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For a mesoscopic hybrid system which contains a normal central region coupled to multiple superconducting
leads, a general expression of the current is derived by using nonequilibrium-Green-function method. This
current formula can be used to describe the case with time-dependent external fields applied to any parts of the
system, arbitrarily finite voltages, and any kinds of interactions in the central region. For a normal two-terminal
interacting electron system, this expression reduces to the general time-dependent current formula previously
obtained by Wingreenet al. @Phys. Rev. B98, 8487~1993!#. As an application, we use this current formula to
study a special case of a noninteracting single-level central region coupled to two or three superconducting
leads, respectively.
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I. INTRODUCTION

Mesoscopic physics, a branch of condensed-matter p
ics, was developed and became an active field over the
two decades. The quantum transport property of mesosc
systems is one of the most striking phenomena. Becaus
the possibility of designing and fabricating artificial stru
tures, studies on transport are no longer limited to the s
tems provided by nature, and have opened an extremely
field for basic and applied researches.1

Recently, electron tunneling through a mesoscopic s
tem, which is applied by external time-dependent fields,
been attracting more and more attention. The essential
ture of mesoscopic physics is the phase coherence of
charge carriers. Generally, the external time-dependent
turbation affects the phase factor of the wave function d
ferently in different parts of the system,2,3 leading to well-
known photon-assisted tunneling~PAT!, in which an
electron can tunnel through the system by emitting or
sorbing photons. Such a PAT process is responsible for
sideband peaks in the curve of the conductance vs the
voltage and the substep structure in the current–bias-vol
(I -V) characteristics. PAT has been investigated experim
tally and theoretically in a variety of systems, including
single quantum dot,4,5 two coupled quantum dots,6 semicon-
ductor superlattices,7 etc. In particular, Wingreenet al.
presented a general formalism for electron transport thro
an interacting resonant-tunneling system in the prese
of time-dependent external fields by using t
nonequilibrium-Green-function method under the adiaba
approximation.2,3

If the mesoscopic system contains superconducting c
ponents, usually called the mesoscopic ‘‘hybrid’’ system
the situation will be more interesting. Basic features ori
PRB 610163-1829/2000/61~7!/4754~8!/$15.00
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nated from both mesoscopics and superconductivity par
pate jointly in the physics, which makes these ‘‘hybrid’’ sy
tems a very fruitful research field.8 Many interesting
phenomena have been studied for various mesoscopic ‘
brid’’ systems: the subharmonic gap struture inS-I -S or S-N-
S junctions, whereS, I, andN indicate superconductor, insu
lator, and normal metal, respectively,9 the Andreev bound
states inS-N-S or N-I -N-S systems,10 the even-odd-parity
asymmetry and the Coulomb blockade of the Andreev refl
tion in superconductor–superconducting-quantum-d
superconductor (S-SQD-S) or N-SQD-N systems,11 the dc or
ac Josephson effect inS-N-S or S-NQD-S systems,12–16 etc.

In this paper, we investigate electron transport throug
mesoscopic normal central region coupled to multiply sup
conducting or normal leads under the influence of tim
dependent external fields. We derive a formal expression
the fully nonlinear, time-dependent current through the s
tem by the nonequilibrium-Green-function method. The fo
malism permits arbitrary interactions in the central regio
For a two-terminal interacting system in a normal state,
current expression obtained reduces to the general ti
dependent current formula presented by Wingreen
co-workers.2,3 Then, as an example, we study the dc Jose
son effect analytically and numerically, for the case in whi
the central region is a noninteracting single-level quant
dot and without the external fields. Two special cases w
two or three superconducting terminals are investigated
detail. For the two-terminal system, the Josephson curren
obtained, which consists of two parts:I c from the continuous
spectrum, andI d from the discrete spectrum. For the thre
terminal system, we investigate the relation between the
Josephson current and the phasesF i

0 ( i 51, 2, 3! of the i th
superconducting lead.
4754 ©2000 The American Physical Society
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The outline of this paper is as follows. In Sec. II, th
model Hamiltonian is presented. In Sec. III, we derive
general current formula for mesoscopic ‘‘hybrid’’ multite
minal resonant-tunneling systems, and discuss the rela
between this current expression and the general ti
dependent current formula previously obtained by Wingre
et al. We also obtain the expression of the equilibrium c
rent ~i.e., the dc Josephson current! for the case of zero bia
voltage and without external time-dependent fields. In S
IV, we use our general current formula to study the dc
sephson current through a noninteracting single-level cen
region. Two special cases, with either two or three termin
~superconducting leads!, are studied. Finally, a brief sum
mary is presented in Sec. V.

II. MODEL

The multiterminal resonant-tunneling system under c
sideration is shown in Fig. 1. The total Hamiltonian is sp
into three parts:H(t)5Hleads(t)1Hcen(t)1HT(t), where
Hleads models multiterminal superconducting~or normal!
electrodes,Hcen is for the central region, andHT describes
the tunneling part between leads and the central region
spectively.

Here we assume that thenth lead is a BCS supercon
ductor with the order parameterDn , which can also describe
the normal lead of noninteracting electrons just by tak
Dn50. The time-dependent external fields applied to
system are treated by the adiabatic approximation,2,3 i.e., the
external fields only affect the quasiparticle energiesenk(t)
~where the indexn means thenth lead, andk is the index
representing the quantum state! and the Cooper pair energie
but the occupation number of particles at each state (n,k)
remains unchanged. The single-particle energyenk(t), which
is time dependent under the external fields, can be sepa
into three parts: enk(t)5enk

0 1mn(t)5enk
0 1qVn1Wn(t),

where enk
0 is the time-independent single-particle ener

without the time-dependent external fields and the dc b
voltage,Vn is the dc bias voltage on thenth lead,Wn(t) is a
time-dependent part from the external field, andq is the
charge of the electron. Thus the Hamiltonian of all superc
ducting leads,Hleads(t) is14,17

FIG. 1. A schematic diagram for the multiterminal mesosco
hybrid system under consideration.
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Hleads~ t !5 (
n,k,s

enk~ t !anks
† anks1(

n,k
@D̃nank↓an,2k↑

1D̃n* an,2k↑
† ank↓

† #, ~1!

whereanks
† (anks) are the creation~annihilation! operators of

the electron in thenth lead. It should be emphasized that
the presence of the external fields, not only the energy of
quasiparticle, but also the energy of the Cooper pair,
affected,18 so the complex superconducting order parame
D̃n becomes

D̃n5Dn expF2
2i

\ E
0

t

mn~t!dtG , ~2!

whereDn is the complex superconducting order paramete
thenth lead without the external field. WhenDn50, thenth
lead returns to a normal state.

The Hamiltonian of the interacting central region is wr
ten in a compact form as

Hcen~ t !5(
j ,s

e j s~ t !cj s
† cj s1Hcen

i ~$cj s
† %,$cj s%,t, . . . !,

~3!

wherecj s
† (cj s) are the creation~annihilation! operators of

the electron in the state (j ,s) of the central region, and
Hcen

i models the interactions. Note that the energy lev
@e j s(t)# of the central region can be affected by the chan
of the voltage on the lead,e j s(t)5e j s

0 1(nuj snmn(t),
with (nuj sn51.19 In deriving the formal current
expression, we permit that various interaction
such as the electron-electron Coulomb interact
( j ,s; j 8,s8( j ,sÞ j 8,s8)U j s, j 8s8cj s

† cj scj 8s8
† cj 8s8 , the electron-

phonon interaction ( j ,s,qMqcj s
† cj s(dq

†1d2q)
1(q\vqdq

†dq , etc., may exist in the central region.
The tunneling HamiltonianHT(t) between leads and th

central region is

HT~ t !5 (
n,k, j ,s

@vns, j~ t !anks
† cj s1vns, j* ~ t !cj s

† anks#. ~4!

Here we allow that the external fields can also be applied
the barriers;20 then the hopping matrix elementvns, j (t) will
depend on timet. Moreover, here we also permit some lea
which have the properties: the hopping matrix elem
vns, j (t) is zero, butuj sn is not zero. These leads can mod
the gate terminal.

Now we perform a unitary transformation with the unita
operatorU as18

U~ t !5expF (
n,k,s

i

\ S Fn
0

2
1E

0

t

mn~t!dt D anks
† anksG ; ~5!

then the Hamiltonian of the leads and the tunneling p
change into

c
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Hleads5 (
n,k,s

enk
0 anks

† anks

1(
n,k

@ uDnuank↓an,2k↑1uDnuan,2k↑
† ank↓

† #, ~6!

HT~ t !5 (
n,k, j ,s

H vns, j~ t !e
i
\[Fn

0/21E
0

t

mn(t)dt]anks
† cj s1H.c.J ,

~7!

where Fn
0 and uDnu are the phase and the modulus of t

complex superconducting order parameter of thenth super-
conducting lead.~HereafteruDnu will be written asDn for
simplicity.! The Hamiltonian of the central region,Hcen(t),
is unchanged under this unitary transformation. After t
transformation, both the superconducting phases and
time-dependent factors from the finite voltages appear o
as a factor in the new hopping matrix elements, which ma
the calculation much easier.

III. TIME-DEPENDENT CURRENT FROM A
SUPERCONDUCTING LEAD TO THE CENTRAL REGION

A. General expression for the current

The current from thenth superconducting lead to the ce
tral region can be calculated from the evolution of the to
number operator of the electrons in thenth lead, Nn

5(k,sanks
† anks . Then one finds~in units of \51)

I n~ t !52q^Ṅn&5 iq^@Nn~ t !,H~ t !#&

52q Re(
k,s, j

vns, j~ t !eiFFn
0/21E

0

t

mn(t)dtG i ^anks
† ~ t !cj s~ t !&

[I n↑~ t !1I n↓~ t !. ~8!

In the following we only need to derive the expression of t
time-dependent current with a special spin, sayI n↑(t); then
the currentI n↓(t) can be easily obtained fromI n↑(t) by ex-
changing the up-spin and the down-spin. When the sin
particle energiese j s and the hopping matrix elementsvns, j ,
etc., are independent of the spin,I n↓(t) will be equal to
I n↑(t). Because the system contains superconducting com
nents, it is convenient to introduce the 232 Nambu repre-
sentation in whichG,(t,t8) andGr ,a(t,t8) take the forms17

Ga,b
r ,a ~ t,t8![7 iu~6t7t8!

3S ^$Xa↑~ t !,Yb↑
† ~ t8!%& ^$Xa↑~ t !,Yb↓~ t8!%&

^$Xa↓
† ~ t !,Yb↑

† ~ t8!%& ^$Xa↓
† ~ t !,Yb↓~ t8!%&

D ,

~9!
s
he
ly
s

l

e-

o-

Ga,b
, ~ t,t8![ i S ^Yb↑

† ~ t8!Xa↑~ t !& ^Yb↓~ t8!Xa↑~ t !&

^Yb↑
† ~ t8!Xa↓

† ~ t !& ^Yb↓~ t8!Xa↓
† ~ t !&

D .

~10!

HereX andY represent arbitrary single-particle annihilatio
operators, such asanks , cj s , etc.a andb are level indices
as nk, j. In the Nambu representation, the currentI n↑(t) is
given by

I n↑~ t !52q Re(
k, j

vn↑, j~ t !eiFFn
0/21E

0

t

mn(t)dtGGj ,nk;11
, ~ t,t !.

~11!

We next need to solve the Green functionGj ,nk;11
, (t,t). By

using the Dyson equation2,3

G,5g,1GrSrg,1GrS,ga1G,Saga, ~12!

whereg,,a are the exact Green functions without the co
pling between the leads and the central region. We ass
the normal density of statesrn

N(e) is independent ofe in
superconducting leads,g,,a can be expressed as18

(
k

gnk,nk
, ~ t,t8!

5 i E dern
N~e! f ~e!r̃n~e!e2 i e(t2t8)S 1 Dn /ueu

Dn /ueu 1 D ,

~13!

(
k

gnk,nk
a ~ t,t8!5 iu~ t82t !E dern

N~e!
e2 i e(t2t8)

En*
S ueu Dn

Dn ueu D ,

~14!

and gj ,nk
,,r ,a(t,t8)50, where En[Ae22Dn

2, and r̃n(e)
5u(ueu2Dn)ueu/En is the corresponding dimensionless BC
density of states; i.e.,r̃n(e) is the ratio of the superconduc
ing density of states,rn

S(e), to the normal density of states
rn

N(e). f (e) in Eq. ~13! is the Fermi distribution function,
f (e)5@exp(e/kBT )11#21, in which T is the temperature
Sr ,a,, is the self-energy function,
Sj ,nk
r ,a ~ t,t8!5d~ t2t8!S vn↑, j* ~ t !e2 iFFn

0/21E
0

t

mn(t)dtG 0

0 2vn↓, j~ t !eiFFn
0/21E

0

t

mn(t)dtG D , ~15!
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Snk,mk8
r ,a (t,t8)50 ~for any nk, mk8), andSa,b

, (t,t8)50 ~for
any a, b). With the help of the Dyson equation~12!, the
exact Green functionsg,,a, and the self-energySr ,a,,, we
have

Gj ,nk;11
, ~ t,t8!

5(
j 8

E dt1$Gj j 8;11
r

~ t,t1!S j 8,nk;11
r

~ t1 ,t1!gnk,nk;11
, ~ t1 ,t8!

1Gj j 8;12
r

~ t,t1!S j 8,nk;22
r

~ t1 ,t1!gnk,nk;21
, ~ t1 ,t8!

1Gj j 8;11
,

~ t,t1!S j 8,nk;11
a

~ t1 ,t1!gnk,nk;11
a ~ t1 ,t8!

1Gj j 8;12
,

~ t,t1!S j 8,nk;22
a

~ t1 ,t1!gnk,nk;21
a ~ t1 ,t8!%.

~16!

Substituting the expression ofGj ,nk;11
, (t,t) into Eq. ~11!, we

note thatmn(t)5qVn1Wn(t). It is useful to define the fol-
lowing generalized linewidth functions:

G j 8 j ;11
n

~e,t1 ,t !52prn
N~e!vn↑, j~ t !vn↑, j 8

* ~ t1!ei * t1

t Wn(t)dt,
~17!

G j 8 j ;21
n

~e,t1 ,t !52prn
N~e!vn↑, j~ t !vn↓, j 8~ t1!ei (*0

t
1*

0

t1)Wn(t)dt.
~18!

In terms of these generalized linewidth functionsGn(e,t1 ,t),
the time-dependent currentI n↑(t) can be expressed as

I n↑~ t !522qIm(
j , j 8

E
2`

t

dt1E de

2p
e2 i e(t12t)

3H eiqVn(t2t1)G j 8 j ;11
n

~e,t1 ,t !F f ~e!r̃n~e!Gj j 8;11
r

~ t,t1!

1
ueu

En*
Gj j 8;11

,
~ t,t1!G

2
Dn

ueu
eiqVn(t1t1)eiFn

0
G j 8 j ;21

n
~e,t1 ,t !

3F f ~e!r̃n~e!Gj j 8;12
r

~ t,t1!1
ueu

En*
Gj j 8;12

,
~ t,t1!G J .

~19!

The time-dependent current expression@Eq. ~19!# is the
central result of this work. It describes the current in terms
local quantities: Green functions of the central region. T
current formula can be used for nonlinear regions~i.e., arbi-
trarily high biasVn and arbitrarily strong external fields!,
multiple terminals, arbitrary interactions in the central regi
~e.g., the electron-electron interaction, the electron-pho
interaction, etc.!, either superconducting or normal leads, a
with the external fields being applied to any parts of t
system. Notice that in the current formula@Eq. ~19!#, the
anomalous Green functionsG12

r andG12
, emerge, which re-

flect the character of the superconducting leads, and lea
the Josephson current and Andreev reflection current.

If the system does not contain any superconducting c
ponents, i.e., the energy gapDn ~for all n) is zero, then the
f
s

n

to

-

terms with anomalous Green functions vanish, and the c
rent expression@Eq. ~19!# reduces to

I n↑~ t !522qIm(
j , j 8

E
2`

t

dt1E de

2p
e2 i e(t12t)

3G j 8 j ;11
n

~e2qVn ,t1 ,t !@ f n~e!Gj j 8;11
r

~ t,t1!

1Gj j 8;11
,

~ t,t1!#, ~20!

wheref n(e) is the Fermi distribution function of electrons i
the nth lead: f n(e)5 f (e2qVn)5@exp(e2qVn)/kBT 11#21,
in which we have taken a transformation of the integral va
able. When the system is only a two-terminal system and
spin of the electron is neglected, the time-dependent cur
@Eq. ~20!#, reduces to the same formula previously obtain
by Wingreen and co-workers.2,3

B. Case of zero-bias voltage and no external fields

In this section, we consider the system in equilibrium, i.
all dc voltagesVn have the same values~set to be zero here
after!, and no external time-dependent fields applied. Th
G j j 8;11

n (e,t1 ,t) andG j j 8;21
n (e,t1 ,t) will be independent, with

time variablest1 and t, and the Green functionsG11
r ,,(t,t1)

andG21
r ,,(t,t1) only depend on the time difference. By tak

ing the Fourier transformation, the current formula@Eq. ~19!
becomes

I n↑522qIm(
j , j 8

E de

2p H G j 8 j ;11
n

~e!F f ~e!r̃n~e!Gj j 8;11
r

~e!

1
ueu

2En*
Gj j 8;11

,
~e!G

2
Dn

ueu
G j 8 j ;21

n
~e!eiFn

0F f ~e!r̃n~e!Gj j 8;12
r

~e!

1
ueu

2En*
Gj j 8;12

,
~e!G J , ~21!

where G j 8 j ;11
n (e)[2prn

N(e)vn↑, jvn↑, j 8
* and G j 8 j ;21

n (e)
[2prn

N(e)vn↑, jvn↓, j 8 . In the zero-voltage case the Gree
function G,(e) can be easily calculated by the followin
relation21:

G,~e!5 f ~e!@Ga~e!2Gr~e!#. ~22!

Substituting Eq. ~22! into Eq. ~21!, and noting that
G j 8 j ;11

n (e)5G j j 8;11
n* (e), then the first square bracket in E

~21! vanishes, and we have

I n↑512qIm(
j , j 8

E de

2p

Dn

ueu
f ~e!F r̃n~e!Gj j 8;12

r
~e!

1
ueu

2En*
~Gj j 8;12

a
~e!2Gj j 8;12

r
~e!!GG j 8 j ;21

n
~e!eiFn

0
.

~23!
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In the above current expression only anomalous Green fu
tions emerge, which means the normal single-particle tun
ing does not contribute to the current, and only the Andre
reflection contributes to the dc Josephson current.

IV. DC JOSEPHSON CURRENT THROUGH A
NONINTERACTING SINGLE-LEVEL CENTRAL REGION

A. Multiterminal current formula

For a noninteracting single-level central region, its Ham
tonianHcen becomes

Hcen5(
s

e0c0s
† c0s . ~24!

Here we assume that the energy levele0 is independent of
the spins, and we only consider the case of zero-bias vo
age and without external fields. The Green functions of
central region,G00;12

r (e) andG00;21
r (e) can be obtained from

the Dyson equation~hereafter the subscript 00 will be omi
ted!,

Gr~e!5gr~e!1gr~e!S̃r~e!Gr~e!, ~25!

wheregr(e) is the exact Green function of the central regi
without the coupling between the central region and
leads:

gr~e!5S 1

e2e01 i01
0

0
1

e1e01 i01

D , ~26!

and S̃r(e) is the self-energy function. In the following, w
make further simplifications:~1! We assume a wide
bandwidth approximation, i.e., we assume that the linewid
G11

n and G21
n are independent of energy.5 ~2! We take the

hopping matrix elementvns,0 to be real.~3! We assumevns,0

is independent of the spins, leading toG11
n 5G21

n [Gn and
I n↑5I n↓ . ~4! All leads have the same energy gapDn , and
will be written asD hereafter. Under the above simplifica

tions, the self-energyS̃(e) reduces to18

S̃r~e!5(
n,k

S0,nk
r gnk,nk

r Snk,0
r 5

2
i

2 (
n

Gn

Ae22D2 S ueu 2De2 iFn
0

2DeiFn
0 ueu D .

~27!

Substitutinggr(e) and S̃r(e) into the Dyson equation@Eq.
~25!#, one easily obtains the Green functionGr(e) as

Gr~e!5
1

B S ~g22
r 212S̃22

r ! S̃12
r

S̃21
r ~g11

r 212S̃11
r !

D , ~28!

where the notationB(e) is defined by

B~e!5~g11
r 212S̃11

r !~g22
r 212S̃22

r !2S̃12
r S̃21

r . ~29!
c-
l-
v

-

-
e

e

s

Then substituting the Green functionsG12
r (e) and G21

r* (e)
into the currentI n↑ @Eq. ~23!#, one can derive the currentI n
(I n5I n↑1I n↓52I n↑) as

I n52qE de

2p

GnD2

e22D2
f ~e!Im

1

B* ~e!
(
m

Gm sin~Fn
02Fm

0 !.

~30!

This current expression can be used to calculate the
Josephson current through a noninteracting single-level c
tral region coupled to superconducting leads. The currenI n

can be split into two parts:16,22 I n5I n
c1I n

d , whereI n
c is from

the continuous spectrum forueu.D, in which B has a imagi-
nary part; andI n

d originates from the discrete spectrum f
ueu,D, in which the imaginary part ofB is a positive infini-
tesimal (i01).

B. Two-terminal system

In the following numerical calculation, we take symmetr
barriers, i.e.,G15G2[G; and zero temperature (T50).
Then the currentI 1

c reduces to

I 1
c52qS E

2`

2D

1E
D

` D de

2p

f ~e!~G!3D2

uBu2~e22D2!
2er̃~e!sin~dF!,

~31!

wheredF5F1
02F2

0. For ueu.D, B becomes

B5e22e0
212i er̃~e!G2~G!22

~G!2D2

2~e22D2!
@12cos~dF!#.

~32!

The currentI 1
d reduces to

I 1
d5

q~G!2D2

D22 ẽ0
2

sin~dF!

2Ae0
21

~G!2D2@11cos~dF!#

2~D22 ẽ0
2!

, ~33!

where ẽ0 is the renormalized energy level, which can
obtained from the equation

ẽ05
2Gu ẽ0u

AD22 ẽ0
2

2Ae0
21

~G!2D2@11cos~dF!#

2~D22 ẽ0
2!

, ~34!

with 2D, ẽ0,0.
In this case the dc Josephson current~includes bothI c and

I d) originates from Andreev reflection at the interface b
tween the superconducting leads and the central region.
ure 2 shows the currentI 1

c ~from the continuous spectrum! vs
the central region’s energy levele0, which can be controlled
by the gate voltage. Two peaks emerge arounde056D, due
to the fact that the Andreev reflection probability is one
e56D.23,24Figure 3 shows the currentI 1

d ~from the discrete
spectrum! vs e0 for the same parameters as in Fig. 2. O
peak emerges ate050, because the weight of the renorma
ized discrete levelẽ0 is proportional to
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S e0
21

~G!2D2@11cos~dF!#

2~D22 ẽ0
2!

D 21/2

,

which has the largest value whilee050. When ẽ0 ap-
proaches the gapD, the currentI 1

d rapidly increases. Then
with ue0u increasing further, Eq.~34! does not have a solutio
between2D and 0; i.e., there is no discrete spectrum, le
ing to I 1

d50. Notice that the scales are different in Figs.
and 3; in fact the currentI 1

d is about eight times larger tha
the currentI 1

c .
Now we investigate dc Josephson currentI 1 vs the phase

difference dF. For G,D ~the weak-coupling case!, the
curve of the currentI 1

c vs dF is similar to a sine curve

FIG. 2. dc Josephson currentI 1
c ~from the continuous spectrum!

vs the energy level of the central region,e0, with the phase differ-
encedF53p/2 and the energy gapD51. The solid, dotted, and
dashed curves correspond toG50.1, 0.07, and 0.04, respectively

FIG. 3. dc Josephson currentI 1
d ~from the discreted spectrum! vs

the energy levele0, with dF5p/2. The other parameters are th
same as in Fig. 2.
-

However, forG;D, or G.D, the shape of the curve slightl
deviates from the sine curve~not shown here!. The currentI 1

d

vs dF for different values of the energy levele0 is shown in
Fig. 4. Whene050, the currentI 1

d abruptly changes atdF
5p, which is similar to theS-N-S system without the barri-
ers at theN-S interfaces.16 With e0 apart from zero, the
abrupt jump will be suppressed, and gradually approac
sinelike curve.

It should be mentioned that the currentI 1
c is a p-junction

Josephson relation,25,26 i.e., I 1
c5I 1c

c sin(dF1p), not I 1
c

5I 1c
c sindF, and I 1

c is negative atdF5p/2. However, the
currentI 1

d is a general Josephson relation.

C. Three-terminal system

Now we investigate the dc Josephson currentI n in the
three-terminal system. From Eqs.~29! and~30!, if all phases
Fn

0 of superconducting leads change by the same amount
currentI n does not change. Therefore we can set one of
phases of leads equal to zero, sayF1

050. Figure 5 shows the
currentI 1

c vs the phaseF2
0 for G,D with different values of

F3
0. All curves are similar to the sine curve, but shifted wi

each other a certain approximate value. In fact, the currenI 1
c

can be expressed approximately as

I 1
c5I 21

c sin~F1
02F2

0!1I 31
c sin~F1

02F3
0!.

For G.D, the currentI 1
c cannot be written as two separate

parts, as mentioned above. In particular, curves ofI 1
c vs F2

0

will be different from the sine curve for some values ofF3
0

~see Fig. 6!.

V. CONCLUSIONS

In this paper, we have obtained an extended general ti
dependent current formula through an interacting central
gion coupled to two normal leads obtained by Wingreen a

FIG. 4. dc Josephson currentI 1
d vs the phase differencedF for

different values of the energy levele0, with G50.1 andD51. The
solid, dashed, and dotted curves correspond toe050, 0.03, and 0.1,
respectively.
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co-workers,2,3 to systems with multiterminal superconduc
ing leads, i.e., to mesoscopic hybrid multiterminal system
This current formula can be used to study nonlinear elec
transport through an interacting central region in the pr
ence of time-dependent external fields applied to any part
the system. As an application of this current formula,
investigated the dc Josephson current for a noninterac
single-level central region. For a two-terminal system,
studied the properties of the dc Josephson current, and
cussed in detail the behavior of its two parts:I 1

c from the
continuous spectrum, andI 1

d from the discrete spectrum. Fo
a three-terminal system, we investigated the current-ph
relation, and, in particular, the difference between the ca
G,D andG.D.

FIG. 5. dc Josephson currentI 1
c vs the phase of the secon

superconducting leadF2
0 in a three-terminal system forG,D. The

parameters areG50.3, D51, ande0521, and curves 1, 2, and 3
correspond toF3

050, p/4, andp/2, respectively.
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Büttiker, ibid. 58, 12 993~1998!.
20Q.-F. Sun and T.-H. Lin, J. Phys.: Condens. Matter9, 3043

~1997!.
21A. Levy Yeyati, A. Martin-Rodero, and F. J. Garcia-Vidal, Phy

Rev. B51, 3743~1995!.
22M. Hurd and G. Wendin, Phys. Rev. B51, 3754~1995!.
23G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev.

25, 4515~1982!.
24Q.-F. Sun, J. Wang, and T.-H. Lin, Phys. Rev. B59, 3831~1999!.
25Th. Mühge, N. N. Garif’yanov, Yu. V. Goryunov, G. G. Khaliul

lin, L. R. Tagirov, K. Westerholt, I. A. Garifullin, and H. Zabel
Phys. Rev. Lett.77, 1857~1996!.

26D. J. van Harlingen, Rev. Mod. Phys.67, 515 ~1995!.


