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We study the control of the supercurrent in a mesoscopic four-terminal superconductor–normal-metal–
superconductor~SNS! junction, in which theN region is a quantum dot connected via tunneling barriers to two
superconducting electrodes and two normal electrodes, respectively. By using the nonequilibrium Green’s
function method, the current flowing into the quantum dot from each electrode is derived. We find that the
supercurrent between two superconducting electrodes can be suppressed and even reversed by changing the dc
voltage applied across the two normal terminals, similar to recent experiments of diffusive SNS junctions and
previous theories for both the ballistic and diffusive SNS junctions. Then we investigate a three-terminal SNS
junction, reduced from the four-terminal junction by decoupling the dot from one normal terminal. We find that
even at zero bias of the normal terminal, the supercurrent still can be controlled by changing the coupling
strength between the dot and the normal terminal. In addition, both the Andreev reflection current and Andreev
quasibound states depend on the phase difference of two superconductors and the coupling strength between
the dot and superconducting electrodes. Finally, the behavior of the supercurrent is discussed in the limit when
the normal terminals are decoupled from the system.
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I. INTRODUCTION

One of the most intriguing experimental results on me
scopic superconductivity has been controlling the super
rent through a superconductor–normal-metal–superc
ductor ~SNS! Josephson junction by an external voltage a
plied across the normal metal of the structure, not only
cause of fundamental interest, but also of potential appl
tions for future nanoelectronics.1

The earliest work on this subject was limited on theor
ical studies, either for ballistic SNS junction,2–4 or for diffu-
sive SNS junction.5–7 In ballistic SNS junction, since the
elastic mean free path of quasiparticles in normal regionN
region! is longer than the length of it, Andreev bound sta
can be formed,8 which have such feature that each success
Andreev bound state carries a supercurrent in opposite d
tion at a given phase differencef between the two super
conductors. Therefore, the net supercurrent between two
perconductors depends not only on the phase differencef,
but also on the occupation of the Andreev quasibound sta
Authors in Refs. 2–4 predicted theoretically that the sup
current may be modulated by changing the distribution
quasiparticles in theN region. For diffusive SNS junction
the concept of Andreev bound states is not appropriate s
the electron trajectories are not well defined. Instead,
so-called supercurrent-carrying density of states, an analo
of Andreev bound state, has the positive and the nega
parts at a given phase difference and plays the similar ro1

Theories5–7 predicted that the magnitude and direction of t
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total supercurrent depend on the occupied fraction of th
states, similar to the occupation of the discrete Andre
bound states in the ballistic SNS junctions.

The first experiment manifesting the control of the sup
current was performed by Morpurgoet al.9 for a diffusive
SNS junction. They demonstrated that the supercurrent
tween two superconducting electrodes can be modulated
changing the dc voltage across theN region of the structure.
In order to explain their experimental results, they propos
a theoretical model based on a quasiequilibrium distribut
with locally enhanced effective electron temperature. T
observation of a monotonic decrease of the supercurren
their experiment is consistent with their model.

Lately, Wilhelm et al.10 studied theoretically a mesos
copic diffusive SNS junction. Different from the situation o
the experiment by Morpurgoet al., they assumed that th
inelastic scattering in theN region can be neglected. By us
ing the quasiclassical Keldysh Green’s function approa
they showed that the distribution of quasiparticles in the m
soscopicN region can be driven to a nonequilibrium two
step function form by a dc voltage across theN region, as
observed in the experiment by Pothieret al.11 They attrib-
uted the suppression of the supercurrent to the nonequ
rium quasiparticle distribution in theN region, and predicted
the possibility of a transition to ap junction.

Very recently, Baselmanset al.1 successfully demon-
strated the suppression of the supercurrent in a controll
Josephson junction. The setup used in their experiment
mesoscopic diffusive SNS junction in which the norm
648 ©2000 The American Physical Society
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metal is a gold wire connected to two normal reservoirs. T
controlling dc voltage across the gold wire induces
position-dependent nonequilibrium quasiparticle distribut
in theN region, resulting in a modulation of the supercurre
The experiment also manifested a reversal of the directio
the supercurrent under a certain value of the dc voltage,
a transition to thep junction.

In this work we consider a mesoscopic four-terminal S
junction ~see Fig. 1! in which theN region is a quantum dot
connected via tunneling barriers to two superconduct
electrodes (S1 andS3) and two normal electrodes (N2 and
N4), respectively. The motivation of this work is to check
it is still possible to have the control of the supercurrent
this mesoscopic four-terminal SNS junction. Different fro
both the ballistic and diffusive SNS junctions studied befo
the transport through a quantum dot with discrete ene
levels is typically in resonant tunneling regime, and the s
pression of the supercurrent for such a SNS junction has
been studied yet. By using the nonequilibrium Green’s fu
tion ~NGF! method, we investigate in detail different type
of the current, including the supercurrent and normal curr
flowing into the central region~the quantum dot! from the
superconducting and the normal terminals. Based on the
rent formula we obtained, we first study numerically t
four-terminal SNS junction, with the superconducting ele
trodes at zero voltage@i.e., V15V350, whereVn (n51, 2,
3, and 4! is the dc voltage of thenth terminal#, and the
normal electrodes at equal and opposite voltages (V25
2V4[V/2, whereV is the dc bias voltage!. We find the
following. ~1! The suppression of the magnitude of the s
percurrent still exists by tuning the dc bias voltageV across
the N region. In addition, when the dc biasV exceeds a
critical valueVc , the supercurrent will reverse its directio
i.e., a transition to ap junction will occur, due to the chang
of electron distribution in the quantum dot.~2! The current
from the normal terminalN2, I N2, is the normal current
which can be separated into two parts forV/2,D (D is the
superconducting energy gap!, I A

N2 and I c
N2 : I A

N2 originates
from the Andreev reflection and approximately has
current-phase relation asI A

N2(f)5I A
N2(0)(11cosf)/2,

FIG. 1. A Schematic diagram for the four-terminal SNS jun
tion: the N region is a quantum dot~with a single energy level!,
connected to two superconducting terminalsS1 and S3 and two
normal terminalsN2 andN4, respectively.
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wheref is the phase difference of two superconducting t
minal; I c

N2 results from the conventional electron tunnelin
and is approximatelyI c

N2(f)5I c
N2(0)(11a cosf)/(11a)

(21,a,0). These two parts of the normal current ha
different forms of the phase dependence, leading to a c
plicated current-phase relation. Second, we study the th
terminal case simply by decoupling the SNS junction fro
the normal terminalN4. When voltages of all three termina
are set to be zero (V15V25V350), only the supercurren
may still flow between two superconducting leads if t
phase difference is nonzero. We find that the supercur
can still be controlled by changing the coupling strength
tween the dot and the normal leadN2, G2, even if no cur-
rent flows fromN2 into the dot and the distribution of elec
trons in the dot remains unchanged. WhileV2Þ0, both the
supercurrent and normal current depend on the coup
strengthG2 and on the phase differencef; and the Andreev
quasibound states play a crucial role. Finally, in the limit
G2→0, we find that the supercurrent still depends on
voltage of the normal terminalN2, V2, as obtained before
by Weeset al. by using Bogoliubov–de Gennes equatio
and the scattering matrix method.2

The rest of this paper is organized as follows. In Sec
we present the model and derive the current formulaI S1

~flowing into the dot fromS1) andI N2 ~flowing into the dot
from N2) by using the NGF technique. In Sec. III we prese
the numerical studies for the four-terminal case, includ
the suppression and reversal of the supercurrent by tu
the dc bias voltage between two normal terminalsN2 and
N4; and the behavior of the normal current. The thre
terminal case is investigated in Sec. IV, including the dep
dence of the supercurrent, the Andreev reflection current,
the Andreev quasibound states on the phase differencef and
the coupling strengthG2. In Sec. V the behavior of the cur
rents in the limit ofG2→0 is discussed. Finally, a brief sum
mary is given in Sec. VI.

II. MODEL AND FORMULATION

We assume that the system under consideration~see Fig.
1! is described by the following Hamiltonian:12–15

H5 (
n51,2,3,4

H lead-n1Hdot1HT , ~1!

with

H lead-n5(
ks

enkan,ks
† an,ks1(

k
@Dnan,k↓an,2k↑

1Dn* an,2k↑
† an,k↓

† #,

Hdot5(
s

e0cs
†cs ,

HT5 (
n,k,s

@vnkan,ks
† cs1vnk* cs

†an,ks#, ~2!

where H lead-n describes electrons in thenth lead,
an,ks

† (an,ks) are the creation~annihilation! operators of the
electron,Dn5uDnueifn is the complex superconducting ord



r-

o
ot
ed

on

to

,

th

l

t’s
-

d

r-

su-

650 PRB 62QING-FENG SUN, JIAN WANG, AND TSUNG-HAN LIN
parameter of thenth lead, with uDnu the superconducting
energy gap, andfn the superconducting phase.16 Since we
have assumed that terminalsN2 andN4 are normal leads, so
D25D450. In this work we will set voltages of the supe
conducting terminals to be zero, i.e.,V15V350 whereVn is
the voltage of thenth terminal. HereHdot is the Hamiltonian
of the centralN region, which we assume is a quantum d
with a single energy level. For simplicity, the intrad
electron-electron Coulomb interaction is not consider
namely, we only consider a big dot.HT denotes the tunneling
part of the Hamiltonian, withvnk being the hopping matrix
element.

To facilitate the calculation, we perform a transformati
of the Hamiltonian using the unitary operatorU
5exp@(n,k,s(ifn/2\)an,ks

† an,ks#.17 Then,H lead-n and HT be-
come

H lead-n5(
k,s

enkan,ks
† an,ks1(

k
@ uDnuan,k↓an,2k↑

1uDnuan,2k↑
† an,k↓

† #, ~3!

HT5 (
n,k,s

$vnke
ifn/2\an,ks

† cs1H.c.#, ~4!

and Hdot is unchanged. Hereafter, we will assumeuD1u
5uD3u[D for simplicity.

The current flowing into the dot from thenth terminal can
be calculated from the evolution of the total number opera
of the electrons in the dotNn5(k,san,ks

† an,ks ~in units of
\51):18,19

I S(N)n~ t !52e^Ṅn~ t !&5 ie^@Nn ,H#&

54eRe(
k

vnke
ifn/2Gnk;11

, ~ t,t !, ~5!

whereI Sn is for n51 or 3, andI Nn for n52 or 4;Gnk
, (t,t) is

the matrix Green function in 232 Nambu representation
defined by12,20

Gnk
, ~ t,t8![ i S ^an,k↑

† ~ t8!c↑~ t !& ^an,k↓~ t8!c↑~ t !&

^an,k↑
† ~ t8!c↓

†~ t !& ^an,k↓~ t8!c↓
†~ t !&

D . ~6!

Notice that we only need to derive the expressions of
current I S1 and I N2; while the currentI S3 and I N4 can be
easily obtained fromI S1 andI N2 by exchanging the termina
index 1 and 3, 2, and 4, respectively.

The currentI S1 can be expressed in terms of the do
Green functionsGr and G,, defined in Nambu representa
tion by14,21

Gr~ t,t8![2 iu~ t2t8!

3S ^$c↑~ t !,c↑
†~ t8!%& ^$c↑~ t !,c↓~ t8!%&

^$c↓
†~ t !,c↑

†~ t8!%& ^$c↓
†~ t !,c↓~ t8!%&

D , ~7!

G,~ t,t8![ i S ^c↑
†~ t8!c↑~ t !& ^c↓~ t8!c↑~ t !&

^c↑
†~ t8!c↓

†~ t !& ^c↓~ t8!c↓
†~ t !&

D . ~8!

Following the same procedure as in Ref. 19~see Appendixes
A and B there!, one has
t

,

r

e

Gnk
, ~ t,t !5E dt1@Gr~ t,t1!vnk* gnk,nk

, ~ t1 ,t !

1G,~ t,t1!vnk* gnk,nk
a ~ t1 ,t !#, ~9!

wherevnk is a 232 matrix of the hopping elements define
by

vnk5S vnke
ifn/2 0

0 2vnk* e2 ifn/2D , ~10!

and gnk,nk
,,a (t1 ,t) are the exact Green functions of thenth

terminal without the coupling to the dot. Assuming the no
mal density of statesr1

N(e) is independent ofe, one
has12,14,21

(
k

g1k,1k
, ~ t1 ,t !

5 i E der1
Nf 1~e!r̃~e!e2 i e(t12t)S 1 D/e

D/e 1 D , ~11!

(
k

g1k,1k
a ~ t1 ,t !

5 iu~ t2t1!E der1
Nb* ~e!e2 i e(t12t)S 1 D/e

D/e 1 D , ~12!

whereb* (e) is the complex conjugate ofb(e), with b(e)
5e/ iAD22e2 for D.ueu and b(e)5ueu/Ae22D2 for D

,ueu. r̃(e)5Re@b(e)#5u(ueu2D)ueu/Ae22D2 is the di-
mensionless BCS density of states, i.e., the ratio of the
perconducting density of statesrS(e) to the normal density
of statesrN(e). Function f 1(e) in Eq. ~10! is the Fermi
distribution of the electrons:f 1(e)5@exp(e/kBT)11#21, in
which T is the temperature.

Substituting the Green functionsg1k,1k
,,a and hopping ma-

trix v1k into Eq. ~9!, we obtain

G1k;11
, ~ t,t !5E dt1$G11

r ~ t,t1!v1k;11* g1k,1k;11
, ~ t1 ,t !

1G12
r ~ t,t1!v1k;22* g1k,1k;21

, ~ t1 ,t !

1G11
, ~ t,t1!v1k;11* g1k,1k;11

a ~ t1 ,t !

1G12
, ~ t,t1!v1k;22* g1k,1k;21

a ~ t1 ,t !%, ~13!

in which Gi j
r ,, ( i , j 51,2) are the matrix elements ofGr ,,.

SubstitutingG1k;11
, (t,t) into Eq.~5!, assumingvnk is real and

independent of indexk,22 the currentI S1 can be expressed in
terms of the dot’s Green functions as

I S1524eImE de

2p
G1~e!

3H F f 1~e!r̃~e!G11
r ~e!1

1

2
b* ~e!G11

, ~e!G
2

D

e
eif1F f 1~e!r̃~e!G12

r ~e!1
1

2
b* ~e!G12

, ~e!G J ,

~14!
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whereGn (n51, 2, 3, and 4! is the linewidth function de-
fined byGn(e)[2pvn

2rn
N(e), which represents the couplin

strength between the dot andnth lead;Gi j
r ,,(e) are the Fou-

rier transformation ofGi j
r ,,(t,t1). For the situation ofV1

5V350, Gi j
r ,,(t,t1) depends only on the time differenc

(t2t1), which has been used in derivation of Eq.~14!. No-
tice that the anomalous Green functionG12

r andG12
, emerge

in the current formula Eq.~14!, indicating the presence of th
superconducting leads and leading to the Josephson s
current. It should be mentioned that Eq.~14! can also be
obtained directly from a general formula obtained recen
by Sun et al. for a mesoscopic hybrid multi-termina
system.17 That general formula can be used to describe
case with arbitrarily finite voltage at each terminal, any ty
of interactions in the central region, and any portion of t
system subjected to external microwave fields.

The current flowing into the dot from normal terminalN2
can be easily expressed as18,19

I N2524e ImE de

2p
G2~e!H f 2~e!G11

r ~e!1
1

2
G11

, ~e!J ,

~15!

wheref 2(e) is the Fermi distribution function of electrons i
normal terminal N2, f 2(e)5$exp@(e2eV2)/kBT#11%21.
Notice that the expression ofI N2, Eq. ~15!, holds for any
value ofV2, but the expression ofI S1, Eq. ~14!, is valid only
for V15V350.

Now we need to solve for the Green functionsGr(e) and
G,(e) of the dot. First,Gr(e) can be solved from Dyson’s
equation

Gr5gr1GrSrgr , ~16!

in which we have dropped the argumente. Sr(e) is the
self-energy andgr(e) is the dot’s Green function without th
coupling between the dot and four leads. By taking the wi
bandwidth approximation, the linewidthGn(e) becomes in-
dependent of the energye.21 Notice thatGn52pvn

2rn
N(e),

wherern
N(e) is the density of states of thenth terminal lead

in normal state, so here the wide-bandwidth approximatio
generally reasonable as in the case of the normal syste23

Under the wide-bandwidth approximation, the self-ene
Sr(e) can be written as~see Ref. 21!

Sr~e!5 (
n51,2,3,4

Sn
r ~e!. ~17!

For the superconducting terminaln51 or 3, Sn
r (e) has the

form

Sn
r ~e!5(

k
vngnk,nk

r ~e!vn* 52
iGn

2
b~e!

3S 1 2
D

e
e2 ifn

2
D

e
eifn 1

D , ~18!

while for the normal terminaln52 or 4, Sn
r (e) is
er-

y

e
e
e

-

is
.
y

Sn
r ~e!5(

k
vngnk,nk

r ~e!vn* 52
iGn

2 S 1 0

0 1D . ~19!

The Green functiongr(e) can be easily obtained as

gr~e!5S ~e2e01 i01!21 0

0 ~e1e01 i01!21D . ~20!

With the help of Sr(e) and gr(e), Gr(e) can be solved
exactly from Dyson’s equation Eq.~16!, as

Gr~e!5AS ~g22
r 212S22

r ! S12
r

S21
r ~g11

r 212S11
r !

D , ~21!

whereA(e) is a compact notation defined by

A5@~g11
r 212S11

r !~g22
r 212S22

r !2S12
r S21

r #21, ~22!

in which gi j
r or S i j

r ( i , j 51,2) is the matrix element of the
232 matrix gr or Sr .

Second, we solve the lesser Green functionG11
, (e) and

G12
, (e). From Keldysh equation,G,5GrS,Ga, one has

G11
, 5G11

r S11
, G11

a 1G11
r S12

, G21
a 1G12

r S21
, G11

a 1G12
r S22

, G21
a ,
~23!

G12
, 5G11

r S11
, G12

a 1G11
r S12

, G22
a 1G12

r S21
, G12

a 1G12
r S22

, G22
a ,
~24!

whereGa(e)5@Gr(e)#* andS,(e) is the lesser self-energy
Under the wide-bandwidth approximation,S,(e) has the
following form:21

S,~e!5 (
n51,2,3,4

Sn
,~e!. ~25!

For the superconducting terminal (n51 or 3, with V15V3
50)

Sn
,~e!5 iGnf n~e!r̃~e!S 1 2

D

e
e2 ifn

2
D

e
eifn 1

D ,

~26!

while for the normal terminal (n52 or 4!

Sn
,~e!5 iGnS f n~e! 0

0 f̃ n~e!
D , ~27!

where f̃ n(e) is the Fermi distribution function of holes in th
nth terminal: f̃ n(e)512 f n(2e). Substituting the self-
energyS,(e), Eqs. ~25!–~27!, into Keldysh equation, the
Green functionsG11

, (e) andG12
, (e) are obtained as

G11
, 5 i uG11

r u2@G1r̃ f 11G3r̃ f 31G2f 21G4f 4#

2 iG11
r G12

r*
D

e
@G1r̃ f 1e2 if11G3r̃ f 3e2 if3#
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652 PRB 62QING-FENG SUN, JIAN WANG, AND TSUNG-HAN LIN
2 iG11
r* G12

r D

e
@G1r̃ f 1eif11G3r̃ f 3eif3#

1 i uG12
r u2@G1r̃ f 11G3r̃ f 31G2 f̃ 21G4 f̃ 4#, ~28!

G12
, 5 iG11

r G21
r* @G1r̃ f 11G3r̃ f 31G2f 21G4f 4#

2 iG11
r G22

r*
D

e
@G1r̃ f 1e2 if11G3r̃ f 3e2 if3#

2 iG12
r G21

r*
D

e
@G1r̃ f 1eif11G3r̃ f 3eif3#

1 iG12
r G22

r* @G1r̃ f 11G3r̃ f 31G2 f̃ 21G4 f̃ 4#. ~29!

Finally, substituting the Green functionsGr(e), Eq. ~21!,
andG,(e), Eqs.~28! and~29!, into Eqs.~14! and~15!, some
manipulations~shown explicitly in the Appendix! lead to the
current formula ofI S1 and I N2:24

I S15I c
S11I A

S11I S
S11I 1

S11I 2
S11I 3

S1 , ~30!

where

I c
S152eE de

2p
G1r̃uG11

r u2@G2~ f 12 f 2!1G4~ f 12 f 4!#,

I A
S1522eE de

2p
G1uG12

r u2

3
r̃G3~G12G3!~12cosf!1~G21G4!~G11G3 cosf!

G1
21G3

212G1G3 cosf

3@G2~ f 22 f̃ 2!1G4~ f 42 f̃ 4!#,

I S
S152eE de

2p
G1G3uAu2

D2

D22e2
sinf Im

3@S11
, ~g22

r 212S22
r !1S22

, ~g11
r 212S11

r !#,

I 1
S152eE de

2p
G1r̃uG12

r u2@G2~ f 12 f 2!1G4~ f 12 f 4!#,

I 2
S1522eE de

2p
G1r̃

2D

e
Re@G11

r G12
r* e2 if1#

3@G2~ f 12 f 2!1G4~ f 12 f 4!#,

I 3
S152eS E

1D

1`

1E
2`

2D D de

2p
uAu2

eD2

e22D2
G1G3 sinf

3@G2~ f 22 f̃ 2!1G4~ f 42 f̃ 4!#, ~31!

in which f[f12f3 is the phase difference of the two s
perconducting electrodes, and

I N25I c
N21I A

N21I 1
N21I 2

N2 , ~32!

where
I c
N252eE de

2p
G2uG11

r u2@G1r̃~ f 22 f 1!

1G3r̃~ f 22 f 3!1G4~ f 22 f 4!#,

I A
N252eE de

2p
G2uG12

r u2@G2~ f 22 f̃ 2!1G4~ f 22 f̃ 4!#,

I 1
N252eE de

2p
G2uG12

r u2@G1r̃~ f 22 f 1!1G3r̃~ f 22 f 3!#,

I 2
N2522eE de

2p
G2r̃

2D

e
Re$G11

r G12
r* e2 if1G1~ f 22 f 1!

1G11
r G12

r* e2 if3G3~ f 22 f 3!%. ~33!

The current formulas, Eqs.~30!–~33!, are the central results
of this work. As a quick check, one can assumeG35G4
50, which means that the system decouples from the le
S3 andN4, and reduces to the system with a quantum
connected to a normal and a superconducting lead, the s
system as in Ref. 14, then the current formulasI S1 and I N2,
Eqs.~30!–~33!, reduces exactly to the Eqs.~28! and ~29! in
Ref. 14.

It is important to notice that the electron occupation nu
ber in the quantum dot at the energye is given by ne(e)
52 ImG11

, (e);25,26 and the hole occupation number
nh(e)52 ImG22

, (e). The spectrum functionrdot(e) ~i.e., the
density of states of quasiparticles in the quantum dot! can be
expressed by

rdot~e!5ne~e!1nh~2e!52@ uG11
r u2

1uG12
r u2#~G1r̃1G3r̃1G21G4!

24 ReFG11
r G12

r*
D

e
r̃~G1e2 if11G3e2 if3!G ,

~34!

which is independent of the distribution function of the te
minals. Then the normalized distribution function of ele
trons in the dot is given byn(e)5ne(e)/rdot(e); similarly
the distribution function of holes isñ(e)5nh(e)/rdot(2e)
512n(2e).

Notice that in Eqs.~30!–~33!, the currents originating
from different types of electron tunneling processes ha
been separated clearly. For example, let us first look atI N2,
which contains four parts:12,14 I c

N2 comes from the conven
tional electron tunneling process fromN2 to N4, S1 and
S3. I A

N2 originates from the Andreev reflection, in which a
electron incoming fromN2 is reflected as a hole going bac
into N2 or N4, meanwhile an extra Cooper pair is created
the superconducting lead, either inS1 or in S3. I 1

N2 also
comes from the Andreev reflection, but the reflected h
exits to the superconducting leadsS1 andS3 @notice that due
to V15V350, so f 1(e)5 f̃ 1(e) and f 3(e)5 f̃ 3(e)#. I 2

N2

originates from the tunneling processes in which an elect
incident fromN2 tunnels either intoS1 or S3, picks up a
quasiparticle in the superconductor and creates a Co
pair.21 Second, I S1 contains six parts, in which
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I c
S1 , I A

S1 , I 1
S1 , andI 2

S1 originate from the similar processe
as the corresponding parts inI N2. In addition, I S

S1 is the
supercurrent between two superconducting terminals;
I 3

S1 is from the Andreev reflection, in which a quasielectr
~or a quasihole! incoming fromS1 will be reflected as a hole
~or an electron! going back toN2 or N4. It is worth empha-
sizing that not only the summation of four terminal curren
is zero ~i.e., I S11I N21I S31I N450, or the total current
conservation27!, the summation over terminal index for eac
type of current is zero as well.

If one assumes that all terminal voltages are zero, t
except for I S

S1 , all types of current ~including
I c

S1 , I A
S1 , I 1

S1 , I 2
S1 , I 3

S1, I c
N1 , I A

N1 , I 1
N1 , and I 2

N1) van-
ish. The supercurrentI S

S1 is given by

I S
S1522eE de

2p
f 1~e!G1G3 sinf

D2

D22e2
Im A* . ~35!

In the following three sections we shall apply our curre
formulas, Eqs.~30!–~33!, to investigate the control of the
supercurrent and related properties for the four-terminal S
junction ~Sec. III!, and the three-terminal SNS junctio
~Secs. VI and V!. In these numerical studies, we take ze
temperature (T50) and fix the intradot levele050. In fact,
if TÞ0 but still with kBT!D, the current will not be affected
qualitatively: only the supercurrent slightly decreases, wh
other types of currents have almost no change. The cond
of kBT!D is easily realized experimentally, because in ty
cal mesoscopic experimentsT&1 K;1 and the transition
temperature of the niobium, which is often used in the
periment, is 9.3 K. Even ife0 slightly deviates zero~but
within (nGn), the current still has no qualitative chang
However whene0 deviates zero more than several(nGn ,
then all types of currents~except for I c

N2) will strikingly
reduce. Therefore, in order to observe these properties
perimentally, one can either choose a larger value of(nGn ,
or to keep the intradot levele0 at zero by applying a gate
voltage.

III. THE FOUR-TERMINAL CASE

For the four-terminal SNS junction, we assume thatG1
5G3 and G25G4 ~the symmetric coupling strengths!, and
V252V45V/2 ~the bias voltageV52V2), same as in Refs
1 and 9. Then the supercurrent in the superconducting te
nals dominates. The remaining parts ofI S1 ~including
I c

S1 , I A
S1 , I 1

S1 , andI 3
S1) vanish, due to the fact that the cu

rent from electrons incoming fromN2 cancels completely
with the current from the holes incoming fromN4; however,
I 2

S1 may be either zero ifuV2u,D, or nonzero but much
smaller than the supercurrentI S

S1 if uV2u.D. Meanwhile, all
types of current in the normal terminals can be nonzero
the following, we investigate the supercurrent and norm
current, respectively.

Figure 2 presentsI S
S1 vs V2 at different coupling strength

G2 and phase differencesf. One can see~1! at V250, the
supercurrentI S

S1 reaches its maximum. With the increase
V2, the supercurrentI S

S1 reduces drastically.~2! While V2

exceeds a certain critical valueV2c , ~e.g., for G25G4

50.2D, V2c;0.36D), I S
S1 becomes negative, namely, th
d

n

t

S

e
on
-

-

x-

i-

n
l

f

SNS junction transits to ap junction. The critical valueV2c
is dependent onG2 @Fig. 2~a!#, but almost independent off
@Fig. 2~b!#. Figure 3 showsI S

S1 vs f at differentV2. When
V2,V2c , the SNS junction exhibits the convention
current-phase relationI S

S1;(I S
S1)c sinf. While V2.V2c , a

transition to thep junction occurs with the current-phas
relation I S

S1;(I S
S1)c sin(f1p). At V25V2c , I S

S1 vanishes
for any phase differencef. ~3! When V25D, the negative
supercurrent reaches its largest magnitude; then with the
ther increase ofV2, the absolute value of the negative supe
current decreases slowly, but does not vanish. All these
sults are consistent with the experiment by Baselmanset al.,1

FIG. 2. ~a! The supercurrentI S
S1 vs V2 at differentG25G4, for a

fixed phase differencef5p/2, and other parameters areG15G3

50.2D, e050 (e050 for all figures!. The inset showsj (e) vs e
for the parametersG15G25G35G450.2D and f5p/2. ~b! The
supercurrent I S

S1 vs V2 at different f, for G15G25G35G4

50.2D. The inset showsI S
S1 vs G2 /G1 at V252D andf5p/2.

FIG. 3. I S
S1 vs f at differentV2, for G15G25G35G450.2D.
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FIG. 4. ~a! I A
N2 and I c

N2 vs f at differentV2.
The curves with zero value atf5p represent
I A

N2 . ~b! The total currentI N2 vs f at different
V2. Other parameters are:G15G25G35G4

50.2D.
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indicating that the SNS junction, in which theN region is a
quantum dot, still has similar behavior in controlling the s
percurrent as in the diffusive SNS junction.

In order to explain the properties of the supercurrent
the SNS junction, we rewrite the supercurrent in the form

I S
S15eE de

2p
j ~e!FG1

G2
r̃~ f 11 f 3!1 f 21 f̃ 2G , ~36!

where

j ~e!52G1
2G2 sinf

uAu2D2

D22e2
Re@g11

r 212S11
r 1g22

r 212S22
r #,

~37!

in which we have usedf 2(e)5 f̃ 4(e) ~due to V25
2V4), G15G3, andG25G4 . j (e) is the energy-dependen
supercurrent-carrying density of states, shown in the inse
Fig. 2~a!.5,8,28 In the gap region, the Andreev quasibou
stateseA

1 andeA
2 @see Eq.~38! of Sec. IV# are responsible for

j (e): for 2D,e,0, j (e) is positive, originated from the
Andreev quasibound stateeA

1 , and reaches maximum ate
5eA

1 ; while for 0,e,D, j (e) is negative, originated from
the Andreev quasibound stateeA

2 , and reaches maximum a
e5eA

2 . Since we have assumed only one single level in
dot, only a pair of Andreev quasibound stateseA

6 exists. In
contrast, outside the gap region (ueu.D), the continuous
spectrum is responsible forj (e), with negative value fore
,2D, and positive fore.D. Since we assumed thatV25
2V4, we can easily obtain the distribution function of ele
trons in the dot as n(e)5@(G1 /G2) r̃( f 11 f 3)1 f 2

1 f 4#/@2(G1 /G2) r̃12#, which has a nonequilibrium two
step form forueu,D. The behavior ofI S

S1 is determined by
the combination of the supercurrent-carrying density
statesj (e) and the distribution function of electrons in th
dot. For example, atV250, electrons in the dot occupy th
states withe,0, leading to the largest value ofI S

S1 . With
the increase ofV2, the distribution of electrons in the do
becomes a nonequilibrium two-step form,11 leading to a sig-
nificant cancellation of the supercurrent carried by Andre
quasibound levelseA

1 andeA
2 , and correspondingly a notabl

decrease ofI S
S1 , which may even reach negative value
-

f
s

of

e

f

v

V2>V2c . While for V25D, the contributions fromeA
1 and

eA
2 cancel each other completely, so the supercurrent or

nates only from the continuous spectrum ofe,2D, which
is negative. Also notice thatI S

S1 does not approach zero a
large V2 ~e.g., V252.0), due to the fact that the intrado
distribution function atueu.D also depends on the distribu
tion function of quasiparticles in superconducting termina
i.e., f 1 and f 3. With the increase ofG2 /G1 , n(e) and ñ(e)
will mainly be determined by two normal terminals forueu
.D, then I S

S1 at largeV2 will go to zero @see inset of Fig.
2~b!#.

Now we study the currentI N2 flowing into the dot from
the normal terminalN2. If uV2u,D, only I c

N2 and I A
N2 are

nonzero. But foruV2u.D, all types of current are nonzero
Figure 4~a! shows I c

N2 and I A
N2 vs f at different biasV2.

Although the dependence of the Andreev reflection curr
with f has been investigated extensively in systems with t
superconductor reflection mirrors;16,29,30much less attention
has been paid for studying the dependence of the con
tional current with f. In our four-terminal system, the
current-phase relation ofI A

N2 can be fitted very well with
I A

N2(f)5I A
N2(0)(11cosf)/2, due to the fact that an elec

tron, incoming from terminalN2 with energye, will be re-
flected by either the superconductorS1 or S3 @see Fig. 5~a!#.
Notice that the phase shift by the Andreev reflection isfn

FIG. 5. ~a! A schematic diagram for the Andreev reflection cu
rent I A

N2 in Fig. 4~a!. ~b! I N2 vs V2 for f50 ~dotted curve! and for
f5p ~solid curve!. Other parameters are the same as in Fig. 4~b!.
The dashed curve showsI N2 vs V2 without two superconducting
terminals for comparison.
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1arccos(e/D) (n51,3), in which the first part depends o
the superconducting phasefn .14 Therefore if f5f12f3
50, the Andreev reflected holes going back fromS1 andS3
experience a constructive interference, leading to the lar
value ofI A

N2 . On the other hand, iff5p, the reflected holes
from S1 andS3 have a destructive interference, resulting t
smallestI A

N2 . For symmetric barriers (G15G3), the ampli-
tudes of Andreev reflected holes byS1 and S3 are equal,
henceI A

N2(p) vanishes.
The conventional currentI c

N2 vs f is also shown in Fig.
4~a!, in which all curves can approximately be fitted with th
current-phase relationI c

N2(f)5I c
N2(0)(11a cosf)/(11a)

with 21,a,0, whereI c
N2 has the smallest value iff50;

and the largest value iff5p. This behavior is completely
opposite to the Andreev reflection currentI A

N2 . The reason is,
for f50, I A

N2 reaches its largest value, indicating that t
majority of electrons incoming fromN2 participates in the
Andreev reflection, or equivalently, the minority of electro
participates in the conventional tunneling, leading to
smallest value ofI c

N2 . On the contrary, iff5p, the An-
dreev reflection is suppressed, almost all electrons incom
from terminalN2 participate in the conventional tunnelin
resulting in the largest value ofI c

N2 .
The dependence ofI N2 on f at differenceV2 is given in

Fig. 4~b!. For V2<D, I N25I A
N21I c

N2 , where I N2 can also
be approximately fitted with the formI N2(f)5I N2(0)(1
1a cosf)/(11a). In this case, the factora may either be
positive or negative, i.e.,I N2(p) may either be larger than
I N2(0), if V2.0.6D; or smaller thanI N2(0), if V2,0.6D,
due to the fact that the current-phase relations ofI c

N2 andI A
N2

are just opposite. In fact, the change ofI N2 with f is not
noticeable. The dependence ofI N2(0) andI N2(p) on V2 is
shown in Fig. 5~b!. The difference between the two curves
small. For comparison, the currentI N2 for a system decou
pled from two superconducting terminals~by setting G1
5G350) is also shown in Fig. 5~b!.

IV. THE THREE-TERMINAL CASE

There have been several theoretical studies on th
terminal SNS junctions. Weeset al.2 studied the dependenc
of the supercurrent on the temperature and the coup
strength between the normal terminal and the SNS junct
Chang and Bagwell investigated the control of the Joseph
current by the normal probe bias voltageV2, and also pro-
posed a method to measure the continuous spectrum w
contributes to the Josephson current.4 Ilhan, Demir, and Bag-
well studied the Andreev-level spectroscopy and Joseph
current switching in a three-terminal SIS junction.31 The
three-terminal SNS junction investigated in this section
deduced from our four-terminal SNS junction by decoupli
the normal terminalN4 from the system~simply by setting
G450), so we can directly use our current formulas obtain
in Sec. II. However, the following investigations are diffe
ent from the work in Refs. 2,4,31 in the following aspec
~1! TheN region in this work is a quantum dot, connected
superconducting terminals through barriers; while in pre
ous works, theN region is either a ballistic 2DEG or a dif
fusive normal metal, and without barriers separating the c
tral N region and the superconducting terminals.~2! Instead
st
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of using Bogoliubov–de Gennes equation and the scatte
matrix theory, the nonequilibrium Green’s function meth
has been used here.~3! In addition to the supercurrent, w
also investigate in detail the Andreev reflection currentI A in
each terminal. In the following, we first study the case
V250, then the case ofV2Þ0.

A. V2Ä0

In the case ofV250 for the three-terminal SNS junction
there is obviously no net current flowing into the dot fro
the normal terminal; only the supercurrentI S

S1 exists. How-
ever, the existence of the normal terminal can still affect
supercurrent. Based on Eq.~35!, the dependence of the su
percurrentI S

S1 on the coupling strengthG2 at differentf is
calculated and shown in Fig. 6. It is clearly seen that
supercurrentI S

S1 is suppressed with the increase of the co
pling strengthG2, as pointed out by Chang and Bagwell.4 I S

S1

vs f at differentG2 is given in the inset of Fig. 6, showing
the reduction of the critical supercurrent with the increase
G2. It also shows a sinelike current-phase relation ofI S

S1 for
largeG2; but a significant deviation from the sinelike beha
ior for small G2.8 The reason for the suppression of the s
percurrent is: for largeG2, it is much easier for electrons t
tunnel from the quantum dot to the normal leadN2 and be
randomized in the normal reservoir. Therefore electrons,
versing through the dot from one superconducting termi
to another, have a much higher probability to lose the ph
memory, leading to a suppression of the supercurrent. A
result, one can control the supercurrent by changing the c
pling strength between the dot and the normal terminalN2.
Since there is no net normal current from the dot to
normal terminalN2, this way of controling the supercurren
is different from the schemes suggested previously, in wh
the main ideas are either to control the electron density in

FIG. 6. I S
S1 vs G2 for the three-terminal SNS junction. Othe

parameters areG15G350.2D, V250. The inset showsI S
S1 vs f at

different G2.
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centralN region by tuning the gate voltage;16,32 or to change
the distribution of quasiparticles in theN region by a normal
current flowing through it.1,9,10The scheme suggested in th
work for controlling the supercurrent may have the followi
advantage: since no current flows from the normal termin
it should have no heat dissipation, which is important
maintain the operation of the device at low temperature.

The supercurrent-carrying density of statesj (e) is pre-
sented in Fig. 7, in which a peak emerges ate;0.12D, origi-
nated from the Andreev quasibound stateeA

1 . With the in-
crease ofG2, the peak becomes wider but lower, due to t
spreading of the Andreev quasibound state. In addition, fr
the behavior ofj (e), the suppression of the supercurrentI S

S1

with the increase ofG2 can easily be understood.

B. V2Å0

For uV2u,D, both I S
S1 and I A

S1 exist in the superconduct
ing terminals; but onlyI A

N2 exists in the normal terminalN2.
While for uV2u.D, all types of currents emerge. The depe
dences of all types of currents in terminalS1 on V2 are
presented in Fig. 8. One can clearly see that~1! the super-
currentI S

S1 is suppressed and the SNS junction changes
p junction at a certain value ofV2, similar to the four-
terminal SNS junction case discussed above. However, in
four-terminal case, onlyI S

S1 flows into the dot from termina
S1; while in the three-terminal case, all types of curre
exist, therefore the supercurrent can not be measured s
rately. ~2! The magnitude of the Andreev reflection curre
I A

S1 first increases quickly, then almost maintains a cons
value, as will be discussed later.~3! The conventional curren
I c

S1 is zero for uV2u<D, and decreases slowly whenV2

>D. ~4! I 1
S1, I 2

S1, andI 3
S1 are very small. In Fig. 8, we hav

multiplied I 1
S1 andI 2

S1 by a factor of 20 and 50, respectivel
for clarity. I 3

S1 is zero fore050, due to the complete cance
lation of the quasiparticles incoming fromS1 andS3.

Now we study the Andreev reflection current and the A
dreev quasibound stateseA

6 which have been mentione
above.33 In fact, the Andreev quasi-bound stateseA

6 are re-
lated to both the Andreev reflection current and the super

FIG. 7. The supercurrent densityj (e) vs e at differentG2, with
G15G350.2D andf5p/2.
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rent. eA
6 can be obtained by finding the extremum of t

spectrum functionrdot(e) in the quantum dot. Notice that i
no superconductor exists~i.e, let G15G350), the original
bound state of the dot is at obviouslye0, as assumed. Now in
the presence of the superconductorsS1 andS3, the original
level e0 will be split into two Andreev quasi-bound state
eA

6 , determined by the superconducting phase differenf
and the coupling strengthsG1 and G3. When G2!D, the
energieseA

6 are approximately independent ofG2, then it can
be obtained from the equation Re@A(eA

6)#2150, as

FeA
62 (

n51,3
Sn;11

r ~eA
6!G2e0

22S12
r ~eA

6!S21
r ~eA

6!50.

~38!

The linewidth~or the coupling strength! G2 only determines
the spreading of the Andreev quasibound state. When
energye of an incoming electron lines up with the Andree
quasibound stateseA

6 , a resonance will occur, leading to
very large Andreev reflection current. In the following w
will concentrate on the case ofV2<D, under this condition
only the Andreev currentI A

N2 exists inN2 and can be mea
sured easily~while for V2>D, it is impossible to measure
I A

N2 in terminal N2, because all types of current emerg!.
Figure 9~a! shows the Andreev reflection currentI A

N2 vs V2 at
different G2. All curves exhibit a steplike pattern, and th
position of the steps are located nearV2;0.22D, i.e., near
the position of the Andreev bound stateeA

1 . If V2>eA
1 , the

Fermi level of the normal terminalN2 will be higher than
eA

1 , the electron incoming fromN2 may have the energye
5eA

1 , so a resonance occurs; and a Andreev reflected
with the energye5eA

2 is created, leading to a large Andree
reflection current. Therefore, whenV2 varies through
eA

1 , I A
N2 increases sharply; but for other values ofV2, it

almost does not change. It should be mentioned that at
ferent values ofG2, the slopes of different curves ofI A

N2 at
V25eA

1 are not the same. With largerG2, the rising slope is
smaller. This means that the half-width ofeA

6 is definitely

FIG. 8. The currentI S
S1 ,I A

S1 ,I 1
S1 , I 2

S1 , and I c
S1 vs V2, for G1

5G350.3D, G250.5D, andf5p/2. For clarity,I 1
S1 andI 2

S1 have
been multiplied by a factor of 20 and 50, respectively.
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FIG. 9. ~a! I A
N2/I A max

N2 vs V2 at
different G2, whereI A max

N2 5IA
N2(V2

5`). Other parameters areG1

5G350.5D and f5p/2. ~b! I A
N2

vs V2 at differentf, for G15G3

50.5D andG250.05D. ~c! I A
N2 vs

f at differentG3. ~d! I A
S3 vs f at

different G3. The parameters in
~c! and ~d! are G150.5D, G2

50.3D, andV250.2D.
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determined byG2. In Fig. 9~b!, we show the Andreev reflec
tion current I A

N2 vs V2 at different f. One finds that the
position of the step, i.e., the value ofeA

1 , is shifted for dif-
ferent f. For f50, eA

1 has the largest shift; while forf
5p, eA

1 has no shift at all. This means that the positions
eA

6 depend on the phase differencef, which can also be
obtained by solving Eq.~38!. It should be pointed out that w
have sete050 in the above numerical calculation. Ife0

Þ0, theneA
1Þ2eA

2 , and the Andreev reflection will not b
on resonance, so the Andreev reflection current will red
significantly.

The current-phase relation of the Andreev reflection c
rent I A

N2 is shown in Fig. 9~c! for V250.2D. The curves
exhibit quite complicated pattern due to two factors:~1! the
coherent effect between the Andreev reflected holes byS1
and S3 ~see Sec. III!, ~2! the energy shift of the Andree
quasibound stateeA

6 depends onf. First, let us look at
curves of I A

N2 vs f in Fig. 9~c!. At f5p, since Andreev
reflected holes byS1 andS3 are out of phase, it results to
destructive interference and a very smallI A

N2 . Whenf de-
viates fromp, the effect of destructive interference becom
weaker and weaker, leading to an increase ofI A

N2 . While f
exceeds a certain value~about 0.65p), the Andreev quasi-
bound stateeA

1 becomes larger thanV250.2D, then no elec-
tron incoming fromN2 can reach the energyeA

1 , therefore
I A

N2 becomes smaller again. Figure 9~c! also showsI A
N2 vs f

at differentG3. With the decrease ofG3 , I A
N2 has a weaker

dependence onf. In the limit of G3→0, both I A
N2 and eA

1

f

e

-

s

will be independent off, because the superconducting te
minal S3 is decoupled from the system, and the system s
ply reduces to a two terminalS-QD-N system with a super-
conducting terminalS1 and a normal terminalN2.

It is interesting to know how the Andreev currentI A
N2

flowing into the dot from the normal terminal will be distrib
uted between the two superconducting terminalsS1 andS3
~Notice: I A

S11I A
S352I A

N2). We present the Andreev curren
I A

S3 vs f at differentG3 in Fig. 9~d!. I A
N2 have been shown in

Fig. 9~c!, and I A
S1 can be easily obtained fromI A

S152I A
N2

2I A
S3 . When G15G3, the Andreev currentI A

S1 is equal to
I A

S3 , which means that in the Andreev reflection process,
electron incoming fromN2 will have the same probability
reflecting back as a hole either byS1 or by S3, so the same
number of the Cooper pairs are created in the two superc
ducting terminals. WhileG1ÞG3 ~e.g.,G1.G3), the differ-
ence between the Andreev currentsI A

S1 and I A
S3 may become

significant, they may even have different directions. One
see from Fig. 9 thatI A

S3 may be positive, i.e., in the Andree
reflection process, no creation but annihilation of Coop
pairs in the superconductorS3. It is of merit to mention that
for uV2u<D, I A

S3/I A
S1 is exactly equal to G3(G3

1G1 cosf)/G1(G11G3 cosf). When G3→0, I A
S3 will also

approach to zero, due to the decoupling between the su
conducting terminalS3 from the system.

V. THE LIMIT CASE OF G2\0

In the limit of G2→0, the three-terminals SNS junctio
tends to decouple from the normal terminalN2, and reduces
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to a two-terminal SNS junction.2 Then all other types of
current approach zero, except the supercurrentI S

S1 . The su-
percurrentI S

S1 vs V2 is shown in Fig. 10~a!. For small cou-
pling strengthG2, a sudden change ofI S

S1 occurs in the range
of a few G2 aroundV2'eA

1 , due to the fact that the occu
pation number of the Andreev quasibound state varies fro
to 1 whileV2 passes througheA

1 . I S
S1 vs f at differentV2 is

shown in Fig. 10~b!, exhibiting also an abrupt change ofI S
S1

vs f, while eA
1 , which also depends onf, passes through

V2. In particular, in the limit ofG2→0, the normal terminal
N2 tends to decouple from the system, but the supercur
I S

S1 still depends on the biasV2 of the normal terminal@see
Figs. 10~a! and 10~b!#. The reason is that, when the dens
of states of quasiparticles in superconductors forueu,D is
zero, Sn

,(e)50 (n51, 3! according to Eq.~26!, and the
occupation in the quantum dot in the gap region is co
pletely determined by the bias of the normal terminal. The
fore the normal terminalN2 can still affect the supercurren
even in the limitG2→0. The same result was obtained pr
viously by Wees et al. by using the scattering matri
method.2

It is interesting to notice that the supercurrent var
abruptly with the biasV2 if the coupling strengthG2 is very

FIG. 10. I S
S1 in the limit of G2→0. ~a! I S

S1 vs V2 with G2 varying
from 0.5D, to 0.02D. Other parameters areG15G350.5D and f
5p/2. ~b! I S

S1 vs f at differentV2 andG2, for G15G350.5D.
0

nt

-
-

-

s

small (G2 can not be zero! @see Fig. 10~a!#. This means that
one can control the supercurrentI S

S1 by the biasV2 very
sensitively in the very weak coupling strengthG2. We expect
that this behavior may be used to make a sensitive switc

VI. CONCLUSIONS

In this paper, we investigate the control of the superc
rent in a mesoscopic four-terminal SNS junction with
quantum dot as itsN region. By using the nonequilibrium
Green’s function method, the total terminal currents (I S1 and
I N2) and each type of the currents from the normal and
perconducting terminal are derived and studied in detail. T
supercurrent can be suppressed and the junction can be t
formed into a p junction, in agreement with recen
experiments1 and previous theories.10 We find that the
current-phase relation of the conventional current betw
two normal terminals can be approximated asI N2(f)
5I N2(0)(11a cosf)/(11a) with uau,1. For the three-
terminal SNS junction, even when all voltages of three t
minals are set to be equal~under this condition no current i
flowing between the dot and the normal terminal!, the con-
trol of the supercurrent is still possible by tuning the co
pling strength between the dot and the normal terminalG2.
For the caseV2Þ0, we investigated the Andreev reflectio
current and the Andreev quasibound states in detail. Fina
the limit case ofG2→0 was studied, in which the supercu
rent can also be controlled by changing the biasV2, even in
very smallG2.

We hope that the theoretical predictions of this work c
be tested experimentally. As mentioned at the end of Sec
the experimental conditions for manifesting the control
the supercurrent in the setup under consideration, a fo
terminal Josephson junction with a quantum dot in cen
region, is not harsh. A crucial condition for a clear manife
tation of the effect is to keep only one of the energy levels
the quantum dot~usually a quantum dot has multiple energ
levelse i , i 50,1, . . . ), saye0, be involved. This can be re
alized by~1! the bias voltages between the two normal lea
and between the normal lead and the superconducting
are small such that the maximum value max(uV2
2V4u,uV2u,uV4u) is less than the interval of the intradot Co
lomb blockade oscillationsde1U(de is the intradot level
spacing andU is the intradot Coulomb interaction!, then only
the single particle energy levels need to be considered.~2! If
only one levele0 satisfiese050, meanwhile no two levels
within the gap region satisfye i1e j50, then only the level
e0 contributes to the supercurrent and the Andreev reflec
current.14 However, if there are two levels satisfyinge i1e j
50, and with a larger bias voltageuV22V4u, the Andreev
reflection current will exist with more complicated patter
but the basic features of the supercurrent, such as the re
tion of I S

S1 vs V2 in the four-terminal system andI S
S1 vs G2 in

the three-terminal system, will still maintain qualitatively.
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APPENDIX

In this appendix, we present a simple derivation of t
current I N2, flowing into the dot from the normal termina
N2.24 From Dyson’s equation, one has

G11
r* ~g11

r 212S11
r !* 2G12

r* S21
r* 51, ~A1!

whereG11
r* is (G11

r )* andg11
r 21 is (g11

r )21. Multiplying G11
r

on both sides of the Eq.~A1!, one obtains

G11
r 5uG11

r u2~g11
r 212S11

r !* 2G11
r G12

r* S21
r* , ~A2!

substitutingG11
r into the current formula, Eq.~15!, then we

can rewrite the currentI N2 as

I N2524e ImE de

2p
G2

3F f 2uG11
r u2~g11

r 212S11
r !* 2 f 2G11

r G12
r* S21

r* 1
1

2
G11

, G .
~A3!

It turns out that the conventional currentI c
N2 is the combina-

tion of f 2uG11
r u2(g11

r 212S11
r )* and the first part of the Gree

functionG11
, @Eq. ~28!# in Eq. ~A3!, and can be expressed a

I c
N2524e ImE de

2p
G2F f 2uG11

r u2~g11
r 212S11

r !*

1
i

2
uG11

r u2~G1r̃ f 11G3r̃ f 31G2f 21G4f 4!G

52eE de

2p
G2uG11

r u2@G1r̃~ f 22 f 1!

1G3r̃~ f 22 f 3!1G4~ f 22 f 4!#. ~A4!

The rest part of the currentI N2 is
u-
r

s
f

e

22e ImE de

2p
G2H 22 f 2G11

r G12
r* S21

r*

2 iG11
r G12

r*
D

e
~G1r̃ f 1e2 if11G3r̃ f 3e2 if3!

2 iG11
r* G12

r D

e
~G1r̃ f 1eif11G3r̃ f 3eif3!

1 i uG12
r u2~G1r̃ f 11G3r̃ f 31G2 f̃ 21G4 f̃ 4!J . ~A5!

Again by using Eq.~21!, the first term in Eq.~A5! can be
rewritten as

22 f 2G11
r G12

r* S21
r* 522 f 2uAu2~g22

r 212S22
r !S12

r* S21
r* .

~A6!

Furthermore, starting with

S21
r* 5

2 iD

2e
b* ~e!~G1e2 if11G3e2 if3!5S12

r u~D2ueu!

2S12
r u~ ueu2D!

5S12
r 22S12

r u~ ueu2D!, ~A7!

the rest part ofI N2 can be rewritten in the form

22e ImE de

2p
G2H 22 f 2uG12

r u2~g22
r 212S22

r !

14 f 2uG12
r u2~g22

r 212S22
r !u~ ueu2D!

12i ReF2G11
r G12

r*
D

e

3~G1r̃ f 1e2 if11G3r̃ f 3e2 if3!G
1 i uG12

r u2~G1r̃ f 11G3r̃ f 31G2 f̃ 21G4 f̃ 4!J . ~A8!

By combining the first and fourth terms in Eq.~A8!, the
Andreev currentI A

N2 and I 1
N2 can be expressed, respective

as

I A
N252eE de

2p
G2uG12

r u2@G2~ f 22 f̃ 2!1G4~ f 22 f̃ 4!#,

~A9!

I 1
N252eE de

2p
G2uG12

r u2@G1r̃~ f 22 f 1!1G3r̃~ f 22 f 3!#.

~A10!

Finally, it is easy to see that the second and third terms in
~A8!, i.e.,
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22e ImE de

2p
G2H 4 f 2uG12

r u2~g22
r 212S22

r !u~ ueu2D!

12i ReFG11
r G12

r*
2D

e
~G1r̃ f 1e2 if11G3r̃ f 3e2 if3!G J ,

~A11!

constitute the currentI 2
N2, just by noticing that

Im@4 f 2uG12
r u2~g22

r 212S22
r !u~ ueu2D!#

5Im@4 f 2G11
r G12

r* S12
r u~ ueu2D!#

5ImF4 f 2G11
r G12

r*
iD

2e
b~e!

3~G1e2 if11G3e2 if3!u~ ueu2D!G
5ImF2 f 2G11

r G12
r*

iD

e
r̃~G1e2 if11G3e2 if3!G ,

~A12!
ap

s.

s.

H

ev

e
rm

in

ny

s

which can be expressed as

I 2
N2522eE de

2p
G2r̃

2D

e
Re$G11

r G12
r* e2 if1G1~ f 22 f 1!

1G11
r G12

r* e2 if3G3~ f 22 f 3!%. ~A13!

Therefore the currentI N2 flowing into the dot from the
normal terminalN2 can be expressed as Eqs.~32! and~33!.
Similarly, one can also calculate the currentI S1. It is worth
mentioning that only the total currentI N2 ~or I S1) flowing
from one terminal can be measured. It is impossible to d
tinguish different types of current in the measurement. T
is why we mainly focus on the investigation of the tot
currentsI S1 and I N2 in the text; only in Sec. IV~B! we pre-
sented the behavior of each type of currents in Fig. 8.~Note
that for many cases discussed in the text, only one type of
current, supercurrent or Andreev current, is nonzero.!
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