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A Ginzburg-Landau theory is developed for unconventional superconductors with the three relevant singlet
pairing channelgi.e., s, d,2_y2, andd,, channel Various consequences of the subdominant charinelss
andd,, channel are examined in detai(1) In the case of al,2_,2+is-wave superconductor, we reproduce
an earlier result that there is a second-order zero-field transition from thedpurg: phase to the time-
reversal-symmetry—T -) breakingd,2_,»+is-phase at the temperatufgs. The structure of a single vortex
above and below ps is fourfold and twofold symmetric, respectivel) In the case of @l,2_y2+id,,-wave
superconductor, there is also a second-order zero-field phase transition from the,pyrephase to the
T -breakingd,2_,2+id,,-wave phase at the temperatrgy. . In contrast to the case ind._,2+is-wave
superconductor, the subdominant phasenotbe induced by vortices abovE,, . Below the T -breaking
transition, the subdominant phase in the mixed state is nontrivial: it survives at low fields, but may disappear
above a fieldincreasing with decreasing temperajupeesumably via a first-order transitiof8) By including
the strong-coupling effects, @-breaking—coupling term between tbg=_,» andd,, waves is found to have
significant effects on the low-temperature behaviordgf ,2+id,, superconductors. In a magnetic field, a
dy2_y2tid,, state is always established, but the field dependenagpémplitude abovelpp. is different
from that belowTpp, . Above but not very close tdpp:, the induced minimum gap,=<B/(T—Tpp!).
[S0163-182609)01446-0

[. INTRODUCTION dy2_y2 andd,, channels, the uniform superconducting state
in the absence of magnetic field has been shown to be either
The phase-sensitive experiment of the unusual Josephse@npure state in the dominant channel, or a state with a broken
effect in highT. superconductors evidenced the time-reversal symmetry involving the relevant chanriélm
dy2_,2-wave symmetry of Cooper-pair wave functidns. order to study the vortex states, we develop a Ginzburg-
Thus, at least the problem as what is the dominant channeélandau(GL) theory that includes the above-mentioned sub-
for electrons to pair in higi-, superconductors has been dominant channels. We discuss the consequences of these
resolved. However, a new puzzle arises as what is the sulkhannels on the properties of the superconductors, such as
dominant pairing channel, which seems to have manifesteghe field dependence of the thermal conductivity. The struc-
in a number of experiments, e.g., the observation of surfacqyye of this paper is as follows. The microscopic derivation

induced broken time-reversal symmetry (hereaftey in  f the GL theory(in the weak-coupling limitis presented in
YBCO tunnel junctiong, the observation of fractional vorti- Sec. II. The properties ofl, . .»+is superconductors are
L x2—y

ces trapped in a boundary junctidmnd the abnormal fie_ld described in Sec. Ill. The properties df2_,2+id,, super-
dependence of the low-temperature thermal conductivity . conductors are addressed in Sec. IV. Ayphenoymenological

i 45 ;
in BSCCO, ™ to name only a few. At surfaces, the sqbdoml strong-coupling correction to the weak-coupling theory is de-
nant channel can show up because of a suppression of the

effective critical temperature in the dominast_,2 chan- ve_loped and discussed in Sgc. V with res pect todhe 2

nel. Rather differently, the anomalous reported in Ref. 4 +idyy supercqnductors. Section VI contains a summary and
might require a mechanism to produtelk T -breaking SCMe concluding remarks.

state$” This scenario might work abevs K in thesamples

reported in Refs. 4,5 but failed to explain the data at sub-
Kelvin temperatures in Ref. 5. Instead, field-induced quasid!- DERIVATION OF THE GINZBURG-LANDAU THEORY

particle excitations with purd,2_.-wave gap functions ex- IN THE WEAK-COUPLING LIMIT
plain qualitatively these dafa.
As a modeling study, we consider the relevaiglet The simplest way to derive microscopically a Ginzburg-

subdominant pairing channels in an unconventiahaliper- Landau theory for superconductors is to consider the
conductor to be the andd,, channels, which may be rel- Bardeen-Cooper-ShrieffefBCS) gap equation. At zero
evant to high temperature superconductors. For attractiveenter-of-mass momentum for the Cooper pairs, the gap
pairing interactions in the andd,2_,2 channels, or in the function is
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Vk’k/Ak! BEK! Vk'k/AkI'
A=2 Vi (Copr |Cur ) =2 tanh——, Ayg=2 ——(1-f(e)~f(e)],
K K 2B K’ ekjr"'ekL *

()
wherek’, =k’ +q/2, andf(e€) is the Fermi distribution func-
which follows routinely from the effective BCS Hamil- tion. We now assumA, =S, + D, cos W+ Dé sin 26,, and
tonian. HereE, = Ve +|A,/* is the quasiparticle excitation expand the above equatiéagain using the Poisson identity
spectrum ands=1/T is the inverse temperaturéWe are to the second order iq to find that the Fourier components
using the unitskg=#=c=1, and are measuring energies Sq. Dg. andD, satisfy
from the Fermi surfacgln the weak-coupling limit the sum-

mation over momentum in the gap equation is understood to 0=—N(0)V{2asS,+K[20°S,+ (qﬁ—qi)Dq
be restricted near the Fermi surface. Before going into fur-

ther details, we need to specify the pairing interacn . +(Gxy+dyax) Dyl

Due to the tetragonal symmetry of the copper planes, it is

rather reasonable to assume the following form\gy 0=—N(0)Vy2_,2{apDy+K[g?Dq+ (a5 —5) Sq1},
View = Vet Vyo_y2(K2—k2) (k' 2—k'2) + 4V, K,k kK, 0=—N(0)Vy{ap: Dy K[G*Dg + (ccly+ yth) Sy}

whereK:vﬁylz reflects the rigidity of the order parameters.
Resorting to real space, and using the gauge-invariant gradi-
(20 ent operatoll=—iV—2eA (with A the vector potentialin
substitution of —iV, and finally combining the nonlinear
homogeneous terms in E¢), we obtain the complete GL

=Vs+V,2_y2C0S 20y COS 20, + Vyy Sin 26, Sin 26, .

Henceforth, the subscripts, 22, and,, are channel in-

dices referring to ths, d,2 2, andd,y channels of the pair- o ationgup to the third order in the order paramejeds-

ing interaction, respectivelyy is the angle between the geriping pairing in all of the three most relevant spin-singlet
wave vectork and thea axis in the copper-oxide plane. BY channels

symmetry, the gap function can be expressed as
2asS+ y[2|9/2S+|D|?S+|D’|?S+(S*D+c.c)D
Ay=S+D cos 20+ D’ sin 26y, (3
+(S*D’ +c¢.c)D' ]+ K[2[1?S+ (11~ 115)D
whereS D, andD' are complex amplitudes of the gap func-
tion in thes, d,2_y2, andd,, channels, respectively, and are
also called as therder parametersinserting Egs(2) and
(3) into Eq.(1), expanding the gap equation to the third orderapD + y[ §|D|?D + ;|D'|?D+|S|?D+(S*D +c.c)S
in the order parameterdusing the Poisson identity

+ (I, +11,11,)D']=0,

1 ’ ’ 2 2_172 —
(1/2E)tanh(BE/2)=TS (w2 +E?) " with w,, being the Fer- +3(D*D’+c.c)D' J+K[II*D + (I~ I1})S]=0, (5
mion Matsubara frequengywe obtain the GL equations in ) . 5 Limis )
the uniform case, abD’+9[7|D'|°D'+3|D|*D’' +|S|*D’ +(S*D’ +c.c)S

*M/ 2y —
0= —N(O)Vo2areS+ o[ 2SS [DI?S+ |D' S +(D*D’ +c.c)D]+K[I12D’ + (I1,I1,+I1,I1,)S] =0.

L (S*D+c.OD+(SD' +c.c)D ]}, For completeness and general purposes, we need a GL free-

energy functional. Following from Eq$5), it is given by
0=—N(0)V,2_2{apD+ [ :|D|?D+ %|D’'|?D +|S|?’D N(O) )
(0)Vy y{ D Y[ 3|D] z|D’| S| F= 5 fQ2a8|S|2+aD|D|2+aD’|D |2+’y[|S|4+§|D|4
+(S*D+c.c)S+3(D*D’+c.c)D']}, (4)
+3|D’|*+[s|?|D|>+ |8 D'|*+2|D|?/D'|?
0=—N(0)Vy,{ap/D'+4[7|D'|?D"+3[D|?D’ +|8/*D’ +1(S* D+c.c)?+3(S' D' +c.c)?+ L(D* D’ +c.c)?]
+(S*D’+C.C.)S+%(D*D,‘FC.C.)D]}. +K(2|HS|2+|HD|2+|HD/|2)

Here N(0) is the normal-state density of stat¢BOS) +K{(TLX+iI1,y)D [ (I, x—iI1,y)S]* +c.c}
at the Fermi surfaceq;= InT/T; (i=SD,D’) with T, the * Y * Y

bare critical temperatures at the channel: Tg I +10,.  TI—TIy. , I+ 1T,
~1.14w.exd —1N(0)Vs], and Tpp ~1.1dw.exd—2/ 2 X+i 2 y|D 2 X
N(0)Vy2_y2,,] (With o, the energy cutoff for the pairing
interaction. Finally y=/"° deTZ,(wi+€?) 2. On the I, 11, *

c . > 2
other hand, the rigidity of the order parameters can be probed ' 2 y|S| +ec. +L)(VXA) /8, ©)

by the long-wavelengths¢t ) spatial variation of the order
parameters. For this purpose, it suffices to consider the linwhere uniformity along the axis is assumed, anfl, de-
earized gap equation but with a small center-of-mass monotes integration over theb plane. The prefactor dfi(0)/2
mentumq (<<kg) for each Cooper pair, could be obtained from a microscopic derivation of the su-
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percurrent, but it can also be obtained by the inspection thanal conductivity of Krishanat al*
the free energy reduces to the superconducting ground-state On the other hand, &i<Tgp, T is already broken in the
energy at zero temperature. The last ternfiis the mag- uniform phase. Lowest-order perturbative treatmenSasg
netic energy. The equilibrium supercurrent can now be easilyo longer valid aff<Tgp. SandD are now of competing
obtained from the functional derivative of the free energyorder far from the core with a locked relative phaser/2
with respect to the vector potentiéF/ SA=0. It can be seen because of the fact that they are uniform there. In other
clearly that the GL equation®r the free-energy functional words, symmetry consistency requires tiatdevelops a
would be identical to that derived previously fakz_,2  winding component-e'’ in addition to thee " and e
+is superconductors if the,, channel were shut down, and components, i.e., S~ae'’+be®’+ce '+ higher-order
would be equivalent to that investigated fdgz_,2+id,, terms near the vortex core. Thus generdi§’=a’+b?
superconductors if theswave channel were disregarded. +c?+2(ab+ac)cos ¥+ 2bccos 4, developing a striking
Moreover, the gradient terms f@ and D’ are symmetric twofold, rather than a fourfold, symmetry near the vortex
with respect to each other under a rotationma#. core. The situation is similar for tHe component. The rela-
tive phase varies again near and around the vortex, but is
locked to = /2 far away from the core. As the twofold
lll. dy2_y2+is SUPERCONDUCTORS symmetry is generated solely frome'?, the quantitya(r
. . . 3 —o0)= iy can also be thought of as the order parameter of
This case has been studied previouSly,” so that we the twofold-symmetric vortex structure. Recent numerical

shall first recapitulate some (_assennal points that interest Yalculations support the scenario that a structure phase tran
and add some novel discussions.

We assume thaf.> T« as is the case in hialfi- super- sition for the vortex profile convolute with the uniform
conductors DefinerD :s er| With ag<0 gpctimizping T-br_eaking phase transi_tidﬁ.Such an exotic vortex can
the free enérgy Eo[ﬁ?%ne ?indsDthat theDunifo.rm bulk phase possibly be observed either by magneto-optical spectros-

. . . copy, or more possibly by its response to a “rotating” ap-
below the highest bare critical temperatdrg is a pureD _ ~T T i _
phase atasp>—2/3, or above a critical temperatufp plied current)=J(coswtx+ sinwty). At low fields an_d in a
=T§/T2 at which the system undergoes a Second_ordelpigh—quality crystal, there should be a resonance in the vor-
phase tricmsition to & -broken phase$,D) (=i 7,1), with tex dissipation at a frequency comparable to the scale of the
7=|S//|D| =~ [Basgt 2)/(4+ 2a ]’ RS energy barrier for the vortex to rotate by an anglen@® or

= = SD sbl-

Although there is no uniforns at T>Tgp, Scan be in- .
duced by inhomogeneities, such as surfadeegwin bound-
arie9, disorders, and vortices, due to the mixed-gradien
terms in Eq.(6). Of special interest is th& component gen-

The mixing of the two order parametefsandD gives a
ontrivial upper critical fieldB.,. In our case, the linearized
L equations are

erated by vortices. AT>Tgp, theScomponent is subdomi- 2asS+ K[ 21125+ (12— T12)D]=ES
nant and vanishes whei® is uniform (e.g., far from the S o '
vortex corg. Thus it can be obtained perturbatively. Assume apD +K[TI2D + (12— T12)S]=ED

D~e€'? in cylindrical coordinates and in the gauge b o ’

=A(r) 8. Sincell?—I12 transforms a®“?'? and scales as Where we have added an eigenenergy témn the right-
1/r2 atr—o, we immediately see that to the first ord®r hand side of the equations=0 corresponds to the solution

~a(r)ed?+b(r)e '’ [the concrete forms cd(r) andb(r) of the GL equation;. The condition .that the ground—state en-
are unimportant, except that badifr) andb(r) vanish ag €9y Eq=0 determ'lnes the upper critical field. Th|s prqblem
and 1f2 asr—0 and, respectively so that|S|2~a(r)? has been treated in Refs. 11 and 12. where an .|rr.1pI|C|t §o|u-
+b(r)2+2a(r)b(r)cos 4. (For complexa andb, there are  tion for Bco was obyamed. Here we give an epr|C|_t solution
¢-independent phase shifts in the argument of the cosing/ong the line of Sigrist and Veda.By the inspection that
function, but they do not alter our general conclusion. This id LIx ,Hy]=2|eB,Twe can define the bosonic operatarand
also the case in similar discussions hereafEnerefore S|2 a' such thafa,a']=1, with

is fourfold symmetric near the vortex core and vanishes far . .

from the co?/e. This result has been obtained previously by a:(HX“L'Hy)/‘/mS’ aT:(HX_'Hy)/‘/KB'

many authors®~*2in different contexts, and has been veri- HereB is the magnetic induction, the fluctuation of which at
fied by our numerical simulatiort$:" In particular, Franz the upper critical field can be neglected. In terms of the

et al. were able to obtain explicit analytical as well as nu-hosonic operators, the above linearized GL equations be-
merical solutions for the single vortex stafayhich is useful  come

for a quantitative comparison between the theory and the

experiments. The relative phase of these two components [4Ke|3(2ﬁ+ 1)+2as]|S+2KeB(aa+a'a") D=ES,

varies continuously around the vortex core. However, such a

kind of vortex-inducedis insufficie_nt, a'_[ least at low fields, 2KeB(aa+ aTaT)S+[2KeB(Zﬁ+ 1)+ ap]D=ED.

to change the bulk quasiparticle DOSN(w)

~1Q[ 2 (w— \/ek2+ |Ay/?) in that the induced compo- Heren=a'a is the Landau quantum numb&andD can be
nent is localized near the vortex core. Moreover, the behavexpanded in terms of the Landau levdis) as (S,D)

ior of Sdoes not show any sign d@ficreasing sensitivityo =3,(an,by)[n). If there were no coupling betwe&andD,

the applied field at decreasing temperatures. Therefore, w&e would obtain the usual result that the lowest Landau level
may rule out the role of the channel in the abnormal ther- n=0 determines the upper critical field. In our case, how-
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ever, the eigenvalue problem involves coupling between all In fact, becaus® andD’ are not coupled by gradients,
the next-nearest Landau levels. Expanding the order paranthe system has two metastable states viith=0 and D’
eters up ton=2, we can find the ground-state eneffy  #0, respectively. The stable state is that with lower free
variationally. The upper critical field is obtained by setting energy. This is related to the fact that tiiebreaking phase
E,=0, and is Be,=[5—agp+ V(aZp+6aspt 25)|By/8 is frustrated at the vortex core dfpp>—1: While winding

with By= — ap/2eK being the temperature-dependent bareSimultaneously foD andD’ increases the kinetic energy of
upper critical field for the purel,_,» superconductors, In "€ superfluid, the nonzerD’-component may lower the
full dimensions, By= — aphc/2eK=dy27&2 with @, homogeneous energy at low fields. We believe the compet-

=2mhcl2e=hc/2e and £2= —K/ap . It should be pointed ing en_ergies may drive a transition from the
out that the above variational ground state is closely similafj x2-y2t |dxy_-wave vortex state to a pud;z_.yz-wa\./e vortex
o that obtained in Refs. 11 and 12, whéare given by a state at a field lower than the upper critical field. By the

: : . o observation that the system is in tltg> 2+id,,-wave
difference between two Gaussian functions. This is cleap oo ot zero field but is not at the upper critical field, and

from the fact thatS has two nodes in such a case, as thethat the system would be in thie ,o+id,,-wave vortex
Landau state witm=2 does. Indeed, these solutions behavegiae gt ali fields wherp, = — 1, there must be at least one
similarly: Be;—Bo at T—Tp (0r asp—), butitis always field-inducedphase transition belowW . The transition
larger thanB,, developing an upward curvature in the tem-fie|q is zero andB, for T=Tpp, and T=0, respectively,
perature dependence near and belgy~~* (It diverges in  and should generally increase with decreasing temperature.
the unphysical regiom— —.) This is due to the very ef- Apove the transition line is the region of putigz_,> mixed
fect that the subdominant channel contributes excess energyate. Such a transition would predict that the quasiparticle
lowering by adjusting the shape of the vortex. excitation gap(which should be proportional tfD’]) de-
Finally, the Abrikosov vortex lattice has also been ad-creases with increasing field below the transition line, and
dressed in the literatur@-'3 The nontrivial fourfold or two-  eventually vanishes above the transition line, where residual
fold vortex structures have important impact on the latticedensity of states can arise from the Doppler-shift due to the
structure. Due to the intrinsic anisotropies arising fri8ff  supercurrent around the vortgx’ (The field-induced low-
they favor generally an oblique vortex lattit®2Of course,  lying quasiparticle states are possible only for a nodal pairing
with increasing temperatures, the amplitudeSoflecreases, function) This translates that aE<Tpp. the thermal con-
and one generally expects a crossover to the hexagonal vaductivity should increase rather than decrease with increas-
tex lattice neaflp . Another way of seeing this is as follows. ing field, being consistent with the general trend of the data
Since the vortex lattice can be constructed in terms of thet sub-Kelvin temperatures in Ref. 5. But the concrete field
(highly degeneratgdyround-state wave functions for the lin- dependence of the thermal conductivity may be different. In
earized GL equations, tannotbe strictly hexagonal if the fact, the mechanism proposed in Ref. 5 rules out EHe
amplitude of then=2 Landau level is finité® Franzetal.  component.
were also able to conclude that the orientational angle of the
vortex lattice with respect to the crystal axisis no longer V. STRONG COUPLING EFFECTS:
arbitrary(as in the case of a single order parametent can PHENOMENOLOGICAL THEORY
only take the four possible values= + 7/2,* 7,*? as was
found in numerical simulations.In the limit of a.gp— % (or

As the electrons in unconventional superconductors are
X , strongly correlated because of thelrshell character, we
T—Tp), however, the amplitude fgn=2) vanishes and we ' incorporate the strong-coupling effects in a pure phe-
recover the us_ual re§ult for_a puEEorder parameter. nomenological manner by including the Zeeman energy.

Before closmg this section, we WO,UId like to point out This energy follows from the interaction between the mag-
that all conclusions drawn fod,z_y2+is superconductors  peic field and the angular momentum of the Cooper pair via
are also true for the,,+is superconductors due to the ap- strong-coupling effects. The underlying mechanism is
parent symmetry. simple: Cooper pairs with a definite projection of internal
orbital momentum will respond to the direction of the vortex
supercurrent, which is determined by the magnetic figld.

IV. dy2_y2+id,, SUPERCONDUCTORS The desired energy densityl?s

We consider the cas&p>Tp, . Similar to the above

case, there is also a second-ordeibreaking phase transi- _47TehJ dzRg(R)AERXEARMih(D*D’—c.c.),
tion. Here the transition temperatufByp: is given by !
aDrDEaD,/|aD|<—1/3 (W|th C(D<0), or TD’D (7)

= ‘/T3D,/TD. Below Tpps and in the uniform phaseD’ whereh_zVA is the local magne_tic inductiorg(R) i_s rep-
—=+iyD with 7=\—(1+3app)/(3+app). However, resentative of the stro_ng-(_:oupllng effect, ang; is the_
aboveTpp, No D’ component can be induced by a vortex in Coopgr-paw wave fqnct|on in the center-of-mass frame, i.e.,
the absence of a mixed-gradient term couplit with D. the, inverse ~ Fourier  transform = ofA,=S+D cos
Below Tpp , Symmetry requires that both components wind D’ Sin 24 subject to the weak-coupling conditiofk|

in the same manner, e.d@,D’~e'’. Also because of this, =Ke,

the upper critical field is independent efy, so long as .

ap/p>—1 (or simply T>0). In this caseP’/D=0 at the ARNJ Ake'k'Rd9k=SJ0(kR)+(D cos 20y

upper critical field, even though'’ # 0 in the absence of the

field. +D’' sin26g)J»(kR),
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with J,(kR) = cosngeRcs¢d¢, and 6 being the angle 0.5
betweerR and thea axis in the copper-oxide plane. Here we
have adopted the local limit by neglecting the spatial varia-
tion of the order parameters in evaluating the strong-
coupling term, since\g<<¢, with ¢ being the coherence 5108
length of the superconductor. Note that the final result of the g
strong-coupling term does not include tBeomponent. This
is not accidental but results from symmetry. For convenience
we rewrite thenondiamagneticontribution(7) in the form
as skK(2ieh)(D*D'—c.c.) with the only phenomenologi-
cal dimensionless paramet@k. Notice that the Zeeman .
term can also be rewritten as gradient terms 0.01482% . , _
SKK[(I1,D)*I1,D’ — (I1,D)*I1,D' +c.c] due to the fact JS LI
that[ 11, ,I1,]=2ieh. oo T(K)

To simplify the matter, here we only consider the
de_y2+id,, superconductor in the presence of a strong- FIG. 1. Gray-scale contour plots ofa) [D| and (b)

coupling effect. In this case, the new free energy reads,  e(T:B)/xe(T,0)=(1/T)exp(~A,/T) as functions oB andT. Here
sk=1/2 and Ap=2|D’|T, with T,=100 K. T,~3.16 K is the

zero-field T -breaking transition temperature. See the text for de-
tails.

/ ]

0.09

N(0)
F= 2o [ aolDl?+ ap D[P+ 513IDI*+ D7
second order ire=6kB (>0 for ease of presentatipmwith
+1|D|?|D’|2+%(D*D’ +c.c)?]+K[|IID|2+|IID'|2 B as the spatial average of the local inductfon

+2ieh5k(D*D'—c.c.)]+fQ(VA)Z/sw. (8) [D|=2/3~¢[D|/4, ©

ID'|=(el3)/(app+1/3). (10)
In the case ofxp=ap <0 and k=0, it is known that This amounts to a minimum gap on the Fermi surface
there could be a first-order phase transition from the Meiss- ,
ner state to a state with a sdeen penetration fofite den- Ao~2|D’|Te~2€TpTorp /(T Torp)= 5kB/(T_TD'D:21
sity of vortices at a lower critical fielt.,.*° (The transition (1)
is of first order sinceB.;#0 atH=H_,.) However, in the ate<1 andT>Tp/p (not very close tol5.p). Neglecting
extreme London limit that we shall adofsuitable for high-  for the moment the suppression due to quasiparticle scatter-
T. superconductojswe expect that bothi;; andB,; would  ing at the vortices, we observe that the thermal conductivity
be too small to alter our subsequent discussion, and will b&. atT>Tp/p in the presence of a minimum g&y is given
neglected. by,

Let us now discuss the outcome of E§). To be concrete

but without loss of generality, we assurie=Tp=100 K  &e(T,B)/ke(T,0)~(1/T)exp(—Aq/T)
andTp, =10 K. As discussed in the previous section, at zero _ _
magnetic field, there is a second ordérbreaking phase (1/T)exi — const< okB/(T—Torp)T]. (12
transition at a critical temperatufig,,, = T,/ Tp~3.16 K. It should be appreciated that this exponential deca is
Below Tpp, D’==xipD. Explicity, |D[?=(3 increasingly sharpened By(T—Tp/p) instead of onlyT. In
+app)D22 and |D'|2=—(1+3ap.p)DY2. Here D2  Ed. (12 a power lawko(T,0)=T? is used, which follows
= — ap/y. Henceforth we shall normalize the order param-ffom the fact that abov&p/p the zero-field state is a pure
eters in units ofD,, and the induction field b, defined dy2_y2 state. Further we have implicitly neglected the change

previously. They are understood as dimensionless quantitie8 ID|, which is merely of the second order ifrom Eq.
unless specified otherwise. Practically for highsupercon- (9. The exponential decay develops a crossovekat T,

ductors, bothD, and B, saturate at low temperaturés.g., 9"

T<20 K): D~2T;~200 K andBy~B,(0)~40-100 T=° B T(T—Tprp) (13)
Following from Eg.(8), in the presence of the nondia- K pron

magnetic coupling between the order parameters and thehich indeed resembles a scaling |&y>=T? addressed by

magnetic field k#0), a pured,2_,2 state is stable only in  Krishana et al* As an example, we plot|D’| and

zero field abovel ., while a T -brokend,z 2+ id,, state  «¢(T,B)/ke(T,0) in this context in Figs. (&) and Xb), re-

is established at all temperatures at finite fields, albeit withspectively. HergD'| is calculated exactly from the optimi-

varying amplitude ofD’. We now concentrate on the low- zation of the free-energy subject to the neglecting of kinetic

field regime and in the London limit, so that the kinetic en-energy and field energy, which should be reliable at low

ergy of the superfluid and the inhomogeneity due to vorticedields. Defining a criterion for the kink transitigimore pre-

can be safely neglected. The same methodology has beersely, crossover the paraboliclike contour lines unambigu-

applied in Ref. 6. AfT>Tpp. and low fields, the order pa- ously reproduce the scaling law for the kink fiéldfhe

rameters can be treated perturbatively, and are, up to thgharpening feature of the crossover is also clear. Including
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the additional suppression &f, from quasiparticle scattering case in a+is superconductor. Below the& -breaking tem-

by vortices would render even better qualitative agreemenperature, we predict a field-induced first-order phase transi-
with the experimental results, but we shall not go into furthertion from thed,2_,2+id,, vortex state to thel,. 2 vortex
details. Interestingly, Eq13) predicts a downward curvature state at higher fields. By including the strong-coupling effect
of the B,(T) curve in a log-log plot on the low-temperature Phenomenologically, thel,z_2+idy, state can be induced
side, which seems to be the case in Fith)4f Ref. 4. We by the magnetic field even above the zero-figlebreaking
have also performed exact calculation of the full set of GL{emperature. Near and above this transition temperature, the
equations ensuing from E¢g) to find that the results in the inducedd,,-wave order parameter may be compared with
low-field regime remains essentially unchanged, while at inSOMe results for the abnormal thermal_ conductivity reported
termediate fields,D’| saturates a while and then diminishes N Ref- 4. Although our theory could give the general trend
gradually together withD| near the upper critical fielB.,. that the thermal conductivity would increase with increasing

The latter is given by, in dimensionless form field below theT -breaking temperature, it cannot result in a
' ' pure dy2_,2 state near the zero temperature, which was
Bepo=[1—ap/p+ V(1+app)?—4ap pok?]/2 claimed to be essential to explain the sub-Kelvin thermal
conductivity in Refs. 5 and 17. If that is the case, we argue
X (1-5K?). that there are two possibilities for the material used in Ref. 5:
At B, the ratio|D’|/|D| is given by either some significant change occurs for thg channel
near zero temperature such that thg-wave order param-
|D’|/|D|= kB, /(app+Bey). eter is suppressed drastically or dg, channel is present at
all.

This means that breaking is retained up to the upper criti-
cal field. However, it is clear, in conjunction with Fig(al,
that the strong-coupling effect vanishes near the critical tem
peratureTl . (whereap p— ), a necessary ingredient for the
theory to be compatible with the general properties of high
T. superconductors at temperatures n€ar Also interest-
ingly, in the context of this theory(i) the power lawx,
«T?is invalid at finite fields abov@& . , which seems to be
C.OnSiStem with the experimental data in Ref. 4, and ‘.NOL.”dt_) ter, and would indirectly induce d,, order parameter.
v_|_olate_d beIOWTD"? even in t_he absencz_e o_f magnetic field; However, odd-parity order parameters cannot be induced in
(il) ke increases with increasing magnetic field bel®yip . singlet-pairing superconductors.

On the other hand, the theary does not .|nvolve a phase tran- In this paper, we have only performed accessible analyti-
sition for the development of a plateau g, because there .,/ g \ye| as qualitative discussions on the theory. More

is no further symmetry breaking at finite fields in our theory. gyo ot and numerical results are awaited. The theory is also
highly useful for studying the vortex dynamics of unconven-
tional superconductors.

We have developed a GL theory with respect to the three
relevant singlet pairing channels in unconventional super-
conductors. The case dft+is superconductors has been dis-  This work was supported by the HKU block grant, the
cussed. The twofold symmetric structure of vortices belownRGC grant of Hong Kong under No. HKU7116/98P and No.
the T-breaking temperature is predicted. The case oHKU 7144/99P, the National Natural Science Foundation of
dy2_2+id,, superconductors has been addressed in detaiChina, and supported, in part, by the Sanzhu Co. Ltd. in
In the absence of strong-coupling effects, we find that theShandong through a Ke-Li Fellowship. Z.D.W. acknowl-
subdominantl,,-wave order parameter cannot be induced byedges the hospitality of the National Center for Theoretical
vortices above th& -breaking temperature, in contrast to the Sciences at Taiwan, where the final version was completed.

It should be pointed out that threand d,, channels are
only two, but not all of the possible subdominant singlet
pairing channels in a,._,»-dominant superconductor. We
have neglected, e.g., thek,(ki—kZ) channel(in the A,
representation which would appear in the case of a more
general pairing interaction, or in a higher-order expansion of
the gap equatioft This order parameter could also be in-
duced by spatial inhomogenieties of tthe 2 order param-

VI. SUMMARY
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