts, Land and Belew provedremarks are in place. First, except for the boundary condi-
that no single CA can solve the DCP without making sometions, relaxing any of the above conditions makes the PP
mistake[3]. And yet later on, Capcarrere and co-workerstrivial. For example, applying the CA rule 60 first to the 2nd
argued that a single CA rule can solve the DCP provided thait, then the 3rd bit, and so on till the last bit in the bit string,
we modify both the required output of the automaton and théhe value of the last bit is the parity of our input string.
boundary conditions usdd,5]. Nonetheless, we do not com- Second, one set of local CA rules is not sufficient to solve the
pletely agree with their approach for we have to scan througP for input string ofany length. The reason is simple: if
the states of the entire final bit string, in general, beforesuch a set could solve the PP, it would evolve an odd parity
knowing the answer. This requires either global memories obit string o to all one. The uniformity condition implies that
a table that scales with the system size in the read out; hendbis set would evolve the concatenated even parity bit string
it somehow defeats the purpose of restricting ourselves to theo to all one as well. But this is absurd.
use of CA in the first place(In contrast, the read out in the ~ Thus, we need to invoke more than one CA rules to solve
original DCP can be determined by looking at any one or twahe PP. In fact, all we need is a faw=1 CA rules reported
bits in the final string.Although DCP cannot be solved using below in Wolfram’s notation$9].
one CA rule, Fukshowed that this can be done by applying
two CA rules in succession. More precisely, he found a so- (1) R,,, is the Wolfram elementary CA rule 222.
lution to the DCP by applying the CA rule 184 a fixed num-

ber of times depending only on the string length and then

followed by the CA rule 232 a fixed number of times again Ry 000 001 010 011 100 101 110 1_11
depending only on the string lengftB]. A number of related c 1 1 1 1 0 1 1

problems depending on the global density of a string have

also found to have CA solutiord]. This rule replaces the two ending zeros of a string of zeros

Another challenge for CA is the parity probleg®PP), by ones, if the number of zeros in the string is more than
namely, to evolve a given input bit stringusing a sequence two. Since we are using periodic boundary conditions, the
of CArules to allP s whereP, is the parity ofo. (Then the  (global) parity of the configuration does not change although
parity of the input bit string can be determined by looking atlocally parity does change. If we apply the rjiN/2| times,

then there will be no more consecutive zeros.
(2) Ry3,is similar toR,,,, but it replaces the ending ones
*Email address: hfchau@hkusua.hku.hk by zeros. It also conserves parity.
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R 000 001 010 011 100 101 110 111 and
132- .
0O 0 1 0 O O 0 1 o=T" 1, )
(3) Ryg will flip a configuration of all ones to all zeros. then
000 001 010 011 100 101 110 111 .
R76: _ oN or 1N if P,=0,
0O 0o 1 1 0o 0 1 O

727 | otherthan & and IV if P,=1. "

(4) Rys4 preserves the configuration of all zeros. In fact, o ]
careful application ofR,s, together withR,¢ will put our ~ Similar to(b), So, is either all zeros or all ones, depending

result to the desired form. on whetherP, is even or odd. The total number of steps is
N2/24+(m—1)(N+2)+N/2+1.
~ 000001010011 100101110 111 Remark If we are allowed to change the lattice size, then
Rasa: 0O 1 1 1 1 1 1 1° we do not needb) and(c) of the Theorem to solve the parity

classification problem. Suppose we are given a bit string
(5) Ryg4 is the so-called traffic rule. It tries to move a one with even length. To find out the parity of the number of ones

to the right if the site at right is a zero. in it, we just concatenate a single zero bit to the bit string.
The resultant bit string will be in odd length and hence we
_ 000 001 010011 1001011101112 are back to@) of the Theorem.
¥ 0 0 0 1 1 1 0 1° The following two Lemmas are required to prove this
Theorem.
(6) Rosp is an auxiliary rule to change a zero right of an | emma 1 For anyN, o, could only be one of the follow-
one to one. ing three forms: 8§, 1N or (10® ~1)%, wherel k=1 are inte-

gers, 2k=N and P,=k (mod 2. [The notation (18 1)k
252" 000 001 010 011 100 101 110 1.11 means, for example, if=2 and k=3, the bit string is
c o 1 1 1 1 1 1 10001000100Q.

Proof. It is obvious that both B and 1N are fixed points of
R,,, andRy3,. Thus, in the rest of this proof, we shall only
consider configurations with both zeros and ones.

As we have discussed above, for any configuratiothe
string R,,4V4o has no consecutive zeros. Thus, its general

01=(Rya VAR, N2 N2l (1) form will look like

Let o be an arbitrary input bit string of lengti, andP,,
its parity. We writeRo the resulting configuration after the
rule R is applied too once, for any CA ruleR.

Theorem Let

N/2| .
which means that we appRy», to o | N/2] times, then apply Ryzd"?or= - 1010101 - -, ®

Ri32 [N/2] times and back tdR,,,, and so on. The total
number of time steps is| RI/22.
(a) If Nis odd, then

where the numbers of ones between two zeroare greater
than or equal to one(The trivial configuration ¥ is also

possible)
oN if P =0, SinceR; 3, replaces the ending ones by zeros, if any of the
01=[ N (r_ (2) n; is even, the corresponding string of ones will be com-
17 if Po=1, pletely annihilated after applyinB;3}"/?. For example,

where ¢ denote_s a ;tring afl consgcgtive zeros, that is, the Rys?(- - -0101111010- - ) =Ry - - -0100110010- - )

state at all the sites is zero; and similarly fo}. Total num-

ber of time steps isN—1)2/2. =...0100000010- -. 9

(b) If N=2q, whereq is odd, then
This example also shows that after a single passRof
oV or 1N if P,=0, =R;33V2R,,4N2, we cannot conclude that the number of
1= otherthan ® and I if P, =1. () zeros betwe_en two_ ones is odd. However, we can conclude

that if there is a string of even number of zeros between two

Applying the CA rulesS=R,s/V?R;4, we can transforne; ~ ones, after a single pass B the number of zeros in that

to the form given in(a): string will increase by at least two. Thug\N?o- must be of
the form
oN if P,=0,
SO'l: 1N if Pa_:l (4) . 102n1+1102n2+11' . (10)
The total number of time steps idN¢/2-+N/2+1). wheren/ are non-negative integetsr the trivial cases ® or
(c) If N=2Mq, wherem=2 andq is odd, let M.
2 2 We still need to show that th&' are all equal. This can be
T=R133" R R15Ro52 (5 illustrated by an example, consider the cake8,

026702-2
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R134V2R,,JN2(10100000= R;3}V?(1011101)
=(00010001. (11)

We see that the numbers of zeros between the ones tend
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T(10)%= (Ry23"R,,"V"R1g.R25,) (10)

equalize, from one and five zeros to three zeros in this ex-

ample. More precisely, RyJV3(102"1+ 11072711 . )
equals 0 "2*101"2* "3 10. .. up to a translation. So, af-
ter applyingR for sufficiently long time, the resultant string

will be in the form TN, ON or Eq. (10). Since the first two
cases are fixed points &, we only need to focus on the

third case. If the resultant string is in the third form, then it is X
g 020k (107" 1)¥ must be odd becaudeis odd. Thus, we have

¢ proved Eq(3). Now, by flipping the all ones to all zeros and

easy to check that the total number of ones does not incr
after each application dk. Hence, eventually the number o

ones in the string will stay constant under repeated applica

tion of R. And this happens if and only i/ are all even or
all odd. In this case,

R(102M 110212711 . 1)
:101+né+(ni+n:’,’)/2101+né+(né+né)/Zl. (12

up to a translation. Hence, the repeated applicatiorRof

equalizes the number of zeros between the ones; and a con-

figuration in the form (1&"%)' is a fixed point ofR. Finally,

it is straight forward to check that at mg#t/2| applications
of Ris enough to bring a bit string to the fixed points of the
form OV, 1N, or (1" ~1)k. [One of the worst cases is the
configuration 1 (10"~ 1’2 for N odd]

SinceR;3, andR,,, conserve parityk (mod 2 is equal to
the parity of (18' %)%, which is justP,, . This completes the
proof of Lemma 1.

Lemma 2 With the notations of the Theorem, we have

TON=0N, (13
T1N=1N, (14
(10712 if | is even,
T(10P~Hk=4 1N if 1=1, (15)
oN if 1=3 isodd,
wherek=1.

Proof. Eq. (13) and Eq.(14) are trivial. For Eq.(15), we
consider two cases. =2,

T(107 ™ H*=(Ry2d"¥Rp2"2R g Rps) (107 1)K
= (R1ad" Ry, N AR ) (1107~ 2)K
= (Rygf"ARp,4") (1016 %)
(10-110-Hk if | iseven,
{02 it | isoad. (19

If 1=1,

=( R134N/2JR22%N/2JR184) "
to =1N. (17)
This concludes the proof of Lemma 2. |

Proof of the Theorem(a) If N is odd, among the three
forms provided by Lemma 1, (201X cannot be reached.
Since parity is conserved, the final configuration can only be
oN or 1N according to the initial parity.

(b) If N=2q, parity of 0N and 1 are even, but the parity

changing all other configurations to all ones by the ri8es
we put the final configuration to a form similar ta).

(¢) If P,=1, thenP,=1=k (mod 2, and|=2""1qg’
whereq’ is odd. By Lemma 2, we have

™= l( 102| —1)k: Tm—l(102mq/ - l)k
=Tm=2( 102" ~1y2k

e :(102q'—1)2m’1k‘

(18

If P,=0, thenl =2m'*1q’ wherem’<m andq’ is odd. The
above equation does not reach the last line and
T (107"~ H)*is 0N or 1N. This completes the proof of the
Theorem. |

To summarize, we show that it is impossible for any
single set of CA rules to correctly compute the parity of a bit
string. But surprisingly, we find a CA solution to the PP
using a sequence aof=1 CAs. For an input bit string of
lengthN, the worst case run time scales ad\N®). However,
we have no idea if the present method has the shortest worst
case run time or not. And since the PP is equivalent to the
computation of the sum of a given bit string modulo two, our
result implies that CA can be used to count the number of
ones in a bit string modulo two. In other words, if we denote
the number of ones in a bit string by #o, then one can use
a sequence of CAs to compute the least significant bitcof #
written in binary notation. Besides, the CA solution of the
DCP for a bit string 2—1 long can then be regarded as a
way to compute the most significant bit of#Therefore, it
is instructive to investigate the possibility of using CAs to
compute any given bit of # and hence to count the number
of ones in a bit string provided that we have O(Mjgcopies.
Along a similar line of thought, it is also worthwhile to look
for CA solutions to the problem of addition over a finite ring
or field.
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