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We report a microscopic and general theoretical formalism for electrical response, which is appropriate for
both dc and ac weakly nonlinear quantum transport. The formalism emphasizes the fundamental requirements
of current conservation and gauge invariance. It makes a formal connection between linear response and
scattering matrix theory at the weakly nonlinear level. We present three examples of application of this
formalism to analyze the dynamic conductance and the nonlinear-nonequilibrium charge distribution for mul-
tiprobe coherent quantum conductdrS0163-18209)06411-5

Over the past decade tremendous efforts have been dbas been made to generalize it to nonlinear dc situ&tiois
voted in developing quantum transport theories that are apghe purpose of this paper to report a general theoretical for-
propriate for quantum coherent conductbi/hile substan- malism derivable from the response theory which is appro-
tial progress has been achieved, so far there is still a lack giriate for both dc and ac weakhonlinearregimes in addi-

a general formalism that works not only in the linear dction to linear situations.

regime but also in both dc and ac nonlinear regimes. ac Before going into the details, we summarize the main
transport involves time-dependent fields, thus, induction igesults:(1) A general formalism for deriving ac and dc non-
important as characterized by, e.g., the existence of displactinear transport coefficients has been found, which is current
ment current. Many transport theories do not consider thisonserving and gauge invariari2) The formalism is put
ingredient, resulting in a violation of current conservation asinto a form that is numerically calculable for mesoscopic or
pointed out by Bttiker and Christed. The nonlinear dc even microscopic conductors order by order in weak bias and
transport coefficients appear in front of powers of externain w.° (3) The results obtained from SMT are reproduced in
bias voltage in the expression of electric current: this formalism, thus we make the formal connection between
=1({V,}), whereV, is the potential at a probe labeled A  SMT and the response theory at the weakly nonlinear dc and
correct theory must maintain gauge invariance in addition t@c level.(4) Generalized notions of theharacteristic poten-
the current conservation: the physics should not changtal, the nonequilibrium chargeand the Lindhard functions
when potential at the probes are all shifted by the same corare derived naturally from the time-dependent internal re-
stant amount. sponse(5) We give three examples for applications of this

So far, current conserving and gauge invariant quantunfiormalism.
transport has been analyzed using the scattering matrix A response theory considers a time-dependent
theory (SMT).>~* Electron-electron(e-© interaction was perturbatior H'=V(r,t)=V(r)e %lcosft) to the Hamil-
found to play the essential role in obtaining these fundamentonianH, of a conductor. Herel , contains the kinetic en-
tal requirements. In SMT, various ac frequency ergy, the influence of an external static magnetic field, the
w-independent partial density of stat#2DO9 appear natu- confining potential of the conductor, or any other static po-
rally, which characterizes the scattering. The SMT is quitetential. We assume that the problemtdf has been solved,
intuitive and can be implemented numerically for practicalH,¢,= €,4,,, and we are interested in the effecttdf. It is
calculations. However, so far no theoretical formalism ex- crucial to realize that just solving the problem ldf,+H’
ists that can systematically go beyond the lineaac and  will not generate a current conserving and gauge invariant
second-order dc transport coefficients, and that satisfies cutransport theory, since the time-varying field induces an in-
rent conservation and gauge invariance. There are also rernal potenti#l U(t) and a vector potential(t), which
approaches available to analyze the weakly nonlinear amust be included into the analysis. The reason one has to
transport. Hence, up to now, these important problems haveonsiderA(t) is due to the Ampere-Maxwell's law and Fara-
not been investigated systematically. It is well known thatday’s law. It is these internal potentials that generate such
the linear transport can be discussed using either SMT orffect as a displacement current. Mathematically, one needs
using linear respon¥’ In the linear dc regime, connection to solve a quantum-mechanical problem in conjunction with
of these two approaches has been formalizat attempt the Maxwell equations. We thus start from a self-consistent
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(up to the Hartree levelHamiltonianH coupled with the  formal expressions of, can be written in the frequency
Helmholtz equation in the Lorentz gauge space to explicitly see the dependence. We then formally

evaluate the matrix elementg,§nn=(m|p|n) using the ba-

, eA eAy >
H=Ho+H'+eU- o | p=— sis set ¢,. This gives, for example, p0)mn=fmn
[(V=U)mntiAL- W/ (enmt o+in). Here,U; and A;
eA,| eA e?A? is the first term on the right-hand side of E¢4) and (5),
—(p— T) : Z_rnc+ oM .Y respectively; andlvnm(r)zw’;(r)ﬁz//m(r) with D the stan-
dard double-sided derivative operafog,,=e€,—€m, fam
VZU(r,t)—ﬁfU(r,t)= —Amsp(rt), @) =f(e,)—f(ey), and » is infinitesimal. Higher order terms

can be derived in similar fashion but to save room we leave
3) them out of this paper. Using the matrix elements we can,
still formally, derive the expression for the charge
wheredp is the total charge involved in the response includ-and current density distributiofl, which enter the
ing those of the induced andll is the total current density, fight-hand side of the Helmholtz Egs.(2) and
A, is the vector potential for the static external magnetic(3): Sp(r,t) === nn(p1) mnts m and 8J(r,t)=
field. Atomic units will be used in the following by setting x5 (5. (i\W,.—Ay*4,). This makes Eqs(2) and
h=c=e=2m=1. _ _ (3) into a solvable form.
We shall be interested in a multiprobe conductor small “yyith the charge and current density distributions, from
enough such that quantum coherence is maintained. Insideggys (2) and (3), we can derive equations for the CP’s and

probea far away from the scattering region, the amplitude of c\yp’s. This is one of the central results of this work
the external disturbance is written ®s,. Since there is no

V2A(r,t)— d2A(r,t) = — 47 8J(r 1),

hope of solving the apove equations exactly, we §hal| calcu- —Vzu{a}l(r,w)— wzu{a},(f,w)=47T5P{a}|(f,w) (6)
late U(r,t) andA(r,t) in a series form, expanded in powers
of V, using the characteristic potentla% (CP) —Vza{a}l(f,w)—wza{a}l(f,w)=47T5J{a}|(f,w), (7)
Uu(r,t), uup(r,t)... and thecharacteristic vector potential
(CVP) a,(r,t) anda,g(r,t). . ., where the nonlinear charge densily is given by
1 dn, (r,w)
= Z e {ap\
U ; uava+ ZQEIB uaBVaV,B_l— (4) 5p{a}|(r,w):$_j drln(r,rl,(l))U{a}l(rl,w)
L d
A=§ a,V,+ EHEB CHAVAVICIES (5) — | dryF(r,ry, ) a, (r,). ()

These expansions make sense at weakly nonlinear regimgl® current  density is  given by 83, (1, )
The CP and CVP, respectively, characterize the system fe:—iEmn(&'{a}l)ananr EmnEk(5p{a}|7k)mna{a}kzjf:‘n1/fn/k!
sponse to an external time-dependent perturbation. The phygith |>k. And (8p(a))mn is Obtained from the density-
ics associated with weakly nonlinear quantum transport is . L. " :
related to the CP’s and CVP’s of the appropriate orgee matrix element: £)mn==yc a(9p(a) JmnVia), With Vig,
below). Gauge invariance puts constraints on the CP and®VaVg.. .-
CVP, for instance  Z,u,(r,)=1, =,U.p(r,t) The first term of the right-hand side of E@) is given by
=3 gU,p(r,1)=0, and in generak , gu 5, =0. For CVP, thﬁ_ Lrequerg)cy-(;iependdent_ Iociﬁl ?Bensity t;f stt'qltb@olf),
_ : : which can be derived using the Green’s functions. For ex-
we h_aveEYE.aeq_a}l—O. Here, the subscriptf}, is a short ample the lowest ordgone index LDOS is given by
notation ofl indicesy, 8,7, -- .

The guantum-mechanics problem of is solved in * :
the stagdard series fashionpby iteratingqt)he Liouville-von M:_f dy;, >, f”_m wn(r)t//m(r)Wm,.](rl)-xla.
Neumann equation for the density operdfbrdp/dt € mn €nm €nmt @17 9
=—i[H,p]. In this procedure we expand bdthandp into ©
series form order by order in the external perturbationThe integration in Eq(9) is along the boundary of probe,
strength: p=po+=,_1p;; H=H,+3,_,;H,. Using Egs. and unit vectorx,, is the direction along this probe. This
(1), (4), and (5), H, is easily derived in terms of CP’s and expression can be further written in terms of the Green’'s
CVP's. From the Liouville-von Neumann equation, order byfunction. The second term on the right of H8) is the in-
order we thus derive equations for the terms These equa- duced charge written in terms of a frequency-dependent
tions can be formally solved in terms of the CP’s and CVvP’stindhard function'* which is given by
at the appropriate ordep; is related tou, anda, ; is * *
related Ec)(?uag, Uy, aa‘,lland a,p; etc. For exampl%z, the T(r,ry,w)=> f”mwn(r)lﬂm(r)lp’ﬁ(rl)w”(rl)_
lowest order term isp,=—iU,f" dt;[H}(t1),po]U], mn €nmt @17
where HiEUZHluo, U,=exp(=iH), and p, The third term on the right of Eq(8) is the frequency-
=3,f(ey)[n){n| is the equilibrium density matrix. These dependent response function for the induced vector potential

(10
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dN,| "2 [dN;\ 2
(E) (d—) } a9

fnm : m er‘l
)= U (D PN Winp(r1) 1) Ciy d

o enmtotin ' c3, " de

Some discussions of Eg&6) and(7) are neededl) The  where dN;/de is the total DOS on plate, and C,;
characteristic potentials CP and CVP have multiple indices=[4ma/A+ X2 ,1/(dN;/de)] ! is the usual electrochemi-
that are necessary in order to study nonlingabias trans-  cal capacitancé. This scaling relation gave us an extra
port coefficients(2) The concept of LDOS is generalized to handle on the microscopics of a conductor: by measuring
higher order: at linear ordépne index it is the frequency- capacitances and forming the scaling combination, all that is
dependent injectivity,while at higher ordefmore than one left is the energy derivatives of DOS. We have checked that
indices it also contains some internal response of the loweffor another system, being two large metallic rods with their
order. While their expressiorisot shown except in Eq9)] ends at a distanca apart, exactly the same scaling of
are complicated, they are all expressed in terms of the,;,/C3, is obtained, the only difference being that the fac-
Green's functions(3) It can be shown that the Lindhard tor 2 on the left side changes to 6. Equati@d) suggests an
function is related to the first-ordeone index total LDOS, interesting experiment by using two mesoscopic conductors
JdrylI(r,r;,@)=dn(r,w)/de, where  dn(r,w)/de  that couple capacitively, and one can study the DOS of the
=3 ,dn,(r,w)/de. (4) After solving the CP and CVP from tiny conductors by measuring the ac response as a function
Egs. (6) and (7), we obtain the density-matrix elements of the amplitude of the ac bias.

(p1)mn at the appropriate order. This allows the explicit cal-  Linear Dynamic ConductanceAs a second example we
culations of the charge and current distributi@m(r,») and  derive the dynamic conductanGe,s(w). G,z is defined by
8J(r,w) using the expressions given above. Various transthe electric current flowing through the probe 1}

port properties can be obtained immediately. =34G.p(w)Vs. 1) is obtained by a spatial integration
Nonlinear “Capacitance.” From the total charge distri- of the current density across the transverse direction of the
bution, we can write probe, where the expression for current density has been

given above. We obtain,

Q.= CgVat 12D, Cog NV +---, (12
R dNg(w)

Gaﬁ(w)zGaﬁ(O)—iw[fde(—aef) de
where Q,, is just the appropriate spatial integration of the

charge density. Hence, the nonlinear theory naturally allows dﬁa(f,w)
the definition ofnonlinear capacitanceoefficients, - de ug(r, o)
dM (1, w) .
Clap(@)= [ ropya (1.0, 13 e o) a5
r
where indeX > 1. The spatial integral ovdf means integrat- where
ing over the region, where the charQds positive(or nega- A
tive). At linear order in bothw and voltage, i.e., wheh=2 dM (r,w) FarWim(r 1) - X1 Wmn
and letting w=0, this gives? the electrochemical T:—J dym% e fotig
capacitancé,which is of great experimental interé$tNote (16)

that due to the finite screening length resulting from small

D.OS. fo_r mesoscopic con_ductors, a nonequ|l|br|um Charg(i’—|ere,Gaﬁ,(0) is the familiar linear dc conductance that can
distribution can be established even when there is dc COYse caleulated using the transmission coefficlent

pling between the two capacitor “plategthe +Q and—Q — ) .
regiond.’* If we keep the generab dependence but still dNa(r.®)/de is another LDOS dual ofin,(r,w)/de which
work on the linear bias orderl €2), Eq. (13 gives the IS obtained by. substitutiow— —w and 7= nin Eq. (9)'
general linear dynamic response of the charge. A further vergiM .(r,w)/de is dual of dM,(r,w)/de. Keeping the first-
interesting result of Eq(13) is the nonlinear “capacitance” order term inw and neglecting the contribution from the
for |>2 and settingo=0. Such a quantity does not seem to CVP, this result reduces exactly to the emittance obtained by
have a geometrical counterpart, and it measures the degree ®MT.>® The w-dependent parts are given as a sum of two
the nonequilibrium charge pile-up at the nonlinear order. ~ contributions. The first is due to the external perturbation at a
In particular, let's calculat€ g, for a parallel plate ca- reservoir, and it is determined by the-dependent total
pacitor, where each plate has an afeand is infinitely thin, PDOSdN,z(w)/de. The second is due to induction and is
and they are located in space on thez plane at positions determined by the internal response. It is not difficult to
x=0 and x=a. Using Eq.(6) to solve the characteristic Vverify =,G,z(w)=0.
potentials at different regions from=—o to x=+o, Weakly Nonlinear Dynamic Conductand®ur theory can
matching the solutions at=0,a, we obtainu; and uy;. be used to analyze weakly nonlinear ac transport to higher
Within the Thomas-Fermi approximation of the Lindhard order in bias, and we have derived the second-order expres-
function, from Eq.(13) we obtain sion defined by the second-order electric currdff



7578 ZHONG-SHUI MA, JIAN WANG, AND HONG GUO PRB 59

=34,G,a,(0)V,gV,. |Ey2) is calculated in similar fashion by measuring the ratio of the nonlinear conductances one
as thel® of the last example using the expression givenOPtains the microscopics of a tunneling device.

above. The final result is The above three examples demonstrate the power of the
' present theoretical formalism: it is suitable for analyzing
weakly nonlinear dc and ac transport of mesoscopic conduc-

i dN,g,(@) tors systematically. The expressiofid) and (17) are gen-
Gupy(@)=GCp,(0)— @ J df(_ﬁef)T eral to all orders ofw. Settingw=0 they recover exactly
those of SMT? thus providing the connection between SMT
dﬁa(r,w) and the response theory at the weakly nonlinear ac level.
—f dr Tugy(f,w) Central to the theory is the self-consistent coupling of the
quantum-mechanical equation with the Maxwell equations,
dM (1, ) thus the internal response of the system is taken into account,
+T'a57(r’w) . (17)  which is crucial to obtain electric current conservation and

gauge invariance. Conceptually, we have introduced the mul-
tiple indexed, frequency-dependent characteristic potentials
(CP and CVP and the local density of states. We have also
extended the concept of nonequilibrium charge distribution
to the nonlinear order. These physical quantities are neces-
sary in order to analyze weakly nonlinear ac response. For a
mesoscopic conductbor even an atomic scale conductbr,

the scattering Green’s function can be evaluated numerically
§Rus our theoretical formalism provides the basis of numeri-
cal analysis for a variety of quantum conductors. In this pa-
per, we have used the Lorentz gauge for electrodynamics.
Clearly any gauge should work as is required by the Max-
well equations. Finally, we comment that our response
theory is appropriate to equilibrium or near-equilibrium
properties. For far-from-equilibrium problems one may em-
ploy the nonequilibrium Green’s functibfifor proper analy-

sis.

In this result,G,4,(0) is the second-order weakly nonlinear
dc conductance, which was studied using SMiThe current
conservation and gauge invariance can be explicitly con
firmed:2,G,5,(0)=0; 2,G,p,(@)=24G,5,(w)=0.

Keeping terms linear ino, from Eq. (17) we derive the
dynamic conductance to the ordel?2. For the example of
double-barrier resonant tunneling device, near a resonan
energyE~E,, the scattering matrix takes the Breit-Wigner
form. This allows simple expressions for the CPsu,
ZFa/F, u11=—2(F1F2/F2)(56/|A|2), where 5€E(E
—E;), A=ée+i(I'/2), T, is the decay width due to
barrier @, andI'=I";+1I',. Evaluating all the terms of Eq.
(17) using these expressions, we derive

dGy(w=0)/dw r( 1 1

e P e — - =, 18
Guw=0) “2 |A|? Fz) 18
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