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For a mesoscopic hybrid system which contains a normal central region coupled to multiple superconducting
leads, a general expression of the current is derived by using nonequilibrium-Green-function method. This
current formula can be used to describe the case with time-dependent external fields applied to any parts of the
system, arbitrarily finite voltages, and any kinds of interactions in the central region. For a normal two-terminal
interacting electron system, this expression reduces to the general time-dependent current formula previously
obtained by Wingreeet al. [Phys. Rev. B8, 8487(1993]. As an application, we use this current formula to
study a special case of a noninteracting single-level central region coupled to two or three superconducting
leads, respectively.

[. INTRODUCTION nated from both mesoscopics and superconductivity partici-
pate jointly in the physics, which makes these “hybrid” sys-
Mesoscopic physics, a branch of condensed-matter physems a very fruitful research fiefd.Many interesting
ics, was developed and became an active field over the laphenomena have been studied for various mesoscopic “hy-
two decades. The quantum transport property of mesoscophrid” systems: the subharmonic gap strutureSiS or S-N-
systems is one of the most striking phenomena. Because & junctions, whereS, |, andN indicate superconductor, insu-
the possibility of designing and fabricating artificial struc- lator, and normal metal, respectivélythe Andreev bound
tures, studies on transport are no longer limited to the sysstates inSN-S or N-I-N-S systems? the even-odd-parity
tems provided by nature, and have opened an extremely richsymmetry and the Coulomb blockade of the Andreev reflec-
field for basic and applied researcHes. tion in  superconductor—superconducting-quantum-dot—
Recently, electron tunneling through a mesoscopic SYySsuperconductorg-SQD-S) or N-SQD-N systems- the dc or
tem, which i§ applied by external time—.dependent field_s, hagq Josephson effect &N-S or SNQD-S systemg?-etc.
been attracting more andl more attention. The essential fea- |, his paper, we investigate electron transport through a
ture of mesoscopic physics is the phase coherence of theas,scopic normal central region coupled to multiply super-
charg_e carriers. Generally, the external t|me-depeno!ent I[?E’E'onducting or normal leads under the influence of time-
turbatlon aff9CtS the phase factor of the wave function dlf'dependent external fields. We derive a formal expression for
ferently in different parts of the systef, leading to well- . .
the fully nonlinear, time-dependent current through the sys-

known photon-assisted tunnelingPAT), in which an A .
electron can tunnel through the system by emitting or aplem by the nonequilibrium-Green-function method. The for-

sorbing photons. Such a PAT process is responsible for th@aIism permit; arb_itrary ir)teractions i_n the central region.
sideband peaks in the curve of the conductance vs the gafe?! @ two-terminal interacting system in a normal state, the
voltage and the substep structure in the current—bias-voltagd!l™ent expression obtained reduces to the general time-
(1-V) characteristics. PAT has been investigated experimerflépendent gurrent formula presented by Wingreen and
tally and theoretically in a variety of systems, including acO-workers>* Then, as an example, we study the dc Joseph-
single quantum ddt® two coupled quantum dofssemicon- ~ son effect analytically and numerically, for the case in which
ductor superlattice$, etc. In particular, Wingreeretal. the central region is a noninteracting single-level quantum
presented a general formalism for electron transport througdot and without the external fields. Two special cases with
an interacting resonant-tunneling system in the presenc&vo or three superconducting terminals are investigated in
of time-dependent external fields by using thedetail. For the two-terminal system, the Josephson current is
nonequilibrium-Green-function method under the adiabaticbtained, which consists of two partS:from the continuous
approximatiort: spectrum, and? from the discrete spectrum. For the three-
If the mesoscopic system contains superconducting conferminal system, we investigate the relation between the dc
ponents, usually called the mesoscopic “hybrid” systemsJosephson current and the phaéé’s(i =1, 2, 3 of theith
the situation will be more interesting. Basic features origi-superconducting lead.
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Whereaﬁka (ank,) are the creatiogannihilatior) operators of

the electron in theath lead. It should be emphasized that in
the presence of the external fields, not only the energy of the
quasiparticle, but also the energy of the Cooper pair, is
affected!® so the complex superconducting order parameter

A, becomes

FIG. 1. A schematic diagram for the multiterminal mesoscopic

. . . ~ 2i [t
hybrid system under consideration. A=A, ex;{ _ gfoﬂn(T)dT , 2)

The outline of this paper is as follows. In Sec. I, the ) )
model Hamiltonian is presented. In Sec. Ill, we derive aVNereAn is the complex superconducting order parameter of

general current formula for mesoscopic “hybrid” multiter- thenth lead without the external field. Whexy, =0, thenth

minal resonant-tunneling systems, and discuss the relatiolﬁad retums to a normal state. L .
The Hamiltonian of the interacting central region is writ-

between this current expression and the general time- .
. . . ten in a compact form as
dependent current formula previously obtained by Wingreen
et al We also obtain the expression of the equilibrium cur-
rent(i.e., the dc Josephson currgfar the case of zero bias _ T i T
voltage and without gxternal time-dependent fields. In Sec. Hce”(t)_%‘; €0(1)C,Cjo T Heed{Cj o {Cioh L - ),
IV, we use our general current formula to study the dc Jo- 3)
sephson current through a noninteracting single-level central
region. Two special cases, with either two or three terminalsrvherec;rg (cj,) are the creatiorfannihilation) operators of
(superconducting leagisare studied. Finally, a brief sum- the electron in the statej,) of the central region, and
mary is presented in Sec. V. Hten models the interactions. Note that the energy levels
[€;,(1)] of the central region can be affected by the change
of the voltage on the leade;,(t)= €}, +=qUj,nun(t),
Il. MODEL with  S.Uj,n=1."° In deriving the formal current
expression, we permit that various interactions,
The multiterminal resonant-tunneling system under consuch as the electron-electron Coulomb interaction
sideration is shown in Fig. 1. The total Hamiltonian is Sp“tEj,a;j’,(r’(j,g;&j’,o—’)uja,j’a’CJT(;Cj(rC]T/(,/Cj’a’: the electron-

into three partsH(t) =Hgaqdt) +Heer(t) +H1(t), where  phonon interaction EJ-,(,,qucL,c,-(,(dgnL d_g)
Heads Models multiterminal superconductingr norma) +Eqﬁwqdadq, etc., may exist in the central region.
electrodesH., is for the central region, antH; describes The tunneling Hamiltoniamd (t) between leads and the
the tunneling part between leads and the central region, resentral region is
spectively.

Here we assume that theth lead is a BCS supercon-
ductor with the order parametar, , which can also describe HT(t)anEj(r [Vio j(Dah,CiotVirg i(DCank, 1. (4)

the normal lead of noninteracting electrons just by taking
A,=0. The time-dependent external fields applied to the . .
system are treated by the adiabatic approximatiie., the Here we aII%w that the exte.rnal felcjs can also be apphed to
external fields only affect the quasiparticle energieg(t) the barneré' then the hopping maltrix elememtw,j(t) will
(where the indexn means thenth lead, andk is the index depend on time. Moreove_r, here we also_ permit some leads
representing the quantum stasmd the Cooper pair energies, \\’/Vh"f\?t)r}zsivzeeréhebu%f)peirsui; ZtZreo hfﬁgslgﬂe?d‘?rg;ne:ﬁ?d?t
but the occupation number of particles at each staté)( thnérngate terminal. '

remains unchanged. The single-particle enexgyt), which Now we perform a unitary transformation with the unitary
is time dependent under the external fields, can be Separat%%eratoru ad8
into three parts: en(t) = €2+ wn(t) = €2+ qVa+ Wp(t),

where egk is the time-independent single-particle energy

without the time-dependent external fields and the dc bias U(t)=ex;{
voltage,V,, is the dc bias voltage on theh lead,W,(t) is a

time-dependent part from the external field, agqds the

charge of the electron. Thus the Hamiltonian of all superconthen the Hamiltonian of the leads and the tunneling part
ducting leadsH ¢ aqdt) is™’ change into

i [ D
> - G

t
n
-+ f Mn(T)d7'> CL N
n,k,o 0
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(Y (t)Xar (1) (Y (1) Xy (D))

(Y (XL 1) (Y ()X (1))
(10

- 0 f < _
Hieads n;a €nk@nkoBnke GQ‘B(t,t')=

+;( [|Anlank an ki + IAnlaﬁ,maﬁm], (6)

Here X andY represent arbitrary single-particle annihilation
- t operators, such a&,,, Cj,, etc.a and 3 are level indices
{Vnmj(t)eﬁ[(bn/z'*' foﬂn(T)dT]agkngo_l— H.c.i, asnk, j. In the Nambu representation, the currépt(t) is
0 given by

where ®° and |A,| are the phase and the modulus of the

nk,j,o

complex superconducting order parameter of rttie super- @ ,2+f (D47
conducting lead(Hereafter|A,| will be written asA,, for In1() =29 ReE Vo j(D€ o i1t D)
simplicity.) The Hamiltonian of the central regiohl . (t), (11

is unchanged under this unitary transformation. After this

transformation, both the superconducting phases and the

time-dependent factors from the finite voltages appear onliwe next need to solve the Green func’u@nnk 1(t,t). By
as a factor in the new hopping matrix elements, which makesgsing the Dyson equatiéri

the calculation much easier.

Ill. TIME-DEPENDENT CURRENT FROM A G<:g<+G’Erg<+G’2<ga+G<Eaga, (12
SUPERCONDUCTING LEAD TO THE CENTRAL REGION
A. General expression for the current whereg='2 are the exact Green functions without the cou-
The current from theth superconducting lead to the cen- pling between the leads and the central region. We assume
tral region can be calculated from the evolution of the totalthe normal density of state;sﬁ(e) is independent of in

number Opel’ator of the electrons in theh Iead, Nn Superconducting |ead§’<va can be expressed jﬁs
=3 »@l,8nko - Then one findgin units of i =1)

1n(8)= = A(Nn) =1Q{[Na(), H(8)]) >

n g:k,nk(t!t,)

t
0
&2+ f pp(7)dr
0

=2q ReKEU,- Ve, (D€ i(a] o (1)Cj4(1))

B ‘ 1 /el
_ N —ie(t—t') !
|jd6pn(€)f(€)Pn(f)e (An/|e| 1 )'

=l (1) + 10 (1), ®)
(13)

In the following we only need to derive the expression of the
time-dependent current with a special spin, $gyt); then
the currentl, (t) can be easily obtained from,(t) by ex- eie(t-t) A
changing the up-spin and the down-spin. When the singlez G (tt) =i 6t —1) J’ dep! (6) (|6| n)
particle energies;,, and the hopping matrix elements,, ;, nknk n A, e/’
etc., are independent of the spih, (t) will be equal to (14)
I'1;(t). Because the system contains superconducting compo-
nents, it is convenient to introduce the<2 Nambu repre-
sentation in whichG=(t,t’) andG"?(t,t") take the form&  and g 2(tt)=0, where E =€ AZ, and py(e)
=6(| r A,)|€|/E, is the correspondlng dimensionless BCS

density of states; i.ep,(¢€) is the ratio of the superconduct-
<{x (1), Ym(t 1 (X (1, Y (1)} ing density of statesoﬁ(e), to the normal density of states,

+ T ) pN(€). f(e) in Eq. (13 is the Fermi distribution function,
<{X L0 Y () (X (0, Yg (1)) f(e)=[explksZ) + 1] 1, in which 7 is the temperature.
(99  X"*= is the self-energy function,

Gt t)=Fio(=t¥t")

t
i qaﬂ/2+JMn(f)df} 0
0

0 —Vpy j()€

V:M(t)e’

3t =8(t—t") (15

t )
] /2+f/.l.n(7')d7l
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k (t,t")=0 (for anynk, mk’), andX;, 4(t,t')=0 (for terms with anomalous Green functions vanish, and the cur-
n m U 1

any @, ). With the help of the Dyson equatiaii?), the €Nt expressiofiEg. (19)] reduces to
exact Green functiong™?, and the self-energ®" 2=, we

t de .
have |m(t)=—2q|m2f dtljﬂe*'f“rt)
JyJ, —

Gj<,nk;11(tat,) n r
ij,j;ll(e—an rtlit)[fn(E)ij r;ll(tvtl)

_2 J dtl{G“' ;|_1(t tl)zj ,nk; ll(tla 1)gnk nk; 11(t1,t ) +Gj<jf;11(titl)]i (20)
+G“ ,;lz(t,tl)Ej,’nk;zz(tl,tl)gﬁk'nkﬂ(tl,t’) wheref,(€) is the Fermi distribution function of electreqs in
the nth lead:f,(e)=f(e—qV,)=[expe—qV,)/kgZ7 +1]" -,
+ G;,;ll(t,tl)E?,’nk;ll(tl,tl)g‘}’,‘kvnk;ll(tl,t’) in which we have taken a transformation of the integral vari-
_ a a able. When the system is only a two-terminal system and the
TGt eo(ts 1) O niaa(ta t) ) spin of the electron is neglected, the time-dependent current

(16) [Eq. (20)], reduces to the same formula previously obtained

by Wingreen and co-workefs’
Substituting the expression & .1,(t,t) into Eq.(11), we

note thatu,(t)=qV,+W,(t). It is useful to define the fol-

- . . . . B. Case of zero-bias voltage and no external fields
lowing generalized linewidth functions:

In this section, we consider the system in equilibrium, i.e.,
" t, ) =2mpN(eV o (DVE, (L |ft Wo(r)d7 all dc voltagesv,, have the same valuéset to be zero here-
il €10 =27Pn (Var, (DVyy j (ta)€ (17) aftet) and no external time-dependent fields applied. Then
“, 1(€tq,t) andl““, 21(€11,t) will be mdependent with
. t
o ety )=2mpN WV (Ve i (t el Vgt I HWa(n)d7 time variablest; andt, and the Green function&};~(t,t;)
iz €tt) Pn(€Vir,j(DVa (L) (19  andGy (t.ty) only depend on the time difference. By tak-
ing the Fourier transformation, the current form[iy. (19)

In terms of these generalized linewidth functidii¥e,t;,t),  pecomes
the time-dependent currehf,(t) can be expressed as
de
t ~
t)=—2qim>, f dtlf g—ee*if“l*t) 'nT:_qum_Z, Jﬂ|F?’J:n(f){f(f)Pn(f)G;j';n(f)
jird o= 77 I8
iqQV (t—ty) N ~ r +— K G (€)
X e n 1 Fj’j;ll(e’tl't) f(é)pn(é)ij’;]_l(t!tl) ZE: JJ’ 11 €
|€l An

_ Snmn o0 ~ r
+E_*Gj<J’;11(t,t1) | €] [y €87 f(€)pa(€)Gjjrpo(e)

n

A, |l
— H |an(t+t1)e|fI) F J 21(6 tl ) EG;; 12(6) ], (21)
n
e | where T .(e)=2mp\(e)vp V¥ and T (¢
f G, (tt)+ —G, . (tt jj;11 Pni€Vnt,iViny,jr j’j;21
(Pe( Gzt EX Gjjraaltity —ZWPn(f)Vm iVn,jr- In the zero-voltage case the Green
(19 function G=(€) can be easily calculated by the following

H 1
The time-dependent current express[&y. (19)] is the relatiort"

central result of this work. It describes the current in terms of </ N N
local quantities: Green functions of the central region. This G (e)=f(e)[G™e)=G'(e)]. (22)
current formula can be used for nonlinear regidres., arbi- Substituting Eq (22) into Eg. (21), and noting that

trarily high biasV, and arbitrarily strong external fielgs (e)=T"™ . (e), then the first square bracket in Eq.
rj;11 jjr1a
multiple terminals, arbitrary interactions in the central reg|0nl(]21) vanlshes and we have

(e.g., the electron-electron interaction, the electron-phono

interaction, etg, either superconducting or normal leads, and

with the external fields being applied to any parts of the —+2q|m2 f_A_

system. Notice that in the current formulgq. (19)], the Iy €

anomalous Green functior@}, and G;, emerge, which re-

flect the character of the superconducting leads, and lead to €|

the Josephson current and Andreev reflection current. T oo 2E* ppmal (€ “' €)= G“' 1A€) |l
If the system does not contain any superconducting com-

ponents, i.e., the energy gdy, (for all n) is zero, then the (23

&)| Pa(€)G; 1 €)

i 121('5)e
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In the above current expression only anomalous Green funcFhen substituting the Green functio®,,(e) and G5} (e)

tions emerge, which means the normal single-particle tunneinto the current nt [EQ. (23)], one can derive the currem
ing does not contribute to the current, and only the Andreey(] =1 nitln=2l,) as
reflection contributes to the dc Josephson current.

si(@°—d0).
(30

d6 nAa2
IV. DC JOSEPHSON CURRENT THROUGH A | _ZQJ
NONINTERACTING SINGLE-LEVEL CENTRAL REGION

A. Multiterminal current formula
This current expression can be used to calculate the dc
Josephson current through a noninteracting single-level cen-
tral region coupled to superconductlng leads. The curdrgnt
can be split into two part$22| ,=1°+19, wherel € is from
Heen= E oCogCog (24)  the continuous spectrum foe| >A in WhICh B has a imagi-
7 nary part; andﬁ originates from the discrete spectrum for
Here we assume that the energy leeglis independent of |e|<A, in which the imaginary part dB is a positive infini-
the spino, and we only consider the case of zero-bias volt-tesimal (07).
age and without external fields. The Green functions of the

For a noninteracting single-level central region, its Hamil-
tonianH ., becomes

central regionGg,.1{ €) andGyg.»(€) can be obtained from B. Two-terminal system
the Dyson equatiofthereafter the subscript 00 will be omit- . . . .
ted) In the following numerical calculation, we take symmetric
’ barriers, i.e.,I''=I'>=T"; and zero temperature7€0).
G'(e)=g(e)+d ()3 (e)G'(e), (25  Thenthe currents reduces to
Wheregr(e) is the gxact Green function of the ce.ntral region de f(e)(I)3A2 .
without the coupling between the central region and the 15=2q j J’ 7 RI2 2 A2 ———————2ep(€)sin(6P),
leads: T |B|%(e*—A%)
(3D
o where & =®%— . For|e|>A, B becomes
e—€pt+i0”"
g(e)= , (26) 5 (T')2A2
0 1 B=€’— e+ 2iep(e)l — ()2~ — [1-cog 8D)].
et+eygt+i0t 2(e?-A%)
0 (32
and 3’ (e) is the self-energy function. In the following, we |4 currenﬂ reduces to
make further simplifications:(1) We assume a wide-
bandwidth approximation, i.e., we assume that the linewidths 242 .
'), andI'}; are independent of energy(2) We take the |g:q(r) A Sin(6®) (33)
hopping matrix elememnqyo to be real(3) XVe afsumanmo A€ (T')2A2[1+cog 6D)]
is independent of the spiar, leading tol'],=T'5,=T" and €2+

lni=1n, . (4) All leads have the same energy gAp, and 2(A%—"€5)

will be written asA hereafter. Under the above simplifica- _
tions. the self-energi(e) reduces tf where € is the renormalized energy level, which can be

obtained from the equation

ir(é):% 20 nk9nk nkEnk 0=

L T[e \/ (I)2A%[ 1+ cos 5®)
e e+ , (34
2

€0~ — 0 ~
rn (lel —Aei¢2) A2 2(A%-€)
Ael‘bn | !

E;m

€l with —A<¢y<0.

(27) In this case the dc Josephson curr@mtludes botH € and
- 19) originates from Andreev reflection at the interface be-
Substitutingg'(e) and X"(€) into the Dyson equatiofEq.  tween the superconducting leads and the central region. Fig-
(25)], one easily obtains the Green functi@i(e) as ure 2 shows the currenf (from the continuous spectrymis
~ ~ the central region’s energy leve}, which can be controlled
(922 —Erzz) Er12 by the gate voltage. Two peaks emerge aroggve = A, due
St ( Ir 0 ' (28) {0 the fact that the Andreev reflection probability is one at
21 9 e=*+A.%>?*Figure 3 shows the currehf (from the discrete
where the notatioB(€) is defined by spectrum vs ¢, for the same parameters as in Fig. 2. One
peak emerges at,=0, because the weight of the renormal-

B(e)=(05 '~ 35)(gh = 35) - 3535 (29  ized discrete levek, is proportional to

G(e)—
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FIG. 4. dc Josephson currelr‘ftvs the phase differencéd for
different values of the energy levej, withI'=0.1 andA=1. The
solid, dashed, and dotted curves corresponghto0, 0.03, and 0.1,
respectively.

FIG. 2. dc Josephson currekit (from the continuous spectrym
vs the energy level of the central regian, with the phase differ-
encedéd=3m/2 and the energy gap=1. The solid, dotted, and
dashed curves correspondlfe=0.1, 0.07, and 0.04, respectively.

242 —12 However, forl’~A, orI'>A, the shape of the curve slightly
€2 (DAt C~05( oP)] deviates from the sine cur¥aot shown here The current {
2(A%— eg) vs 6@ for different values of the energy leve} is shown in

. _ N Fig. 4. Whene,=0, the current abruptly changes at®
which has the largest value while,=0. When ey ap- =7 which is similar to theSN-S system without the barri-
proaches the gap, the current{ rapidly increases. Then ers at theN-S interfaces® With e, apart from zero, the
with | €o| increasing further, Eq34) does not have a solution abrupt jump will be suppressed, and gradually approach a
between— A and 0; i.e., there is no discrete spectrum, leadsinelike curve.
ing to 1=0. Notice that the scales are different in Figs. 2 |t should be mentioned that the curréftis a m-junction
and 3; in fact the curreril‘i is about eight times larger than Josephson relatiof?;® i.e., 1$=15,sin@@®+m), not 1§
the current § . =15.sind®, and1{ is negative atd® = /2. However, the

Now we investigate dc Josephson currents the phase current!{ is a general Josephson relation.
difference 5®. For I'<A (the weak-coupling cage the

c o :
curve of the currenti vs 6P is similar to a sine curve. C. Three-terminal system

0.08 Now we investigate the dc Josephson currgpin the

L three-terminal system. From Eq29) and(30), if all phases
<I>ﬂ of superconducting leads change by the same amount, the
currentl , does not change. Therefore we can set one of the
phases of leads equal to zero, Q%/: 0. Figure 5 shows the
currentl§ vs the phas@) for T'<A with different values of
®3. All curves are similar to the sine curve, but shifted with
each other a certain approximate value. In fact, the cutfent
can be expressed approximately as

©

o

&
T

(arb. units)
o
®

1$=15,si(D— DO +15, sin(PI— DY).

d
1

I

0.02 | .
ForI'>A, the current ] cannot be written as two separated

parts, as mentioned above. In particular, curvesofs &9
’ will be different from the sine curve for some values®§

)o{0J) ST Rors A FPS i it o L (see Fig. 6.
-1.0 -0.5 0.0 0.5 1.0

€y(units of 4) V. CONCLUSIONS
FIG. 3. dc Josephson curreft(from the discreted spectrynas In this paper, we have obtained an extended general time-

the energy levek,, with 5&==/2. The other parameters are the dependent current formula through an interacting central re-
same as in Fig. 2. gion coupled to two normal leads obtained by Wingreen and
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FIG. 5. dc Josephson curreh} vs the phase of the second
superconducting lea®? in a three-terminal system fdt<A. The FIG. 6. dc Josephson curretf vs the phasebj in a three-
parameters arE=0.3, A=1, ande,=—1, and curves 1, 2, and 3 terminal system fol’>A. The parameters alE=2, A=1, and
correspond tab3=0, =/4, andw/2, respectively. €o=—1, and curves 1-5 correspond d8=0, /4, 7/2, 3m/4,

and , respectively.
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