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We report a microscopic and general theoretical formalism for electrical response, which is appropriate for
both dc and ac weakly nonlinear quantum transport. The formalism emphasizes the fundamental requirements
of current conservation and gauge invariance. It makes a formal connection between linear response and
scattering matrix theory at the weakly nonlinear level. We present three examples of application of this
formalism to analyze the dynamic conductance and the nonlinear-nonequilibrium charge distribution for mul-
tiprobe coherent quantum conductors.@S0163-1829~99!06411-5#
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Over the past decade tremendous efforts have been
voted in developing quantum transport theories that are
propriate for quantum coherent conductors.1 While substan-
tial progress has been achieved, so far there is still a lac
a general formalism that works not only in the linear
regime but also in both dc and ac nonlinear regimes.
transport involves time-dependent fields, thus, induction
important as characterized by, e.g., the existence of displ
ment current. Many transport theories do not consider
ingredient, resulting in a violation of current conservation
pointed out by Bu¨ttiker and Christen.2 The nonlinear dc
transport coefficients appear in front of powers of exter
bias voltage in the expression of electric current:I
5I ($Va%), whereVa is the potential at a probe labeleda. A
correct theory must maintain gauge invariance in addition
the current conservation: the physics should not cha
when potential at the probes are all shifted by the same c
stant amount.2

So far, current conserving and gauge invariant quan
transport has been analyzed using the scattering m
theory ~SMT!.2–4 Electron-electron~e-e! interaction was
found to play the essential role in obtaining these fundam
tal requirements. In SMT,2 various ac frequency
v-independent partial density of states~PDOS! appear natu-
rally, which characterizes the scattering. The SMT is qu
intuitive and can be implemented numerically for practic
calculations.5 However, so far no theoretical formalism e
ists that can systematically go beyond the linear-v ac and
second-order dc transport coefficients, and that satisfies
rent conservation and gauge invariance. There are als
approaches available to analyze the weakly nonlinear
transport. Hence, up to now, these important problems h
not been investigated systematically. It is well known th
the linear transport can be discussed using either SMT
using linear response.6,7 In the linear dc regime, connectio
of these two approaches has been formalized7 and attempt
PRB 590163-1829/99/59~11!/7575~4!/$15.00
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has been made to generalize it to nonlinear dc situation.8 It is
the purpose of this paper to report a general theoretical
malism derivable from the response theory which is app
priate for both dc and ac weaklynonlinear regimes in addi-
tion to linear situations.

Before going into the details, we summarize the ma
results:~1! A general formalism for deriving ac and dc non
linear transport coefficients has been found, which is curr
conserving and gauge invariant.~2! The formalism is put
into a form that is numerically calculable for mesoscopic
even microscopic conductors order by order in weak bias
in v.9 ~3! The results obtained from SMT are reproduced
this formalism, thus we make the formal connection betwe
SMT and the response theory at the weakly nonlinear dc
ac level.~4! Generalized notions of thecharacteristic poten-
tial, the nonequilibrium charge, and the Lindhard functions
are derived naturally from the time-dependent internal
sponse.~5! We give three examples for applications of th
formalism.

A response theory considers a time-depend
perturbation7 H8[V(r ,t)5V(r )e2dutucos(Vt) to the Hamil-
tonianHo of a conductor. Here,Ho contains the kinetic en-
ergy, the influence of an external static magnetic field,
confining potential of the conductor, or any other static p
tential. We assume that the problem ofHo has been solved
Hocn5encn , and we are interested in the effect ofH8. It is
crucial to realize that just solving the problem ofHo1H8
will not generate a current conserving and gauge invar
transport theory, since the time-varying field induces an
ternal potential2 U(t) and a vector potentialA(t), which
must be included into the analysis. The reason one ha
considerA(t) is due to the Ampere-Maxwell’s law and Fara
day’s law. It is these internal potentials that generate s
effect as a displacement current. Mathematically, one ne
to solve a quantum-mechanical problem in conjunction w
the Maxwell equations. We thus start from a self-consist
7575 ©1999 The American Physical Society
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~up to the Hartree level! Hamiltonian H coupled with the
Helmholtz equation in the Lorentz gauge

H5Ho1H81eU2
eA

2mc
•S p2

eA0

c D
2S p2

eA0

c D • eA

2mc
1

e2A2

2mc2
~1!

¹2U~r ,t !2] t
2U~r ,t !524pdr~r ,t !, ~2!

¹2A~r ,t !2] t
2A~r ,t !524pdJ~r ,t !, ~3!

wheredr is the total charge involved in the response inclu
ing those of the induced anddJ is the total current density
A0 is the vector potential for the static external magne
field. Atomic units will be used in the following by settin
\5c5e52m51.

We shall be interested in a multiprobe conductor sm
enough such that quantum coherence is maintained. Ins
probea far away from the scattering region, the amplitude
the external disturbance is written asVa . Since there is no
hope of solving the above equations exactly, we shall ca
late U(r ,t) andA(r ,t) in a series form, expanded in powe
of Va using the characteristic potentials2 ~CP!
ua(r ,t), uab(r ,t). . . and thecharacteristic vector potentia
~CVP! aa(r ,t) andaab(r ,t). . .,

U5(
a

uaVa1
1

2(ab
uabVaVb1••• ~4!

A5(
a

aaVa1
1

2(ab
aabVaVb1•••. ~5!

These expansions make sense at weakly nonlinear reg
The CP and CVP, respectively, characterize the system
sponse to an external time-dependent perturbation. The p
ics associated with weakly nonlinear quantum transpor
related to the CP’s and CVP’s of the appropriate order~see
below!. Gauge invariance puts constraints on the CP
CVP, for instance (aua(r ,t)51, (auab(r ,t)
5(buab(r ,t)50, and in general(gPbua$b% l

50. For CVP,

we have(gPaa$a% l
50. Here, the subscript$b% l is a short

notation ofl indicesg,d,h,••• .
The quantum-mechanics problem of Eq.~1! is solved in

the standard series fashion by iterating the Liouville-v
Neumann equation for the density operator:10 dr̂/dt

52 i @H,r̂ #. In this procedure we expand bothH and r̂ into
series form order by order in the external perturbat
strength: r̂5 r̂01( l 51r̂ l ; H5Ho1( l 51Hl . Using Eqs.
~1!, ~4!, and ~5!, Hl is easily derived in terms of CP’s an
CVP’s. From the Liouville-von Neumann equation, order
order we thus derive equations for the termsr̂ l . These equa-
tions can be formally solved in terms of the CP’s and CVP
at the appropriate order:r̂1 is related toua andaa ; r̂2 is
related touab , ua , aa , and aab ; etc. For example, the
lowest order term is r̂152 iU o*2`

t dt1@H18(t1),r̂o#Uo
† ,

where H18[Uo
†H1Uo , Uo[exp(2iHot), and r̂o

5(nf (en)un&^nu is the equilibrium density matrix. Thes
-

c

ll
a

f

u-

e.
e-
ys-
is

d

n

s

formal expressions ofr̂ l can be written in the frequenc
space to explicitly see thev dependence. We then formall
evaluate the matrix elements (r̂ l)mn5^mur̂ l un& using the ba-
sis set cn . This gives, for example, (r̂1)mn5 f mn

@(V2U1)mn1 iA1•Wmn#/(enm1v1 ih). Here, U1 and A1
is the first term on the right-hand side of Eqs.~4! and ~5!,
respectively; andWnm(r )[cn* (r )DJcm(r ) with DJ the stan-
dard double-sided derivative operator;7 enm[en2em , f nm
[ f (en)2 f (em), andh is infinitesimal. Higher order terms
can be derived in similar fashion but to save room we lea
them out of this paper. Using the matrix elements we c
still formally, derive the expression for the charg
and current density distribution,10 which enter the
right-hand side of the Helmholtz Eqs.~2! and
~3!: dr(r ,t)5( l(mn( r̂ l)mncn* cm and dJ(r ,t)5

2( l(mn( r̂ l)mn( iWnm2Acm* cn). This makes Eqs.~2! and
~3! into a solvable form.

With the charge and current density distributions, fro
Eqs. ~2! and ~3!, we can derive equations for the CP’s an
CVP’s. This is one of the central results of this work

2¹2u$a% l
~r ,v!2v2u$a% l

~r ,v!54pdr$a% l
~r ,v! ~6!

2¹2a$a% l
~r ,v!2v2a$a% l

~r ,v!54pdJ$a% l
~r ,v!, ~7!

where the nonlinear charge densitydr is given by

dr$a% l
~r ,v!5

dn$a% l
~r ,v!

de
2E dr1P~r ,r1 ,v!u$a% l

~r1 ,v!

2E dr1F~r ,r1 ,v!•a$a% l
~r1 ,v!. ~8!

The current density is given by dJ$a% l
(r ,v)

52 i (mn(dr$a% l
)nmWmn1(mn(k(dr$a% l 2k

)mna$a%k
cm* cn/k!

with l .k. And (dr$a% l
)mn is obtained from the density

matrix element: (r̂ l)mn[(gPa(dr$a% l
)mnV$a% l

with V$a% l

5VaVb.. ..
The first term of the right-hand side of Eq.~8! is given by

the frequency-dependent local density of states~LDOS!,
which can be derived using the Green’s functions. For
ample the lowest order~one index! LDOS is given by

dna~r ,v!

de
52E dy1a(

mn

f nm

enm

cn* ~r !cm~r !Wmn~r1!• x̂1a

enm1v1 ih
.

~9!

The integration in Eq.~9! is along the boundary of probea,
and unit vectorx̂1a is the direction along this probe. Thi
expression can be further written in terms of the Gree
function. The second term on the right of Eq.~8! is the in-
duced charge written in terms of a frequency-depend
Lindhard function,11 which is given by

P~r ,r1 ,v!5(
mn

f nmcn* ~r !cm~r !cm* ~r1!cn~r1!

enm1v1 ih
. ~10!

The third term on the right of Eq.~8! is the frequency-
dependent response function for the induced vector pote
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F~r ,r1 ,v!5 i(
mn

f nmcn* ~r !cm~r !Wmn~r1!

enm1v1 ih
. ~11!

Some discussions of Eqs.~6! and~7! are needed.~1! The
characteristic potentials CP and CVP have multiple indi
that are necessary in order to study nonlinear~in bias! trans-
port coefficients.~2! The concept of LDOS is generalized
higher order: at linear order~one index! it is the frequency-
dependent injectivity,3 while at higher order~more than one
indices! it also contains some internal response of the low
order. While their expressions@not shown except in Eq.~9!#
are complicated, they are all expressed in terms of
Green’s functions.~3! It can be shown that the Lindhar
function is related to the first-order~one index! total LDOS,
*dr1P(r ,r1 ,v)5dn(r ,v)/de, where dn(r ,v)/de
5(adna(r ,v)/de. ~4! After solving the CP and CVP from
Eqs. ~6! and ~7!, we obtain the density-matrix elemen
( r̂ l)mn at the appropriate order. This allows the explicit c
culations of the charge and current distributiondr(r ,v) and
dJ(r ,v) using the expressions given above. Various tra
port properties can be obtained immediately.

Nonlinear ‘‘Capacitance.’’ From the total charge distri
bution, we can write

Qa5(
b

CabVb11/2(
bg

CabgVbVg1•••, ~12!

where Qa is just the appropriate spatial integration of t
charge density. Hence, the nonlinear theory naturally allo
the definition ofnonlinear capacitancecoefficients,

C$a% l
~v!5E

G
drdr$a% l 21

~r ,v!, ~13!

where indexl .1. The spatial integral overG means integrat-
ing over the region, where the chargeQ is positive~or nega-
tive!. At linear order in bothv and voltage, i.e., whenl 52
and letting v50, this gives12 the electrochemica
capacitance,3 which is of great experimental interest.13 Note
that due to the finite screening length resulting from sm
DOS for mesoscopic conductors, a nonequilibrium cha
distribution can be established even when there is dc c
pling between the two capacitor ‘‘plates’’~the 1Q and2Q
regions!.14 If we keep the generalv dependence but stil
work on the linear bias order (l 52), Eq. ~13! gives the
general linear dynamic response of the charge. A further v
interesting result of Eq.~13! is the nonlinear ‘‘capacitance’
for l .2 and settingv50. Such a quantity does not seem
have a geometrical counterpart, and it measures the degr
the nonequilibrium charge pile-up at the nonlinear order.

In particular, let’s calculateCabg for a parallel plate ca-
pacitor, where each plate has an areaA and is infinitely thin,
and they are located in space on they–z plane at positions
x50 and x5a. Using Eq. ~6! to solve the characteristi
potentials at different regions fromx52` to x51`,
matching the solutions atx50,a, we obtainu1 and u11.
Within the Thomas-Fermi approximation of the Lindha
function, from Eq.~13! we obtain
s

r

e
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-

s
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e
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of

2
C111

C11
3

5
d

deF S dN2

de D 22

2S dN1

de D 22G , ~14!

where dNi /de is the total DOS on platei, and C11

5@4pa/A1( i 51
2 1/(dNi /de)#21 is the usual electrochemi

cal capacitance.3 This scaling relation gave us an ext
handle on the microscopics of a conductor: by measur
capacitances and forming the scaling combination, all tha
left is the energy derivatives of DOS. We have checked t
for another system, being two large metallic rods with th
ends at a distancea apart, exactly the same scaling o
C111/C11

3 is obtained, the only difference being that the fa
tor 2 on the left side changes to 6. Equation~14! suggests an
interesting experiment by using two mesoscopic conduc
that couple capacitively, and one can study the DOS of
tiny conductors by measuring the ac response as a func
of the amplitude of the ac bias.

Linear Dynamic Conductance.As a second example w
derive the dynamic conductanceGab(v). Gab is defined by
the electric current flowing through the probea: Ia

(1)

5(bGab(v)Vb . Ia
(1) is obtained by a spatial integratio

of the current density across the transverse direction of
probe, where the expression for current density has b
given above. We obtain,

Gab~v!5Gab~0!2 ivH E de~2]e f !
dNab~v!

de

2E drFdn̄a~r ,v!

de
ub~r ,v!

1
dM̄a~r ,v!

de
•ab~r ,v!G J ~15!

where

dMa~r ,v!

de
52E dy1a(

mn

f nmWnm~r1!• x̂1aWmn

enm1v1 ih
.

~16!

Here,Gab(0) is the familiar linear dc conductance that c
be calculated using the transmission coefficien7

dn̄a(r ,v)/de is another LDOS dual ofdna(r ,v)/de which
is obtained by substitutionv→2v andh→2h in Eq. ~9!.
dM̄a(r ,v)/de is dual of dMa(r ,v)/de. Keeping the first-
order term inv and neglecting the contribution from th
CVP, this result reduces exactly to the emittance obtained
SMT.2,3 The v-dependent parts are given as a sum of t
contributions. The first is due to the external perturbation a
reservoir, and it is determined by thev-dependent total
PDOSdNab(v)/de. The second is due to induction and
determined by the internal response. It is not difficult
verify (aGab(v)50.

Weakly Nonlinear Dynamic Conductance.Our theory can
be used to analyze weakly nonlinear ac transport to hig
order in bias, and we have derived the second-order exp
sion defined by the second-order electric currentIa

(2)
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5(bgGabg(v)VbVg . Ia
(2) is calculated in similar fashion

as theIa
(1) of the last example using the expression giv

above. The final result is

Gabg~v!5Gabg~0!2
i

2
vH E de~2]e f !

dNabg~v!

de

2E dr S dn̄a~r ,v!

de
ubg~r ,v!

1
dM̄a~r ,v!

de
•abg~r ,v! D J . ~17!

In this result,Gabg(0) is the second-order weakly nonline
dc conductance, which was studied using SMT.2 The current
conservation and gauge invariance can be explicitly c
firmed: (gGabg(v)50; (aGabg(v)5(bGabg(v)50.

Keeping terms linear inv, from Eq. ~17! we derive the
dynamic conductance to the ordervV2. For the example of
double-barrier resonant tunneling device, near a resona
energyE;Er , the scattering matrix takes the Breit-Wign
form. This allows simple expressions for the CPs:15 ua
5Ga /G, u11522(G1G2 /G2)(de/uDu2), where de[(E
2Er), D[de1 i (G/2), Ga is the decay width due to
barrier a, andG5G11G2 . Evaluating all the terms of Eq
~17! using these expressions, we derive

dG111~v50!/dv

G111~v50!
5 iv

G

2S 1

uDu2
2

1

G2D , ~18!

whereG111(v50) is the second-order weakly nonlinear
conductance.2 This result is very interesting: it suggests th
c

i-

,

-

ce

t

by measuring the ratio of the nonlinear conductances
obtains the microscopics of a tunneling device.

The above three examples demonstrate the power of
present theoretical formalism: it is suitable for analyzi
weakly nonlinear dc and ac transport of mesoscopic cond
tors systematically. The expressions~15! and ~17! are gen-
eral to all orders ofv. Settingv50 they recover exactly
those of SMT,2 thus providing the connection between SM
and the response theory at the weakly nonlinear ac le
Central to the theory is the self-consistent coupling of
quantum-mechanical equation with the Maxwell equatio
thus the internal response of the system is taken into acco
which is crucial to obtain electric current conservation a
gauge invariance. Conceptually, we have introduced the m
tiple indexed, frequency-dependent characteristic poten
~CP and CVP! and the local density of states. We have a
extended the concept of nonequilibrium charge distribut
to the nonlinear order. These physical quantities are ne
sary in order to analyze weakly nonlinear ac response. F
mesoscopic conductor1 or even an atomic scale conductor,16

the scattering Green’s function can be evaluated numeric
thus our theoretical formalism provides the basis of num
cal analysis for a variety of quantum conductors. In this p
per, we have used the Lorentz gauge for electrodynam
Clearly any gauge should work as is required by the M
well equations. Finally, we comment that our respon
theory is appropriate to equilibrium or near-equilibriu
properties. For far-from-equilibrium problems one may e
ploy the nonequilibrium Green’s function17 for proper analy-
sis.

We gratefully acknowledge financial support by the RG
of the SAR Government of Hong Kong under Grant N
HKU 7112/97P, by the NSF of China, the NSERC
Canada, and the FCAR of Quebec.
he

ear

in-
1See, for example, S. Datta,Electronic Transport in Mesoscopi
Conductors~Cambridge University Press, New York, 1995!.

2For a review, see M. Bu¨ttiker and T. Christen, inMesoscopic
Electron Transport, Vol. 345 of NATO Advanced Study Inst
tute, Series E: Applied Science, edited by L. L. Sohn, L. P.
Kouwenhoven, and G. Schoen~Kluwer Academic Publishers
Dordrecht, 1997!, p. 259.
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