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Bianchi type | cosmology inN=2, D=5 supergravity

Chiang-Mei Chef
Department of Physics, National Central University, Chungli 320, Taiwan
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Department of Physics, University of Hong Kong, Pokfulam, Hong Kong
(Received 22 December 1999; published 25 April 2000

The dynamics and evolution of Bianchi type | space-times are considered in the framework of the four-
dimensional truncation of a reduced theory obtained fiém2, D=5 supergravity. The general solution of
the gravitational field equations can be represented in an exact parametric form. All solutions have a singular
behavior at the initial or final moment, except when the space-time geometry reduces to the isotropic flat case.
Generically the obtained cosmological models describe an anisotropic, expanding or collapsing, singular uni-
verse with a noninflationary evolution for all times.

PACS numbgs): 04.20.Jb, 04.65:e, 98.80-k

I. INTRODUCTION Balbinot, Fabris, and Kerngd1,12. For the case of spatial
homogeneity and isotropy the general solution is nonsingular
The similarity between theD=5 simple supergravity in the scale factor, but unstable due to the collapse to zero of
(SUGRA) and D=11 SUGRA has been recognized for a the size of the fifth dimensiof11,12. Biaxial (with two
long time[1,2]. D=11 SUGRA is supposed to play a fun- equal scale fac@o}sar)lsotrqpm solut|c_)ns with a _cyllndrlcal
damental role as the low-energy limit of M thed§] — an ~ nomogeneous five-dimensional metric lead to singular solu-
expected unified speculation for the well-known five consis11oNS with positive gravitational couplinfl2]. Recently, an

tent superstring theories. The field content of the-11 explicit example of a manifestlyU-duality covariant

. ) . ' M-theory cosmology in five dimensions resulting from com-
SU.GBA th_eory conS|st_s of t_he metric, a single Majoranapactification on a Calabi-Yau threefold has been obtained in
spin= fermion, along with asingley three-form gauge po-

i1 with neither ‘N> 1" ; f Ref. [13]. Exact static solutions ilN=2, D=5 SUGRA
tential, with neither 'N>1" extensions nor matter coupling 1 ,ye heen found by Pimentdl4], in a metric with cylindri-
permitted[4]. SimpleD =5 SUGRA, in addition to the met- 5| symmetry, with a particular case corresponding to the
ric gag, contains a spi- field W4 (a=1,2 is an internal  exterior of a cosmic string.

index) and U1) gauge field(one-formB,) which replaces The purpose of the present paper is to construct the gen-
the three-form gauge field in tH2=11 SUGRA. The “pri-  €ral solution to the gravitational field equations of tNe
meval” likeness comes directly from the fact that the =2, D=5 SUGRA as formulated in Ref$11,13 for an
Lagrangians of both SUGRAs are exactly of the same form@nisotropic triaxialall directions have unequal scale facfors
except for the numbering of the gauge field indices. In addiBianchi type | space-time. In this case the general solution of
tion, their dimensional reduction ©=4 can be carried out the field equations can be expressed in an exact parametric

in a similar way[5]. Furthermore, th® =5 simple SUGRA form_. For all cos_mol_ogical solutions, _the singularity at _the
can be realized as a Calabi-Yau compactification ofEhe Starting and ending time of the evolution cannot be avoided
=11 SUGRA together with the truncation of the scalar mul-€XCePt in the isotropic limit considered in Refs1,13.
tiplets, which is always necessary since there arises at lead€Vertheless, in the models analyzed in this paper, the an-
one scalar multiplet for any Calabi-Yau Compactiﬁcation'_SOtrOp'C Universe has non-inflationary evolution for all
[6,7]. Further resemblances between the two SUGRAs ar

fimes and for all values of parameters.
related to the duality groups upon dimensional reduction and | "€ Present paper is organized as follows. The field equa-
the world sheet structure of the solitonic string of De5

tions of our model are written down in Sec. Il. In Sec. Ill the
SUGRA[8]. general solution of the field equations is obtained. We dis-

Thus the four-dimensional reduced effective action of the“USS our results and conclusions in Sec. IV.

N=2, D=5 SUGRA contains an additional Maxwell-like
l.J(l) -f|eld gnd a sr?alar field regarded as .extern-all fields in AND CONSEQUENCES
five dimensions which are contributed By in addition to _ _

the ones coming from the metrg,g as in the traditional Th? bosgnlc SeCtor.Qf\I=2, D=5 SUGRA contains the
scheme for the Kaluza-Klein theof—12. Cosmological five-dimensional metrigag and U1) gauge fieldB, de-

solutions to this model have been previously considered bgcribed by a Lagrangian which possesses a nonvanishing
Chern-Simons terriil]

Il. FIELD EQUATIONS, GEOMETRY
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where Fag=20;,Bg; . In this paper we use the following . - Y

conventions an[d nc]>tations. The variables with hats are five- 3H +2i HE+ o™+ ¢ 2yP=0, ®)
dimensional objects all other variables are four dimensional.

Upper case indiced,B, .. ., areused for five-dimensional d 1 .

space-time, greek indiceg,v, ..., and lowcase indices Vila(VHi)ﬂLHi(ﬁ*l(ﬁ— §¢72l/fz=0, i=1,23,
i,j,..., are forfour-dimensional space-time and three- 9)
dimensional space, respectively. The signature-is+, +,

+,+). d . )

Assuming that the five dimensional space-time has locally Vil&(Vsﬁ) +¢~ty?=0, (10
the structure oM*x S with a four-dimensional space-time

M4 whose spatial sections are homogeneous and asymptotic d . o

flat, then the five-dimensional metric can be decomposed VI—(Vy)— ¢ 1py=0. (11
along the standard Kaluza-Klein pattern dt

- ) ) ) The physical quantities of interest in cosmology are the
ds*= ¢?(dxg+A,dx*)%+g,,dx#dx”, (2)  expansion scalag, the mean anisotropy parametdy the

) shear scalao?, and the deceleration parametpdefined as
where the scale factop and Kaluza-Klein vectoA, are  [15]

functions depending or* only.
Looking for a “ground state” configuration we set, fol- 1 H—H;\2
lowing Refs.[11,12, the Kaluza-Klein vectoA, equal to 0:=3H, A=3 > '

A~ ~ 3 I
zero and take the one-form potent}, to be B,=0 and

B,= V3y(x*). Under this ansatz, the five-dimensional gravi- , 1 S HZ_3H? -—EHfl— 1
tational field equations for Eq1) reduce to a set of four- TRl BRAPT! '
dimensional equations (12

1 The sign of the deceleration parameter indicates whether
R,,— ¢ 'D,.D,¢p— §¢_2[3%¢0ul/f— 9.(9)?]=0, the cosmological model inflates. A positive sign corresponds
3 to standard decelerating models whereas a negative sign in-
dicates inflationary behavior.

D2p+ ¢ H(ay)*=0, (4)
IIl. GENERAL SOLUTION OF THE FIELD EQUATIONS
D%y~ ¢~ 19, po =0, 5 Equation(11) can immediately be integrated to give
where D denotes the four-dimensional covariant derivative Vi=wd, (13

with respect to the metrig,,, . Equivalently, the field equa- _ .
tions can be rederived, in the string frame, from the four-with @ — a constant of integration. From Eq4.0) and(11)

dimensional Lagrangiafi1,12 one can find that the expressions of the figfd$) and (t)
have the following form:

3
=\V—g¢{R— = 2(dp)?}, 6 dt
¢ 9‘4 2¢ W) } © 8= gugod o [ +00), 19
via variation with respect to the fieldg,,, ¢ and¢. In the dt
Lagrangian(6), the scale factorg is an analogue of the Y1) = o+ dosin wf —+wg, (15)
Brans-Dicke field whereas the origin @f is purely super- v
symmetric.

The line element of an anisotropic homogeneous flat Bi-Whered’O’ Yo andwo are constants of integration.
By summing equation§9) one gets

anchi type | space-time is given by
2 2 2 -1 d -1 1 —22
ds?=—dt?+aj(t)dx*+as(t)dy*+a5(t)d 2. (7) Y a(VH)+H¢> ¢—§d> =0, (16)

Defining the “volume scale factor'V:=Il;a;, “directional  which can be transformed, by using E¢&3) and(14), into
Hubble factors”H;:=a;/a;, and “average Hubble factor” the following differential-integral equation describing the
H:=13.H;, one can promptly find the relationrB=V/v,  dynamics and evolution of a triaxial Bianchi type | space-
where dot means the derivative with respect to timén  fime inN=2, D=5 SUGRA:

terms of those variables, the field equati¢8sand the equa-

i i ing wi iso- .V dt 3 w?
tions of motion for¢ and ¢ (4),(5) coupling with the aniso V= o ta wJ — wg| o il (17)
tropic Bianchi type | geometry take the concise forms \% \% 2V

104017-2
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Furthermore, by subtracting E¢L6) from Egs.(9), one can
solve for theH; as

P
Hi_H+W, i=1,2,3, (18)

whereK; are constants of integration satisfying the following

consistency condition:

> K.=0.

(19
Therefore the physical quantities of inter€$2) reduce to

A= < 2—3AH2 20
whereK?=3 K?.

By introducing a new variable related to the physical
time t by means of the transformatiothy:=dt/V and by

denotingu:=V=dV/(Vdz), Eq.(17) reduces to a first order

linear differential equation for the unknown function

Ut Fogut o w? 21
dy ¢ anwn+ wo)u+t 5w, (21)
whose general solution is given by
3
u=Ccos Ywn+ wy)+ S ooyt ), (22)

whereC is an arbitrary constant of integration.
Defining a new parametéi( ) :=w n+ wy, We can repre-

PHYSICAL REVIEW D 61 104017

K? (1-sing)?r 1t

2= , 28
7T 222 (1+sing) PP 8

ol 1+ asing 29
4= (a+sind)?|

Finally, the field equatiori8) gives a consistency condition
relating the constant€?, o, a, and¢y:

K2=;¢ng(a2— 1), (30)

leading to

a=1oras-—1. (31

It is worth noting that these two classes of solutions cor-
responding to positive or negative valuesacobnd w are not
independent. Indeed, they can be related via a “duality”
transformation by changing the signs®f «, and{ so that
t(w,a,§)=t(—w,—a,—§), ai(wlavg):ai(_wr_a!
=), i=1,23,V(a,)=V(—a,— ), etc. This duality re-
lation can be obtained by a simple inspection of EG8)—
(26) and, therefore, all physical quantities are invariant with
respect to this transformation. Moreover, the physical prop-
erties of the cosmological models presented here are strongly
dependent on the signs of the parameterand ». Never-
theless, due to the duality transformation, hereafter we will
consider, without loss of generality, the cases with positive
only.

For some particular values af, the general solutions can
be expressed in an exact nonparametric form, for instance, an
exact class solutions can be obtained dot + 2. By intro-

sent the general solution of the field equations for a Biamh&ucing a new time variable:=3y2w/V,t, and choosind,

type | space-time in thBl=2, D=5 SUGRA in the follow-
ing exact parametric form:

Vo (1+sin§)'3d

= — 23
t=to+ — AsnD) (23
i B
Vzvom, (29
(1-sing)”
o _ (1=sing)7 12
H_Z_\/o(a_'—smg)(l—{-TW, (25)
1+ sin )3+ Kil2wd
a;= (1+sing) ’ i=1,2,3, (26)

io (1_ Siné«) YI3+Kil2o ¢y’

where we have denote@l=2C/3w, B=3(a—1), y=3(a

+1) and thea;, are arbitrary constants of integration while
Vo=II;a;. The observationally important physical quanti-

ties are given by

K2
(a+sing) 2,

v =

=T V,/3\2w, the exact solution ilN=2,D=5 SUGRA for
the Bianchi type | space-time is given by

afé, T
7==*|cos 3(5_2)_1 , (32
Vzﬁ(lir)[(lif)m—l]m (33
22 ’
409 4 203
H:\/Ew 3(1*=7) 1 | 34
Vo (1x7)[(1x7)%3-1]
a =a—i\/§O(li 7)1’3[(1t 7_)2/3_ 1]1/6tKil2w¢0,
(35
A_§ 1+ 4/3i 1+ 2/3_1 2 36
=g(1x1™3(1=7) : (36)
8w? 3 _
o?=—(1x7) 1=z n?P-1]7? (37

3v3
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no a priori limitations in choosing the admissible range of
values, thus both positive and negative values are permitted
since the variable;= [dt/V can also be negative. But from
a physical point of view it is natural to impose the condition
such that the gravitational couplirfyis always positive dur-
ing the evolution of the Bianchi type | space-time M
=2, D=5 SUGRA. Consequently, we shall considée
(— m/2,7w/2). With this choice, the universe far<—1 starts
its evolution in the infinite pastt(~ — ) and ends at a finite
momentt=t,. For«>1 the universe starts &ty and ends
0 50 100 150 200 250 300 350 in an infinite future witht—oc. (All discussion here and
t hereafter are with respect to positiue)

FIG. 1. Behavior of the volume scale factor of the Bianchi type =~ AS can be easily seen from E@®2), if a<—1 we have
| space-time for different values af>1 (Vo=1 andw=1): « V<0 for allt. For these values of the parameters the Bianchi
=3/2 (solid curvg, a=2 (dotted curvg and a=5/2 (dashed type | anisotropic universe collapses from an initial state

3000

2000

Vv(t)

1000

curve. characterized by infinite values of the volume scale factor
and of the scale factors , i=1,2,3, to a singular state with
(1= 7241+ 7)?8-5] all factors vanishing. But itx>1, the universe expands and

211- B[4 (1+7)2B—172 (38) V>0 for all t. The expanding Bianchi type | universe starts

its evolution at the initial moment,, from a singular state
The isotropic limit can be achieved by takiag= +1 and, ~ With zero values of the scale factoeg(to) =0, i=1,2,3.
consequentlyK;=0, i=1,2,3. It is worth noting that our Anothe_r ppssmle way to investigate the S|_ngular|ty behav-
solutions reduce to two different types of homogeneoudOr at the initial moment is to consider the sign of the quan-

space-times whep=*1. tity R, u“u”, whereu” is the vector tangent to the geode-
For a=1, we obtain(by denotinga,=a,=as;=a) sics; u#=(—1,0,0,0) for the present model. From the
gravitational field equations we easily obtain
Vo | sing , 5
t=tg+ —— +In(tanf+sed) |, (39 R, U u"=3H(q—A). (43
2\/§w cos 6
By using Egs(27), (29), and(30) we can express E§43) as
aO -3 .
a=—-—=Ccos °0, (40 sing
My V— 2
22 R, u“u”=6H Ry (44)

where 0:={/2+ w/4. Equations(39) and (40), describing a ) ) ] )

homogeneous flat isotropic space-time interacting with twd=0r §— — 7/2 the sign ofR , ,u*u” is determined by the sign

scalar fields(Kaluza-Klein and supersymmetyjchave been ©f 1—a. Therefore we obtain

previously obtained by Balbinot, Fabris, and Kerfikt] (for ,

an extra choice of the parameieg= 7/2), who extensively Ry,U*u”<0 for a>1. (45)

studied their physical properties. This isotropic solution also‘_|

provides a positive gravitational coupling at the present time
In the isotropic limit corresponding ta=—1, one can

obtain another class of isotropic homogeneous flat spac

times represented in the following parametric form by

ence, the energy condition of Hawking-Penrose singularity
theoremg 16] is not satisfied for the solutions corresponding
to Bianchi type | Universes in the four-dimensional reduced
§wo scalar fields theory oN=2, D=5 SUGRA with «
>1. Nevertheless, for those solutions an initial singular state
is unavoidableat the initial moment,.

t=ty— L C_O—Sﬁ—ln(CS(ﬁ—COtH) , (41) Since fora>1 the Bianchi type | Universe starts its evo-
2\/§w Sha’ lution at the initial moment=ty ({— — m/2) from a singu-
lar state, therefore, the presence of a variable gravitational
a ., coupling¢ and of a supersymmetric fieldd in an anisotropic
a= ﬁs'” 0. (42 geometrycannotremove the initial singularity that mars the

big-bang cosmology. At the initial moment the degree of the
This type of flat space-time has not been previously consid@nisotropy of the space-time is maximal, with the initial

ered. value of the anisotropy paramet&(ty)=2(a+1)/(a—1).
Fort>t, the Universe expands and the anisotropy parameter
decreases.

IV. DISCUSSIONS AND FINAL REMARKS . .
The behavior of the volume scale factor, of the anisotropy

In order to study the physical properties of the Bianchiparameter and of the deceleration parameter is presented for
type | universe described by the Eq24)—(26) we need to  different values ofx in Figs. 1-3. The evolution of the Uni-
fix first the range of variation of the parametérThere are  verse is noninflationary, witly>0 for all t>t,. Noninfla-

104017-4



BIANCHI TYPE | COSMOLOGY INN=2, D=5 SUPERGRAVITY PHYSICAL REVIEW D 61 104017

a(t)
d(L) ¥(t)

0 0.2 0.4 0.6 0.8 1 1.2
t

FIG. 2. Time dependence of the parameder(3d2w2/4K2)A FIG. 4. Time evolution of the_grgvitational coupling (solid
for different values Cf)fx: a=3/2(solid CFI),II'VQ, a=2((d(€)(ited cur\)/az curvg and of the supersymmetric fielgh (dashed curjefor a
and @=5/2 (dashed curve =512 (bo=1, $0=0).

term gives some particular features to this cosmological

tionary behavior is a generic feature of most of the supermodel, by preventing the Universe from inflating and attain-
symmetric models. This is due to the general fact that theng completely isotropy. But globally there is a decrease in
effective potential for the inflation field- in SUGRA typi-  the degree of anisotropy of the geometry. Hence this model
cally is too curved, growing as expf?/m), with ¢ a param-  can be used to describe only a specific, well-determined pe-
eter [typically O(1)] and m the stringy Planck masfl7]. riod of the evolution of our Universe.
The typical values of make inflation impossible because the
inflation mass becomes of the order of the Hubble constant. ACKNOWLEDGMENTS
See also Ref.17] for a simple realization of hybrid inflation One of the authoré&C.M.C) would like to thank Professor
in SUGRA. In the present model the presence of the super; \. Nester for profitable discussions. The work of C.M.C.
symmetric fieldys prevents the Bianchi type | Universe from g5 supported in part by the National Science Couiail-

inflating. wan) under Grant No. NSC 89-2112-M-008-016. We are
In the far future, for{— =/2 andt—= (a>1), we have also grateful to Professor Pimentel for calling our attention to
V—oo, g—», i=1,2,3.Inthis limit the anisotropy param- the resultd18—-2Q about several types of Bianchi cosmolo-

eter becomes a non-zero constant and the Universe ends irgis in the framework oN=2, D=5 supergravity.
still anisotropic phase, but with a decrease in the value of the

anisotropy parametef, as compared with the initial one. APPENDIX A: SOME EXACT FORMS FOR PHYSICAL
Therefore during its evolution the Bianchi type | Universe TIME

cannot experience a transition from the anisotropic phase to
the isotropic flat geometry. The time evolution of the gravi-
tational coupling¢ and of the supersymmetric field is

For a large class of values of the parameiehe general
solution of the gravitational field equations can be expressed
— o o in a closed explicit form: The variation of the physical time
represented in Fig. 4. The field is positive for all values of t is determined by the integral equatié2d). After a trick

time. ; . ; ; el .
. . ._manipulation, one can rewrite this equation in the followin
In the present paper we have investigated the evolutlorﬁorm.p a g

and dynamics of a Bianchi type | space-time in a SUGRA

toy model, obtained by dimensional reduction of tNe Vo , ,

=2, D=5 SUGRA. The inclusion of the supersymmetric t=to+ \/—TJ sin” ~39cos ” 6d6, (A1)
w

where 0:=(/2+ w/4 andy’ :=2y=(3/2)(a+1). In general,

for arbitrary ', this integral cannot be closed. Fortunately,

for integer values ofy’, the physical time can be expressed

in an explicit form as a function of. Some of these exact

forms of the time function are listed in the followingThe

outcomes fore+ 1 are given in Eqs(39) and(41).]
Fora<—1.() a=-3%, (y/=-1),

Vo 1

t=1p— 3
Yo 02 04 0.6 0.8 1 1.2 3\2 sire
t (i) a=—13, (¥'=-2),
FIG. 3. Evolution of the deceleration paramegensf the Bianchi
type | space-time for different values af «=3/2 (solid curve, t=to— Vo | cosf(cosf+1)
a=2 (dotted curvi anda=5/2 (dashed curve 8\2w sin6

+In(csa¥—coth) |,
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(iii) a=-=3, (y'=-3),

0 15\/5(»

Fora>1. (i) a=3, (y'=4),

sir e

5co§—2)

1

0
t=to+ —0 ———,
°" 320 cosh

PHYSICAL REVIEW D 61 104017

(i) a=3, (v'=5),

Vo | siné(sirfd+1)
t=ty+ —In(tan6+sed) |,
8\2w co¢o
(i) a=3, (y'=6),
Vo [5sirfg—2
t=t0+ .
15\2w\ co$
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