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We study the control of the supercurrent in a mesoscopic four-terminal superconductor—normal-metal—
superconductofSNS junction, in which theN region is a quantum dot connected via tunneling barriers to two
superconducting electrodes and two normal electrodes, respectively. By using the nonequilibrium Green’s
function method, the current flowing into the quantum dot from each electrode is derived. We find that the
supercurrent between two superconducting electrodes can be suppressed and even reversed by changing the dc
voltage applied across the two normal terminals, similar to recent experiments of diffusive SNS junctions and
previous theories for both the ballistic and diffusive SNS junctions. Then we investigate a three-terminal SNS
junction, reduced from the four-terminal junction by decoupling the dot from one normal terminal. We find that
even at zero bias of the normal terminal, the supercurrent still can be controlled by changing the coupling
strength between the dot and the normal terminal. In addition, both the Andreev reflection current and Andreev
quasibound states depend on the phase difference of two superconductors and the coupling strength between
the dot and superconducting electrodes. Finally, the behavior of the supercurrent is discussed in the limit when
the normal terminals are decoupled from the system.

[. INTRODUCTION total supercurrent depend on the occupied fraction of these
states, similar to the occupation of the discrete Andreev
One of the most intriguing experimental results on mesobound states in the ballistic SNS junctions.
scopic superconductivity has been controlling the supercur- The first experiment manifesting the control of the super-
rent through a superconductor—normal-metal—supercorsurrent was performed by Morpurget al® for a diffusive
ductor (SNS Josephson junction by an external voltage ap-SNS junction. They demonstrated that the supercurrent be-
plied across the normal metal of the structure, not only between two superconducting electrodes can be modulated by
cause of fundamental interest, but also of potential applicachanging the dc voltage across tReegion of the structure.
tions for future nanoelectronics. In order to explain their experimental results, they proposed
The earliest work on this subject was limited on theoret-a theoretical model based on a quasiequilibrium distribution
ical studies, either for ballistic SNS junctidn? or for diffu-  with locally enhanced effective electron temperature. The
sive SNS junction=’ In ballistic SNS junction, since the observation of a monotonic decrease of the supercurrent in
elastic mean free path of quasiparticles in normal reghdn ( their experiment is consistent with their model.
region is longer than the length of it, Andreev bound states Lately, Wilhelm et al!® studied theoretically a mesos-
can be formed which have such feature that each successiveopic diffusive SNS junction. Different from the situation of
Andreev bound state carries a supercurrent in opposite direthe experiment by Morpurget al, they assumed that the
tion at a given phase differencg between the two super- inelastic scattering in thdl region can be neglected. By us-
conductors. Therefore, the net supercurrent between two sing the quasiclassical Keldysh Green’s function approach,
perconductors depends not only on the phase difference they showed that the distribution of quasiparticles in the me-
but also on the occupation of the Andreev quasibound statespscopicN region can be driven to a nonequilibrium two-
Authors in Refs. 2—4 predicted theoretically that the superstep function form by a dc voltage across tReegion, as
current may be modulated by changing the distribution ofobserved in the experiment by Pothieral!! They attrib-
quasiparticles in théN region. For diffusive SNS junction, uted the suppression of the supercurrent to the nonequilib-
the concept of Andreev bound states is not appropriate sinogum quasiparticle distribution in th region, and predicted
the electron trajectories are not well defined. Instead, thé¢he possibility of a transition to a junction.
so-called supercurrent-carrying density of states, an analogue Very recently, Baselman®t al! successfully demon-
of Andreev bound state, has the positive and the negativstrated the suppression of the supercurrent in a controllable
parts at a given phase difference and plays the similar‘role Josephson junction. The setup used in their experiment is a
TheorieS~’ predicted that the magnitude and direction of themesoscopic diffusive SNS junction in which the normal
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where ¢ is the phase difference of two superconducting ter-
minal; 1)? results from the conventional electron tunneling
and is approximatelyl Y2(¢) =1Y2(0)(1+ a cos¢)/(1+ )
(—1<a<0). These two parts of the normal current have
different forms of the phase dependence, leading to a com-
plicated current-phase relation. Second, we study the three-
o terminal case simply by decoupling the SNS junction from
e Quantum . .
S Dot S3 the normal terminalN4. When voltages of all three terminals
are set to be zero\;=V,=V3=0), only the supercurrent
may still flow between two superconducting leads if the
phase difference is nonzero. We find that the supercurrent
can still be controlled by changing the coupling strength be-
tween the dot and the normal le&®2, I',, even if no cur-
rent flows fromN2 into the dot and the distribution of elec-
trons in the dot remains unchanged. While+ 0, both the
supercurrent and normal current depend on the coupling
FIG. 1. A Schematic diagram for the four-terminal SNS junc- strengthl’, and on the phase differengg and the Andreev
tion: the N region is a quantum ddtwith a single energy level  quasibound states play a crucial role. Finally, in the limit of
connected to two superconducting termin8@ls andS3 and two  T",—0, we find that the supercurrent still depends on the
normal terminalN2 andN4, respectively. voltage of the normal termindi2, V,, as obtained before
by Weeset al. by using Bogoliubov—de Gennes equation
metal is a gold wire connected to two normal reservoirs. Theynd the scattering matrix methéd.
controlling dc voltage across the gold wire induces a The rest of this paper is organized as follows. In Sec. II
pOSitiOﬂ-dependent nonequi”brium quaSipartiCle distributiorWe present the mode| and derive the current formlﬂh
in theN region, resulting in a modulation of the supercurrent. flowing into the dot fromS1) andI™? (flowing into the dot
The experiment also manifested a reversal of the direction ofgm N2) by using the NGF technique. In Sec. Ill we present
the supercurrent under a certain value of the dc voltage, i.ehe numerical studies for the four-terminal case, including
a transition to ther junction. the suppression and reversal of the supercurrent by tuning
junction (see Fig. 1in which theN region is a quantum dot, Ng4; and the behavior of the normal current. The three-
connected via tunneling barriers to two superconductingerminal case is investigated in Sec. IV, including the depen-
electrodes §1 andS3) and two normal electrode®N@ and  gence of the supercurrent, the Andreev reflection current, and

it is still possible to have the control of the supercurrent inghe coupling strength',. In Sec. V the behavior of the cur-
this mesoscopic four-terminal SNS junction. Different from rents in the limit ofl,— 0 is discussed. Finally, a brief sum-

both the ballistic and diffusive SNS junctions studied before,ary is given in Sec. VI.
the transport through a quantum dot with discrete energy
levels is typically in resonant tunneling regime, and the sup-
pression of the supercurrent for such a SNS junction has not
been studied yet. By using the nonequilibrium Green’s func- We assume that the system under considergter Fig.
tion (NGF) method, we investigate in detail different types 1) is described by the following HamiltoniaA®

of the current, including the supercurrent and normal current,

flowing into the central regiorithe quantum dogtfrom the

superconducting and the normal terminals. Based on the cur- H =n:lz2’3'4H,eadﬂ+ HaortHr, @
rent formula we obtained, we first study numerically the

four-terminal SNS junction, with the superconducting elec-With

trodes at zero voltage.e.,V,=V3=0, whereV,, (n=1, 2,

3, and 4 is the dc voltage of thenth termlna], and tbe HleaanE enkax,kgan,kodl_z [Anan@n ki
normal electrodes at equal and opposite voltagés=( ko K

-V,=V/2, whereV is the dc bias voltage We find the
following. (1) The suppression of the magnitude of the su-
percurrent still exists by tuning the dc bias voltageacross
the N region. In addition, when the dc biag exceeds a Hyo= > €oClc

critical valueV., the supercurrent will reverse its direction, dot™ L4 0%

i.e., a transition to ar junction will occur, due to the change

of electron distribution in the quantum ddR) The current " .t

from the normal terminaN2, IN2, is the normal current, HTZH; [Vnk@n koCo T UnKCon kel (2
which can be separated into two parts Yo0R<A (A is the e

superconducting energy dagh? and 1Y2: 132 originates where Haq, describes electrons in thenth lead,
from the Andreev reflection and approximately has thea;kg (an ko) are the creatiogannihilation) operators of the
current-phase relation asl\?(¢)=13%(0)(1+cos¢)/2,  electronA,=|A,|e' % is the complex superconducting order

Il. MODEL AND FORMULATION

T T
+A: an,—kTan,kL]a
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parameter of thenth lead, with|A,| the superconducting _ _

energy gap, and, the superconducting pha¥&Since we Gnk(t-t):f dty[ G (t,t) Vi nita 1)

have assumed that termin&l2 andN4 are normal leads, so

A,=A,=0. In this work we will set voltages of the super- + G~ (4, t)Vaaknk(t1, D)1, 9

conducting terminals to be zero, i.¥,=V3;=0 whereV,, is

the voltage of theath terminal. HereH 4, is the Hamiltonian

of the centralN region, which we assume is a quantum dot

with a single energy level. For simplicity, the intradot (Unkei Bnl2 0
Vnk

wherev,,, is a 2X2 matrix of the hopping elements defined

electron-electron Coulomb interaction is not considered,

namely, we only consider a big déi.; denotes the tunneling

part of the Hamiltonian, withy,, being the hopping matrix

element. o : . terminal without the coupling to the dot. Assuming the nor-
To faC|I|tate.the .calculat.|on, we perform a transformatlonmal density of stateso’f(e) is independent ofe, one

of the Hamiltonian using the unitary operatot had?14.21

=X S o1 /2h) @] ksBn o]+ Then, Hiagn @nd Hr be-

come

“lo —l):§|<e_i‘f’r1/2 ' (10

and g;%,(t1,t) are the exact Green functions of timeh

> Orkak(tet)

k

Hieagn= E enkag,k(ran,k(r"' E [lAn|an,k1an,fkT
Ko K Ale

- _ 1
=if dep?‘fl(e)p(e)e'f“lt)( ) (11)
+[Aglal _ial ], &) Ale 1

HT:n; {vnk6i¢nlzhalv'<”c”+H'C']* (4) z gik,lk(tlut)

and Hy, is unchanged. Hereafter, we will assu ) : 1 Ale
=|A3|;OIA for simpligty. | =I0(t—t1)f dEpT,B*(E)e_'é(tl_t)<A/6 1 ), (12
The current flowing into the dot from theth terminal can
be calculated from the evolution of the total number operatokvhere 8* (¢€) is the complex conjugate g8(e), with S(e)
of the electrons in the da, =3, ,al \,ank (in units of ~ =€/iVA“—¢” for A>|e| and B(e)=|e|/Ve"—A~ for A
h=1):1819 <|e|l. p(e)=Rd B(e)]1=0(|e|—A)|e|/Je?—AZ is the di-
_ mensionless BCS density of states, i.e., the ratio of the su-

1SNN(t) = —e(Np(t))=ie([N,,H]) perconducting density of stateS(e) to the normal density

of statespN(e). Function f,(€) in Eq. (10) is the Fermi
=4eReE vnk€ 972G 14(t,1), (5) distribution of the electronst,(e)=[exp(e/ksZ)+ 1] %, in

k ' which T'is the temperature.
wherelS"is for n=1 or 3, and N for n=2 or 4; G (t,t) is Substituting the Green functiorg_sfk*jk and hopping ma-

the matrix Green function in 22 Nambu representation, trix vy into Eqg. (9), we obtain
defined by?2°

Giqq(t,)=| dt{Gi(t,t)vF 1107 1.14(t1,t
_<al,kT(t’)CT(t)> (@ (1)1 (1) k1t t) f Gt 1)V Tk 1101k 1 11(ta 1)

Ght.t")=i ) . .
K <al,k1(t )CI(t» (@ (t )Cj(t» + Gt ) v Tk 287k 1k 21t 1)
Notice that we only need to derive the expressions of the + G5t t)v* 4,02 (ty,1)
i 11001V 11191k 1k, 120 e s
current!S! and IN?; while the currentl®® and IN* can be <
easily obtained fromS! andIN? by exchanging the terminal +GL(tt) vl o8k wea(ts )}, (13

index 1 and 3, 2, and 4, respectively.
The currentlS! can be expressed in terms of the dot’s

Green functionss" and G<, defined in Nambu representa-
tion by'2!

G'(tt)=—if(t—t")

in which G{;~ (i,j=1,2) are the matrix elements &"~.
SubstitutingG1.14(t,t) into Eq.(5), assuming  is real and
independent of indek,?? the current 5! can be expressed in
terms of the dot’s Green functions as

de
|Sl:—4e|mf —TI'i(e)

4«mmsMUb<@¢mqw»q o 27
{el.elanh delw.e )’ _ 1
x{| f1(ep(e)GL(e)+ 5 B* ()G e)
Gﬂuqﬂ«dwmm»<qwmm») o ' T2 .
S etye! Nel)y)” A ~ 1
(ci(t)e(t) (e (t)ei(t)) ——€ % fi(e)p(e)Glle) + 5 8* ()G e) ]

Following the same procedure as in Ref.(§8e Appendixes
A and B there, one has (14
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wherel', (n=1, 2, 3, and 4is the linewidth function de- ir,[1
fined byT",(€)=2mv2p)(€), which represents the coupling 20(6)= 2 Volhink(€VE = — 7(
strength between the dot anth Iead;Girj'<(e) are the Fou- :
rier transformation OfGirj'<(t,t1). For the situation ofV; The Green functionf (€) can be easily obtained as
=V,;=0, G{j'<(t,t1) depends only on the time difference
(t—t4), which has been used in derivation of Ed4). No- ] (e—€p+i0")7 1 0
tice that the anomalous Green functiGfj, and G5, emerge g(e)= 0 (e+ep+i0") L
in the current formula Eq14), indicating the presence of the
superconducting leads and leading to the Josephson supétith the help of 3'(e) and g'(e), G'(€) can be solved
current. It should be mentioned that E{.4) can also be exactly from Dyson’s equation E416), as
obtained directly from a general formula obtained recently
by Sun etal. for a mesoscopic hybrid multi-terminal (g5 =35 I
system'’ That general formula can be used to describe the G'(€)=A< r 1y )
case with arbitrarily finite voltage at each terminal, any type 21 (9u 11)
of interactions in the central region, and any portion of theyhereA(€) is a compact notation defined by
system subjected to external microwave fields.

The current flowing into the dot from normal termir2 A=[(g =30 =35 —S30 17t (22
can be easily expressed'a¥’

!
0 1) (19

. (20

(21)

in which gj; or Xj; (i,j=1,2) is the matrix element of the
de 1 2X 2 matrixg' or 3
N2_ - r < .
= 4e|mj ZWFZ(G){fZ(E)Gll(EH 2611(6)]' Second, we solve the lesser Green funct@®n(e) and
(15  Gie). From Keldysh equatiorG==G'%~G?, one has

wheref,(€) is the Fermi distribution function of electrons in
normal terminal N2, f,(e)={exd(e—eV,)/kg7]+1} L.
Notice that the expression of*?, Eq. (15), holds for any
value ofV,, but the expression df, Eq.(14), is valid onl
for Vlz\/;: 0. P ‘ Y GR=GLE G+ Gl G+ Gl 5,6+ Gl 5,6,
Now we need to solve for the Green functioBY €) and (24
G~ (e) of the dot. FirstG'(e) can be solved from Dyson’s whereG?(e)=[G'(€)]* andX<(e) is the lesser self-energy.
equation Under the wide-bandwidth approximatio®,~(€) has the
following form:?:

G1=G}2 1,6+ G2 1,65+ G2 51Ghy + G2 EZG%Z,S)

G'=g+GY¢, (16
in which we have dropped the argument X'(¢) is the 35(e)= > 37(e). (25)
self-energy and’(¢) is the dot’s Green function without the n=1234

coupling between the dot and four leads. By taking the wide- . . . _
bandwidth approximation, the linewidth,(¢) becomes in- For the superconducting terminah 1 or 3, withV, =V,

dependent of the energy.?* Notice thatl',=2mv2p)(e), =0)
wherepr’:‘(e) is the density of states of theh terminal lead A
in normal state, so here the wide-bandwidth approximation is 1 — —g i®n
generally reasonable as in the case of the normal sysStem. S5(€) =T fr(e)p(e) €
Under the wide-bandwidth approximation, the self-energy " n'nl€/P A ” '
3"(€) can be written agsee Ref. 21 e 1
(26)
Er(f):nzlEz“EL(f)- (17 while for the normal terminalr{=2 or 4)
For the superconducting terminak=1 or 3, 3! (€) has the _ ([ faCe) 0
form 3. (e)=il", 0 (o) (27)
ir ~ . S . .
Er(e)=2 Vgl VA = — _nﬂ(e) wheref, (€) is tbe Fermi distribution function of holes in the
" ko ronknk " 2 nth terminal: f (e)=1—f,(—¢€). Substituting the self-
A energy>=(e), Egs.(25—(27), into Keldysh equation, the
1 — —eitn Green functiong1;(e) andGi,(e€) are obtained as

€
, (19 ) ~ ~
L 1 G=i|GLy/A[T1pfi+TapfatTofo+T,f,]
€ _IGr Gr*é[r ~f e*i(ﬁl_’_r ~f e—i¢3]
while for the normal terminah=2 or 4,3 (¢) is 11212 1Pl 3Pl
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A o -
—iGY] r12;[Flpfle'¢1+ I3pfae' 3]

+i|G AT ipfi+Tapfa+ ol + 1,141, (28

G=iGGH [ 1pfi+apfatofy+T,f,]

—iG} Gf*é [ pfie 114 Topfae i3
1G4 226[ 1p11€ apfe™'%3]

—'GfG’*é [, pf €1+ 5pfze ¥
1677 216[ 1PT1€ apfze'¥3]

+iGLGH[Tipf1+Tapfat oo+ uf,]. (29

Finally, substituting the Green functio® (¢), Eq. (21),
andG=(¢), Egs.(28) and(29), into Egs.(14) and(15), some
manipulationgshown explicitly in the Appendixlead to the
current formula oft St and 1 N?:24

IS= 1 1 IS+ 1T 15T+ 15T (30)

where

de -
|§1:29J EF1P|Gr11|2[F2(f1_f2)+r4(f1_f4)],

de
—2ef

| = |G 2|2

ers(rl_rs)(l_ cosp) +(I',+T'y)(I'1+T'3cos¢)
I'?2+T3+2II'3cos¢
X[To(fa=T)+Tu(fa=Ta)]1,

de A2
13t= —ef EF1F3|A|2A2_

X[S1(95 1

2sin¢|m
€

b+ 359 2],

1$t=2e Er PG Ty (f1—f,) +T4(f1—f4)]
1= 2W1P12 20— 12 aAT1=1a) 1,

de ~~2A I rxa—i¢
_ZefzrlpTRe[GnGlze 1]

X[To(fi—f)+T4(f1—1y)],

AZ
Ze(f f )—|A|2 < 2 ;T1T3sing

—To)+T4(f4—Ta)1,

in which ¢=¢,— ¢3 is the phase difference of the two su-
perconducting electrodes, and

X[To(f, (31

IN2= N2 N2 V24 2 (32

where
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de ~
1¥=2e [ SETJGLAT (-t

+T3p(fo—f3)+Ta(fa—f)],
N2 de r2 = 7
Ia"=2e 2_F2|Glz| [Fo(fo—fo)+Ta(fo— 141,
de Fioree -
:zef 2_F2|G12| [I1p(fo—f1)+T3p(f—f3)],
de _2A »
157=—2e f 5-T2p—Re(Gy,G5e 1T y(f,—fy)
+G,Gl5e T 5(f,—3)). (33

The current formulas, Eq$30)—(33), are the central results

of this work. As a quick check, one can assuig=T1",

=0, which means that the system decouples from the leads
S3 andN4, and reduces to the system with a quantum dot
connected to a normal and a superconducting lead, the same
system as in Ref. 14, then the current formul@sand|N?,
Egs.(30)—(33), reduces exactly to the Eq8) and (29) in

Ref. 14.

It is important to notice that the electron occupation num-
ber in the quantum dot at the energyis given by ng(e)
=21mGyy(€);>>* and the hole occupation number is
np(€) =2 IMG5,(€). The spectrum functiopg,(€) (i.e., the
density of states of quasiparticles in the quantun) dah be
expressed by

Paot €)=Ne(€)+Np(—€)=2[ |Gy

+|GLJ?I(T1p+Tap+T,+T,)
A ) )
—4Re G1,G13 ?p(Fle_'¢l+F3e_'¢3) ;

(39

which is independent of the distribution function of the ter-
minals. Then the normalized distribution function of elec-
trons in the dot is given byi(€) =n.(€)/pgol€); similarly
the distribution function of holes i8(€)=np(€)/pyol — €)
=1-n(—¢).

Notice that in Eqgs.(30)—(33), the currents originating
from different types of electron tunneling processes have
been separated clearly. For example, let us first lodk'4t
which contains four part®*1Y? comes from the conven-
tional electron tunneling process frod2 to N4, S1 and
S3. 1\? originates from the Andreev reflection, in which an
electron incoming fromN2 is reflected as a hole going back
into N2 or N4, meanwhile an extra Cooper pair is created in
the superconducting lead, either 81 or in S3. 12 also
comes from the Andreev reflection, but the reflected hole
exits to the superconducting leafs andS3 [notice that due
to V;=V;3=0, so fi(e)=T1(e) and f5(e)=T3(e)]. 152
originates from the tunneling processes in which an electron
incident fromN2 tunnels either intd&s1 or S3, picks up a
quasiparticle in the superconductor and creates a Cooper
pair?l Second, IS' contains six parts, in which
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ISt 13, 15t andl3! originate from the similar processes (@) 2 ice)
as the corresponding parts 102, In addition, 13 is the 006N __ pooqs %
supercurrent between two superconducting terminals; anc I ____FZ:F“:O:% 0.2
15" is from the Andreev reflection, in which a quasielectron  ggsl \ - rer05a °°

(or a quasiholgincoming fromS1 will be reflected asahole g [ i 02

(or an electrohgoing back taN2 or N4. It is worth empha-

sizing that not only the summation of four terminal currents ®
is zero (i.e., IS'+1N24+ 1S3+ |N4=0, or the total current
conservatiof), the summation over terminal index for each
type of current is zero as well.

If one assumes that all terminal voltages are zero, ther 002 : : :
except for 13, all types of current (including 0.04 :( 000212

0.00

I S1 I I S1 I S1 I S1 | N1 I I N1 and I 2‘1) van- ¢_1|:/4 0.004
ish, The supercurrent® is given by =
= 002
de A? @
= — RN i *
It 2ef wal(e)F1F3S|n¢A2_EZImA . (39
0.00

In the following three sections we shall apply our current
formulas, Egs.(30)—(33), to investigate the control of the
supercurrent and related properties for the four-terminal SN< 0.02 ' ' '

. . . ) . 0 05 1.0 15 2.0
junction (Sec. lll), and the three-terminal SNS junction Vv, (A)

(Secs. VI and V. In these numerical studies, we take zero

temperature T=0) and fix the intradot leved,=0. In fact, FIG. 2. (a) The supercurrerts’ vsV, at differentl’,=T,, for a

if 7% 0 but still withkg7<<A, the current will not be affected fixed phase differenceb= /2, and other parameters afg=1"5
qualitatively: only the supercurrent slightly decreases, while=0.2A, €,=0 (e,=0 for all figureg. The inset showg(e) vs e
other types of currents have almost no change. The conditiofer the parameterfl—Fz—Te I',=0.2A and ¢=m/2. (b) The
of kg7<A is easily realized experlmentally, because in typi-supercurrentlg" vs V, at different ¢, for I';=T,=I3=I,
cal mesoscopic experiments=1 K;' and the transiton =0.2A. The inset showsg' vsT',/T'; atV,=2A and ¢=m/2.
temperature of the niobium, which is often used in the ex-

periment, is 9.3 K. Even ife, slightly deviates zerdbut  SNS junction transits to a junction. The critical valué/,.
within =.I'y), the current still has no qualitative change. is dependent oi', [Fig. 2@)], but almost independent @f
However whene, deviates zero more than seve@|Il',,, [Fig. 2b)]. Figure 3 showd ! vs ¢ at differentV,. When
then all types of currentsexcept forIg%) will strikingly — V,<V,., the SNS junction exhibits the conventional
reduce. Therefore, in order to observe these properties exurrent-phase reIatioh§1~(I§1)Csin¢. While V,>V,., a

perimentally, one can either choose a larger valu® df,,  transition to thes junction occurs with the current-phase
or to keep the intradot leved, at zero by applying a gate relation I§1~(I§1)Csin(¢+7r). At V,=V,, |§1 vanishes
voltage. for any phase differences. (3) WhenV,=A, the negative
supercurrent reaches its largest magnitude; then with the fur-
. THE FOUR-TERMINAL CASE ther increase o¥/,, the absolute value of the negative super-

current decreases slowly, but does not vanish. All these re-

For the four-terminal SNS junction, we assume thiat sults are consistent with the experiment by Baselnedras,

=I5 andI',=TI", (the symmetric coupling strengthsand
V,=—V,=V/2 (the bias voltag®/=2V,), same as in Refs.
1 and 9. Then the supercurrent in the superconducting termi o0l V=04
nals dominates. The remaining parts b (including T - vp=0.2a
ISt 13, 15, andI3h) vanish, due to the fact that the cur- e
rent from electrons incoming fromi2 cancels completely e 2=
With the current from the holes incoming froNy; however,

I5' may be either zero ifV,|<A, or nonzero but much
smaller than the supercurrer@® if |V,|>A. Meanwhile, all 2
types of current in the normal terminals can be nonzero. Inz»
the following, we investigate the supercurrent and normal

0.01

current, respectively. 0.00

Figure 2 present|5§l vs V, at different coupling strengths N .
I', and phase differenca. One can seél) at V,=0, the -0.01 1 N T
supercurrentZ’ reaches its maximum. With the increase of S
V,, the supercurrent3' reduces drastically(2) While V, 0.0m 05" 10

exceeds a certain critical valu¥,., (e.g., for I',=1I,
=0.2A, V,.~0.381), I3' becomes negative, namely, the  FIG. 3. I vs ¢ at differentV,, for ;=T ,=I3=T,=0.2A.
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indicating that the SNS junction, in which tiéregionisa  V,=V,.. While for V,=A, the contributions frome, and
quantum dot, still has similar behavior in controlling the su-¢, cancel each other completely, so the supercurrent origi-
percurrent as in the diffusive SNS junction. nates only from the continuous spectrumesf — A, which

In order to explain the properties of the supercurrent ofis negative. Also notice that' does not approach zero at
the SNS junction, we rewrite the supercurrent in the form asgrge v, (e.g., V,=2.0), due to the fact that the intradot

distribution function ate|>A also depends on the distribu-

|§1:eJ' d_Ej(e) E;(f1+f3)+f2+"f‘2 , (36) tion function of quasiparticles in superconducting t(irminals,
2m I i.e., f; andf;. With the increase of ,/T";, n(e) andn(e)
where will mainly be determined by two normal terminals fp|
>A, thenI at largeV, will go to zero[see inset of Fig.
Al2A2 2(b)].
j(e)= —Fszsin¢|Az|—62Rdgall—Eil+ gh 1351, Now we study the currenit\? flowing into the dot from

3 the normal terminaN2. If [V,|<A, only IY? and I are
(37) nonzero. But foV,|>A, all types of current are nonzero.

in which we have usedfy(e)=T,(¢) (due to V,= Figure 4a shows|Y? and I\? vs ¢ at different biasV,.
—V,), T,=T4 andl',=T,. j(e) is the energy-dependent Although the dependence of the Andreev reflection current

supercurrent-carrying density of states, shown in the inset o¥ith ¢ has been investigated extensively in systems with two
Fig. 2@).58% In the gap region, the Andreev quasibound Superconductor reflection mirrot§**°much less attention

statese;. andej [see Eq(38) of Sec. IV] are responsible for Nas been paid for studying the dependence of the conven-
i(e): for —A<e<0, j(e) is positive, originated from the tional current W|th_¢>. In 2our four-tgrmlnal system, .the
Andreev quasibound state:{, and reaches maximum at c't‘Jerent-pk'La;se relation df: can be fitted very well with
=€, ; while for 0<e<A, j(e) is negative, originated from La (‘?‘S,)ZIA ,(0)(1+COS¢)(2’ due to the fact tha}t an elec-
the Andreev quasibound statég , and reaches maximum at gggt,e I(;]f)orzli?r?e:r?hrz ;i”g':;ﬂiuvggg i?g;g{;gvl'zl: beéﬁ'

€= ¢, - Since we have assumed only one sin+g|e level in th‘?\Iotice tr?/at the phase IZhift by the Andreev reﬂegt.ionﬁi-s

dot, only a pair of Andreev quasibound statgs exists. In

contrast, outside the gap regiohe|>A), the continuous
spectrum is responsible fg(e), with negative value foke
<—A, and positive fore>A. Since we assumed th¥t, = 7\
—V,, we can easily obtain the distribution function of elec- .
trons in the dot as n(e)=[(I1/T,)p(fi+f3)+f, 0 w—t a 30
+f,]/[2(T'1/T5)p+2], which has a nonequilibrium two- B
step form for|e|<A. The behavior o 3" is determined by
the combination of the supercurrent-carrying density of N4
statesj(e) and the distribution function of electrons in the 5

dot. For example, a¥,=0, electrons in the dot occupy the 00 oz o4 05 o8 0%
states withe<0, leading to the largest value 6§". With V2 @

the increase oW, t_he ,d'smbuuon of eIeCtrO,nS In the,dOt FIG. 5. (a) A schematic diagram for the Andreev reflection cur-
becomes a nonequilibrium two-step fotfrlgading to a sig- rent!2 in Fig. 4@). (b) I"? vs V, for ¢=0 (dotted curvgand for
nificant cancellation of the supercurrent carried by Andreevy— - (solid curve. Other parameters are the same as in Filg).4

quasibound levels, ande, , and correspondingly a notably The dashed curve show&? vs V, without two superconducting
decrease of2', which may even reach negative value if terminals for comparison.

(@ N2
0.15
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+arccose/A) (n=1,3), in which the first part depends on 0.14 05
the superconducting phasg,.** Therefore if = ¢, — 5 s 040 e
=0, the Andreev reflected holes going back fréihandS3 | e o038
experience a constructive interference, leading to the larges 01ZR Foosp A — I‘z-O.BA
value ofl 2. On the other hand, ip=, the reflected holes U 5000
from S1 andS3 have a destructive interference, resulting the 0.10 i 005l
smallestl ,'12. For symmetric barriersI{;=1"3), the ampli- _‘\",
tudes of Andreev reflected holes I81 andS3 are equal, ¢ 1o
hencel \?(7) vanishes. = 008r s 0.15 s s s

The conventional currerfy? vs ¢ is also shown in Fig. - \‘ oom 0% 1o om0
4(a), in which all curves can approximately be fitted with the .06 3

current-phase relatior Y2( ¢) =1Y2(0) (1+ a cos¢)/(1+ )

with —1<a<0, wherel }? has the smallest value #=0;

and the largest value i= . This behavior is completely 0.04
opposite to the Andreev reflection curreﬁﬁf’. The reason is,

for =0, I\? reaches its largest value, indicating that the 0.02
majority of electrons incoming fronN2 participates in the

Andreev reflection, or equivalently, the minority of electrons

participates in the conventional tunneling, leading to the 0-0000'

smallest value o }2. On the contrary, if¢=, the An- '

dreev reflection is suppressed, almost all electrons incoming, Iy (4)

from terminalN2 participate in i [

resulting in the Ia?gest \E)alue d)t.tzhe conventional tunneling, FIG. 6. 13 vs T, for the three-terminal SNS junction. Other

— — — H 1

The dependence d¢f'2 on ¢ at differenceV, is given in g;{:{gﬁﬁrs arB;=T'3=0.24, V;=0. The inset showts’ vs ¢ at
Fig. 4b). For V,<A, IN2=132+1N2 " whereIN? can also z
be approximately fitted with the formi™?(¢)=1N2(0)(1
+a cosg)/(1+a). In this case, the factow may either be
positive or negative, i.elN?(7) may either be larger than
IN2(0), if V,>0.6A; or smaller thariN?(0), if V,<0.6A, also investigate in detail the Andreev reflection curdgnin
due to the fact that the current-phase relationg'éfandI\>  each terminal. In the following, we first study the case of

are just opposite. In fact, the change I16f with ¢ is not  V,=0, then the case df,#0.
noticeable. The dependence16?(0) andIN?(7) onV, is

shown in Fig. §b). The difference between the two curves is

of using Bogoliubov—de Gennes equation and the scattering
matrix theory, the nonequilibrium Green’s function method
has been used her€) In addition to the supercurrent, we

A. V2=O
small. For comparison, the curreh¥? for a system decou- . . .
pled from two superconducting terminal®y setting I'; h In the ct?;e OYZ_O fortthe thrtftil-ter_mm_altSl\tlr? Jlén(t:t:con’
=T,=0) is also shown in Fig. (). ere is obviously no net current flowing into the dot from

the normal terminal; only the supercurrd@ﬂ exists. How-
ever, the existence of the normal terminal can still affect the
supercurrent. Based on E(5), the dependence of the su-
There have been several theoretical studies on thre@€rcurrentis on the coupling strength, at different¢ is
terminal SN'S junctions. Weet al? studied the dependence calculated ans(il shown in Fig. 6. It is clearly seen that the
of the supercurrent on the temperature and the Coup“néupercurrentS is suppressed with the increase of the cou-
strength between the normal terminal and the SNS junctiorPling strengthl",, as pointed out by Chang and BagwhlE"
Chang and Bagwell investigated the control of the Josephsoys ¢ at differentI’; is given in the inset of Fig. 6, showing
current by the normal probe bias voltaye, and also pro- the reduction of the critical supercurrent with the increase of
posed a method to measure the continuous spectrum whidfe. It also shows a sinelike current-phase relationffor
contributes to the Josephson curréfihan, Demir, and Bag- largel’,; but a significant deviation from the sinelike behav-
well studied the Andreev-level spectroscopy and Josephsorer for smallT',.2 The reason for the suppression of the su-
current switching in a three-terminal SIS junctidnThe  percurrent is: for largd’,, it is much easier for electrons to
three-terminal SNS junction investigated in this section istunnel from the quantum dot to the normal leld@ and be
deduced from our four-terminal SNS junction by decouplingrandomized in the normal reservoir. Therefore electrons, tra-
the normal terminaN4 from the systen{simply by setting versing through the dot from one superconducting terminal
I',=0), so we can directly use our current formulas obtainedo another, have a much higher probability to lose the phase
in Sec. Il. However, the following investigations are differ- memory, leading to a suppression of the supercurrent. As a
ent from the work in Refs. 2,4,31 in the following aspects:result, one can control the supercurrent by changing the cou-
(1) TheN region in this work is a quantum dot, connected topling strength between the dot and the normal termiizl
superconducting terminals through barriers; while in previ-Since there is no net normal current from the dot to the
ous works, theN region is either a ballistic 2DEG or a dif- normal terminalN2, this way of controling the supercurrent
fusive normal metal, and without barriers separating the cenis different from the schemes suggested previously, in which
tral N region and the superconducting termind®. Instead  the main ideas are either to control the electron density in the

IV. THE THREE-TERMINAL CASE
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FIG. 7. The supercurrent densitfe) vs e at differentl’,, with FIG. 8. The currentZ, I3t 15, 153Y, and IS vs V,, for Ty
I';=I'3=0.2A and ¢= /2. =I'3=0.2A, I',=0.5A, and¢==/2. For clarity,I$* andl5* have

been multiplied by a factor of 20 and 50, respectively.

centralN region by tuning the gate voltag&>?or to change
the distribution of quasiparticles in tiiéregion by a normal  rent. e, can be obtained by finding the extremum of the
current flowing through it:**°The scheme suggested in this spectrum functiomg(€) in the quantum dot. Notice that if
Work for Controlling the Supercurrent may haVe the fO”OWing no Superconductor exis(fsle’ |et Flz F3: 0)’ the Origina|
advantage: since no current flows from the normal terminalpound state of the dot is at obviously, as assumed. Now in
it should have no heat dissipation, which is important tothe presence of the superconductBisandS3, the original
maintain the operation of the device at low temperature.  |eye ¢, will be split into two Andreev quasi-bound states

The supercurrent-carrying density of staigg) is pre- .= getermined by the superconducting phase diffexgnt
sented in Fig. 7, in which a peak emergegat0.12A, origi- 514 the coupling strengthE, and T's. WhenT',<A, the

nated from the Andreev quasibound stafe. With the in- energies, are approximately independentidj, then it can
crease ofl',, the peak becomes wider but lower, due to thebe obtained from the equation R ex)]~ =0, as
A )

spreading of the Andreev quasibound state. In addition, from
the behavior of (¢€), the suppression of the supercurreﬁt
with the increase of', can easily be understood. Ei_nz‘ia 2:“11( €x)|— eg_zflz( €x)35(ex)=0.
B. V,#0 (38
For |V,|<A, bothI3" andI3" exist in the superconduct- The linewidth(or the coupling strengifl”, only determines
ing terminals; but only\? exists in the normal termin&l2.  the spreading of the Andreev quasibound state. When the
While for |V,|>A, all types of currents emerge. The depen-€nergye of an incoming electron lines up with the Andreev
dences of all types of currents in termindl on V, are duasibound states, , a resonance will occur, leading to a
presented in Fig. 8. One can clearly see tfiatthe super- Very large Andreev reflection current. In the following we
current| S is suppressed and the SNS junction changes to will concentrate on the case d,<A, under this condition
7 junction at a certain value o¥/,, similar to the four- only the Andreev currenity” exists inN2 and can be mea-
terminal SNS junction case discussed above. However, in thgured easily(while for V,=A, it is impossible to measure
four-terminal case, onlyS! flows into the dot from terminal A~ in terminal N2, because all types of current emerge
S1; while in the three-terminal case, all types of currentsFigure 9a) shows the Andreev reflection currdiif vsV, at
exist, therefore the supercurrent can not be measured sepgifferentI',. All curves exhibit a steplike pattern, and the
rately. (2) The magnitude of the Andreev reflection current position of the steps are located néa~0.22A, i.e., near
I3 first increases quickly, then almost maintains a constanthe position of the Andreev bound statg . If V,=€, , the
value, as will be discussed lat€B) The conventional current Fermi level of the normal termindl2 will be higher than
IS! is zero for|V,|<A, and decreases slowly whewi, €, the electron incoming frorN2 may have the energy
=A. (4) 15 13 andI§l are very small. In Fig. 8, we have =e,§ , SO a resonance occurs; and a Andreev reflected hole
multiplied Ifl andl §1 by a factor of 20 and 50, respectively, with the energye= ¢, is created, leading to a large Andreev
for clarity. 15" is zero fore,=0, due to the complete cancel- reflection current. Therefore, wheW, varies through
lation of the quasiparticles incoming fro81 andS3. e, IN? increases sharply; but for other values \6§, it
Now we study the Andreev reflection current and the An-almost does not change. It should be mentioned that at dif-
dreev quasibound states, which have been mentioned ferent values of',, the slopes of different curves d)j‘iz at
above® In fact, the Andreev quasi-bound states are re-  V,=€, are not the same. With largéh, the rising slope is
lated to both the Andreev reflection current and the supercursmaller. This means that the half-width ef is definitely
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determined byl",. In Fig. 9b), we show the Andreev reflec- will be independent ofp, because the superconducting ter-
tion currentl\? vs V, at different ¢. One finds that the minal S3 is decoupled from the system, and the system sim-
ply reduces to a two termin&-QD-N system with a super-

position of the step, i.e., the value ef , is shifted for dif- : : 4
ferent ¢. For =0, €, has the largest shift; while fop ~ conducting terminabl and a normal termindii2. 5
=1, € has no shift at all. This means that the positions of It is interesting to know how the Andreev curre_rit .
* depend on the phase differenge which can also be flowing into the dot from the normal t'ermlnal ywll be distrib-
€a C€P ne p ) uted between the two superconducting termirg&lsandS3
obtained by solv_lng Eq38). It should pe pointed out that we (Notice: |§1+|§3: —IEZ). We present the Andreev current
have seteo+=0 in the above numerical calculation. & 132 vs ¢ at differentl "5 in Fig. 9(d). I\? have been shown in
#0, thene, # — €5 , and the Andreev _reflectlon W|II_not be Fig. 9(c), and 15! can be easily obtained frorp!=— 12
on resonance, so the Andreev reflection current will reduce_lis_ WhenT,=T'5, the Andreev current! is equal to
significantly. 133, which means that in the Andreev reflection process, an
The current-phase relation of the Andreev reflection cur-4 whic : : P o>
N2 - electron incoming fromN2 will have the same probability
rent I,A IS shown In Fig. &) for V;=0.2A. The curves reflecting back as a hole either 11 or by S3, so the same
exhibit quite complicated pattern due to two factd®:the  mher of the Cooper pairs are created in the two supercon-
coherent effect between the Andreev reflected holeSby ducting terminals. Whild";#T'5 (e.g.,I';>T5), the differ-
and S3 (see Sec. Il (2) the energy shift of the Andreev ence petween the Andreev currehs and| $® may become
quasibound state, depends ong. First, let us look at sjgnificant, they may even have different directions. One can
curves ofl\? vs ¢ in Fig. 9c). At ¢=, since Andreev see from Fig. 9 thats® may be positive, i.e., in the Andreev
reflected holes byl andS3 are out of phase, it results to a reflection process, no creation but annihilation of Cooper
destructive interference and a very sm&f. When ¢ de-  pairs in the superconduct&3. It is of merit to mention that
viates fromar, the effect of destructive interference becomesfor  |V,|<A, 13313 is exactly equal to I's(I'g
weaker and weaker, leading to an increase,'l‘&f. While ¢ +I'; cosg)/T'y(I';+T'3c0s¢p). When I';—0, I,§3 will also
exceeds a certain valu@bout 0.65r), the Andreev quasi- approach to zero, due to the decoupling between the super-
bound state:, becomes larger thavi,=0.2A, then no elec- conducting terminaB3 from the system.

tron incoming fromN2 can reach the energy , therefore

I'\? becomes smaller again. Figur&cPalso showd )\? vs ¢ V. THE LIMIT CASE OF  T'>—0
at differentI’;. With the decrease df;, I\? has a weaker
dependence og. In the limit of I';—0, bothI\? and e/

In the limit of I'»—0, the three-terminals SNS junction
tends to decouple from the normal termiiNg, and reduces
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small (I', can not be zeno[see Fig. 1()]. This means that
one can control the supercurret‘@1 by the biasV, very
sensitively in the very weak coupling strendth. We expect

0.20 [ (a)

0.15 |

=== Tp=0.5A that this behavior may be used to make a sensitive switch.
R T 1'2=0.3A
0.10 [ e =044 VI. CONCLUSIONS
5 ] - —=- T,=0.05A
~ p=0.024 In this paper, we investigate the control of the supercur-

st
Is
o
=)
(]

rent in a mesoscopic four-terminal SNS junction with a
quantum dot as it region. By using the nonequilibrium
Green’s function method, the total terminal currentd @nd
IN2) and each type of the currents from the normal and su-
perconducting terminal are derived and studied in detail. The
supercurrent can be suppressed and the junction can be trans-
formed into a 7 junction, in agreement with recent
experiments and previous theorie€. We find that the
current-phase relation of the conventional current between
two normal terminals can be approximated H¥(¢)
=IN2(0)(1+ a cos¢)/(1+a) with |a|<1. For the three-
terminal SNS junction, even when all voltages of three ter-
minals are set to be equalnder this condition no current is
flowing between the dot and the normal termjnahe con-
trol of the supercurrent is still possible by tuning the cou-
pling strength between the dot and the normal terminal
For the case/,+#0, we investigated the Andreev reflection
current and the Andreev quasibound states in detail. Finally,
the limit case ofl',— 0 was studied, in which the supercur-
rent can also be controlled by changing the bBiaseven in
very smalll’,.
We hope that the theoretical predictions of this work can
L . L . L N be tested experimentally. As mentioned at the end of Sec. I,
0.0 05 1.0 15 20 the experimental conditions for manifesting the control of
¢ the supercurrent in the setup under consideration, a four-
FIG. 10.13" in the limit of T',—0. (a) I3 vs V, with T', varying terminal Josephson junction with a quantum dot in central
from 0.5, to 0.02\. Other parameters afié,='s=0.5A and¢ €910, IS not harsh. A crucial condition for a clear manifes-
= /2. (b) 1S vs ¢ at differentV, andT,, for I'y=T5=0.5A. tation of the effect is to keep only one of the energy levels of
the quantum dofusually a quantum dot has multiple energy

to a two-terminal SNS junctioh.Then all other types of Ielyelzeti)' i:(r){l’t;'. -), Slayfo, k?)e involveﬁ. This can b? Ire_d
current approach zero, except the supercurtght The su- a'fjeb ty(l)t Sh 1as vo t«la?esd etv(\j/et(;nt e two nodrm:? ee} Sd
percurrenti 3+ vs V, is shown in Fig. 108). For small cou- and between e normal jead and the superconduciing fea

: 1 . are small such that the maximum value njsx(
pling strengthl’, asuddeT change 6f" occurs in the range —V,|,IV4|,|V4)) is less than the interval of the intradot Cou-
of a fewI', aroundV,~¢, , due to the fact that the occu-

. . ; lomb blockade oscillation®e+ U(de is the intradot level
pation number of the Andreev quasibound state varies from gpacing andJ is the intradot Coulomb interactiprthen only

to 1 whileV; passes thr_OL_‘QhX . 15 vs ¢ atdifferentVy is e single particle energy levels need to be considé@df
shown in Fig. 10b), exhibiting also an abrupt change & only one levele, satisfiese,=0, meanwhile no two levels
vs ¢, while ex , which also depends o, passes through within the gap region satisfy; + =0, then only the level
V,. In particular, in the limit ofl’,— 0, the normal terminal ¢, contributes to the supercurrent and the Andreev reflection
N2 tends to decouple from the system, but the supercurremurrent!* However, if there are two levels satisfyirg+ €]
12" still depends on the biag, of the normal terminalsee =0, and with a larger bias voltad®/,—V,|, the Andreev
Figs. 1@a) and 1@b)]. The reason is that, when the density reflection current will exist with more complicated pattern,
of states of quasiparticles in superconductors|&r<A is  but the basic features of the supercurrent, such as the reduc-
zero, 3 (e)=0 (n=1, 3 according to Eq(26), and the tion of |§1 vsV, in the four-terminal system aﬂ@l vsT,in
occupation in the quantum dot in the gap region is com+the three-terminal system, will still maintain qualitatively.
pletely determined by the bias of the normal terminal. There-
fore the normal terminaN2 can still affect the supercurrent
even in the limitl’,— 0. The same result was obtained pre-
viously by Weeset al. by using the scattering matrix We gratefully acknowledge the financial support by a
method? RGC grant from the SAR Government of Hong Kong under
It is interesting to notice that the supercurrent variesGrant No. HKU 7215/99P, a CRCG grant from the Univer-
abruptly with the bias/, if the coupling strengthi’, is very  sity of Hong Kong. T. H. Lin and Q. F. Sun were also sup-
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APPENDIX |G AT ypf 1+ TapfatTof,+Tafs) (. (A5)
In this appendix, we present a simple derivation of the

currentIN?, flowing into the dot from the normal terminal

N2.2* From Dyson’s equation, one has Again by using Eq(21), the first term in Eq(A5) can be

rewritten as

(g -2)* -G =1, (A1) —2f,G1 G535 = — 2f5|A[A(g5, T~ 25, 21335 '~

whereGl} is (Gj)* andgi; " is (gi,) ' Multiplying G},  Furthermore, starting with
on both sides of the EqA1), one obtains

—iA . .
3= B (e)(Tie 1 Tae 90 =31,0(A—|e])
=G -2 h)* — GG R (A2)
—2,0(|e[—A)
substitutingG' into the current formula, Eq15), then we . )
can rewrite the currerf‘? as =21, 2%,0(]€| - A), (A7)

the rest part ofN? can be rewritten in the form

de
IN2=—4elm [ 5T de C o o1 <r
™ —2elm Erz —2f,|GJ%(95, " —25)
_ 1
x| fo|GYy (g5 =2 )* — 1,G1,GS 5§+§Gl<1- +41,| Gl A9 T~ 35, 0(|e| - A)

A
(A3) +2i Re[ ~GLGl —
It turns out that the conventional currdf¥ is the combina-

tion of f,|G;|%(g}; = =1)* and the first part of the Green
function G; [Eq. (28)] in Eq. (A3), and can be expressed as

X (I'pfie” 1+ r37)f3ei¢a)}

+i|GI AT 1 pfy+ Tgpfg+Tof o+ r4"f‘4)} . (A8)

de By combining the first and fourth terms in EGA8), the
N2 _ - r 12/ F—1_ N7 \% !
Ic°=—4e Imf zwrz[ueﬂl (911"~ %1 Andreev currenl,’ﬁ2 andl?12 can be expressed, respectively,
as

i - -
+E|G‘r11|2(1ﬂ113f1+Fapf3"‘F2f2+114f4) de
IA"=2e f 5Tl G’ [To(fo= o)+ Ta(f2=Ta)1,
(A9)

de f12em ~
=2e EF2|G11| [T1p(fo—fy)

de ~ ~
I?Zzzef EFZ|Gr12|2[F1P(f2_ f1)+Tsp(fa—13)].

+Tap(fo—fa)+T4(fa—14)]. (A4) AL0)

Finally, it is easy to see that the second and third terms in Eq.
The rest part of the curremt'? is (A8), i.e.,
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which can be expressed as

de P2 =1 T
—2elm Erz 41, Gl *(92, " —25) (| €| — A)

-A . ~ .
+2i Rg G,Gs — (I pfe 14+ Tgpfae¥3 “ de  ~2A »
% 162z~ (Fapls P ) |’;2:_2ej EFZPTRG{GL 15e My (f—f1)

(All) I lrxa—i¢
+GGrze Pl g(f,—13)} (A13)

constitute the currerity?, just by noticing that
Im[4f,| G %95 ' =350 0(|e| = A)]

Therefore the current™? flowing into the dot from the

— r r r _
Im[4f,G1;G1321,0(] | ~4)] normal terminalN2 can be expressed as E32) and(33).

iA Similarly, one can also calculate the currépt. It is worth

=Im[4f2Gr11 155 B(e) mentioning that only the total curremt® (or 1) flowing
from one terminal can be measured. It is impossible to dis-
B B tinguish different types of current in the measurement. That

X(Te7'1+T3e7'%3)6(|e[ - A) is why we mainly focus on the investigation of the total

A currentsl St andI1N? in the text; only in Sec. IVB) we pre-

= Im| 2f,G%,G% I_”F;(Fle—i¢l+l-3e—i¢3)}, sented the behavior qf each type of currents in FigNgite
€ that for many cases discussed in the text, only one type of the

(A12)  current, supercurrent or Andreev current, is nonzero.
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