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Subdominant pairing channels in unconventional superconductors: Ginzburg-Landau theory
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Z. D. Wang* and Q. Li
Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong, China

~Received 19 March 1999!

A Ginzburg-Landau theory is developed for unconventional superconductors with the three relevant singlet
pairing channels~i.e., s, dx22y2, anddxy channels!. Various consequences of the subdominant channels~i.e., s
anddxy channels! are examined in detail.~1! In the case of adx22y21 is-wave superconductor, we reproduce
an earlier result that there is a second-order zero-field transition from the puredx22y2 phase to the time-
reversal-symmetry– (Á-! breakingdx22y21 is-phase at the temperatureTDS . The structure of a single vortex
above and belowTDS is fourfold and twofold symmetric, respectively.~2! In the case of adx22y21 idxy-wave
superconductor, there is also a second-order zero-field phase transition from the puredx22y2 phase to the
Á-breakingdx22y21 idxy-wave phase at the temperatureTDD8 . In contrast to the case in adx22y21 is-wave
superconductor, the subdominant phasecannotbe induced by vortices aboveTDD8 . Below theÁ-breaking
transition, the subdominant phase in the mixed state is nontrivial: it survives at low fields, but may disappear
above a field~increasing with decreasing temperature! presumably via a first-order transition.~3! By including
the strong-coupling effects, aÁ-breaking–coupling term between thedx22y2 anddxy waves is found to have
significant effects on the low-temperature behavior ofdx22y21 idxy superconductors. In a magnetic field, a
dx22y21 idxy state is always established, but the field dependence ofdxy amplitude aboveTDD8 is different
from that belowTDD8 . Above but not very close toTDD8 , the induced minimum gapD0}B/(T2TDD8).
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I. INTRODUCTION

The phase-sensitive experiment of the unusual Josep
effect in high-Tc superconductors evidenced th
dx22y2-wave symmetry of Cooper-pair wave functions1

Thus, at least the problem as what is the dominant cha
for electrons to pair in high-Tc superconductors has bee
resolved. However, a new puzzle arises as what is the
dominant pairing channel, which seems to have manifes
in a number of experiments, e.g., the observation of surfa
induced broken time-reversal symmetry (Á hereafter! in
YBCO tunnel junctions,2 the observation of fractional vorti
ces trapped in a boundary junction,3 and the abnormal field
dependence of the low-temperature thermal conductivityke
in BSCCO,4,5 to name only a few. At surfaces, the subdom
nant channel can show up because of a suppression o
effective critical temperature in the dominantdx22y2 chan-
nel. Rather differently, the anomalouske reported in Ref. 4
might require a mechanism to producebulk Á-breaking
states.6,7 This scenario might work above 5 K in thesamples
reported in Refs. 4,5 but failed to explain the data at s
Kelvin temperatures in Ref. 5. Instead, field-induced qua
particle excitations with puredx22y2-wave gap functions ex
plain qualitatively these data.5

As a modeling study, we consider the relevantsinglet
subdominant pairing channels in an unconventionald super-
conductor to be thes and dxy channels, which may be rel
evant to high temperature superconductors. For attrac
pairing interactions in thes and dx22y2 channels, or in the
PRB 600163-1829/99/60~22!/15364~7!/$15.00
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dx22y2 anddxy channels, the uniform superconducting sta
in the absence of magnetic field has been shown to be e
a pure state in the dominant channel, or a state with a bro
time-reversal symmetry involving the relevant channels.7,8 In
order to study the vortex states, we develop a Ginzbu
Landau~GL! theory that includes the above-mentioned su
dominant channels. We discuss the consequences of t
channels on the properties of the superconductors, suc
the field dependence of the thermal conductivity. The str
ture of this paper is as follows. The microscopic derivati
of the GL theory~in the weak-coupling limit! is presented in
Sec. II. The properties ofdx22y21 is superconductors are
described in Sec. III. The properties ofdx22y21 idxy super-
conductors are addressed in Sec. IV. A phenomenolog
strong-coupling correction to the weak-coupling theory is d
veloped and discussed in Sec. V with respect to thedx22y2

1 idxy superconductors. Section VI contains a summary a
some concluding remarks.

II. DERIVATION OF THE GINZBURG-LANDAU THEORY
IN THE WEAK-COUPLING LIMIT

The simplest way to derive microscopically a Ginzbur
Landau theory for superconductors is to consider
Bardeen-Cooper-Shrieffer~BCS! gap equation. At zero
center-of-mass momentum for the Cooper pairs, the
function is
15 364 ©1999 The American Physical Society
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Dk5(
k8

Vk,k8^C2k8,↓Ck8,↑&5(
k8

Vk,k8Dk8

2Ek8

tanh
bEk8

2
,

~1!

which follows routinely from the effective BCS Hamil
tonian. HereEk5Aek

21uDku2 is the quasiparticle excitation
spectrum andb51/T is the inverse temperature.~We are
using the unitskB5\5c51, and are measuring energie
from the Fermi surface.! In the weak-coupling limit the sum
mation over momentum in the gap equation is understoo
be restricted near the Fermi surface. Before going into
ther details, we need to specify the pairing interactionVk,k8 .
Due to the tetragonal symmetry of the copper planes, i
rather reasonable to assume the following form forVk,k8 ,

Vk,k85Vs1Vx22y2~ k̂x
22 k̂y

2!~ k̂8x
22 k̂8y

2!14Vxyk̂xk̂yk̂x8k̂y8

5Vs1Vx22y2 cos 2uk cos 2uk81Vxy sin 2uk sin 2uk8 .

~2!

Henceforth, the subscriptss , x22y2, and xy are channel in-
dices referring to thes, dx22y2, anddxy channels of the pair-
ing interaction, respectively.uk is the angle between th
wave vectork and thea axis in the copper-oxide plane. B
symmetry, the gap function can be expressed as

Dk5S1D cos 2uk1D8 sin 2uk , ~3!

whereS, D, andD8 are complex amplitudes of the gap fun
tion in thes, dx22y2, anddxy channels, respectively, and a
also called as theorder parameters. Inserting Eqs.~2! and
~3! into Eq.~1!, expanding the gap equation to the third ord
in the order parameters@using the Poisson identity
(1/2E)tanh(bE/2)[T(n(vn

21E2)21 with vn being the Fer-
mion Matsubara frequency#, we obtain the GL equations in
the uniform case,

052N~0!Vs$2aSS1g@2uSu2S1uDu2S1uD8u2S

1~S* D1c.c!D1~S* D81c.c.!D8#%,

052N~0!Vx22y2$aDD1g@ 3
4 uDu2D1 1

4 uD8u2D1uSu2D

1~S* D1c.c.!S1 1
4 ~D* D81c.c.!D8#%, ~4!

052N~0!Vxy$aD8D81g@ 3
4 uD8u2D81 1

4 uDu2D81uSu2D8

1~S* D81c.c.!S1 1
4 ~D* D81c.c.!D#%.

Here N(0) is the normal-state density of states~DOS!
at the Fermi surface,a i5 ln T/Ti (i5S,D,D8) with Ti the
bare critical temperatures at thei channel: TS
'1.14vc exp@21/N(0)Vs#, and TD,D8'1.14vc exp@22/
N(0)Vx22y2,xy# ~with vc the energy cutoff for the pairing
interaction!. Finally g5*

2vc

vc deT(n(vn
21e2)22. On the

other hand, the rigidity of the order parameters can be pro
by the long-wavelength (@lF) spatial variation of the orde
parameters. For this purpose, it suffices to consider the
earized gap equation but with a small center-of-mass
mentumq (!kF) for each Cooper pair,
to
r-

is

r

ed

n-
o-

Dk,q5(
k8

Vk,k8Dk8,q

ek
18

1ek
28

@12 f ~ek
18

!2 f ~ek
28

!#,

wherek68 5k86q/2, andf (e) is the Fermi distribution func-
tion. We now assumeDk,q5Sq1Dq cos 2uk1Dq8 sin 2uk , and
expand the above equation~again using the Poisson identity!
to the second order inq to find that the Fourier component
Sq , Dq , andDq8 satisfy

052N~0!Vs$2aSSq1K@2q2Sq1~qx
22qy

2!Dq

1~qxqy1qyqx!Dq8#%,

052N~0!Vx22y2$aDDq1K@q2Dq1~qx
22qy

2!Sq#%,

052N~0!Vxy$aD8Dq81K@q2Dq81~qxqy1qyqx!Sq#%,

whereK5vF
2g/2 reflects the rigidity of the order parameter

Resorting to real space, and using the gauge-invariant gr
ent operatorP52 i¹22eA ~with A the vector potential! in
substitution of2 i¹, and finally combining the nonlinea
homogeneous terms in Eq.~4!, we obtain the complete GL
equations~up to the third order in the order parameters! de-
scribing pairing in all of the three most relevant spin-sing
channels,

2aSS1g@2uSu2S1uDu2S1uD8u2S1~S* D1c.c.!D

1~S* D81c.c.!D8#1K@2P2S1~Px
22Py

2!D

1~PxPy1PyPx!D8#50,

aDD1g@ 3
4 uDu2D1 1

4 uD8u2D1uSu2D1~S* D1c.c.!S

1 1
4 ~D* D81c.c.!D8#1K@P2D1~Px

22Py
2!S#50, ~5!

aD8 D81g@ 3
4 uD8u2D81 1

4 uDu2D81uSu2D81~S* D81c.c.!S

1~D* D81c.c.!D#1K@P2D81~PxPy1PyPx!S#50.

For completeness and general purposes, we need a GL
energy functional. Following from Eqs.~5!, it is given by9

F5
N~0!

2 E
V

2aSuSu21aDuDu21aD8uD8u21g@ uSu41 3
8 uDu4

1 3
8 uD8u41uSu2uDu21uSu2uD8u21 1

4 uDu2uD8u2

1 1
2 ~S* D1c.c.!21 1

2 ~S* D81c.c.!21 1
8 ~D* D81c.c.!2#

1K~2uPSu21uPDu21uPD8u2!

1K$~Pxx̂1 iPyŷ!D•@~Pxx̂2 iPyŷ!S#* 1c.c.%

1KH S Px1Py

A2
x̂1 i

Px2Py

A2
ŷD D8F S Px1Py

A2
x̂

2 i
Px2Py

A2
ŷD SG*

1c.c.J 1E
V

~¹3A!2/8p, ~6!

where uniformity along thec axis is assumed, and*V de-
notes integration over theab plane. The prefactor ofN(0)/2
could be obtained from a microscopic derivation of the s
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percurrent, but it can also be obtained by the inspection
the free energy reduces to the superconducting ground-
energy at zero temperature. The last term inF is the mag-
netic energy. The equilibrium supercurrent can now be ea
obtained from the functional derivative of the free ener
with respect to the vector potentialdF/dA50. It can be seen
clearly that the GL equations~or the free-energy functional!
would be identical to that derived previously fordx22y2

1 is superconductors if thedxy channel were shut down, an
would be equivalent to that investigated fordx22y21 idxy
superconductors if thes-wave channel were disregarde
Moreover, the gradient terms forD and D8 are symmetric
with respect to each other under a rotation ofp/4.

III. dx22y21 is SUPERCONDUCTORS

This case has been studied previously,10–13 so that we
shall first recapitulate some essential points that interes
and add some novel discussions.

We assume thatTD.TS as is the case in high-Tc super-
conductors. DefineaSD5aS /uaDu with aD,0. Optimizing
the free energy Eq.~6! one finds that the uniform bulk phas
below the highest bare critical temperatureTD is a pureD
phase ataSD.22/3, or above a critical temperatureTSD

5TS
3/TD

2 , at which the system undergoes a second-or
phase transition to aÁ-broken phase (S,D)}(6 ih,1), with
h5uSu/uDu5A2@3aSD12)/(412aSD#.

Although there is no uniformS at T.TSD , S can be in-
duced by inhomogeneities, such as surfaces~or twin bound-
aries!, disorders, and vortices, due to the mixed-gradi
terms in Eq.~6!. Of special interest is theS component gen-
erated by vortices. AtT.TSD , theScomponent is subdomi
nant and vanishes whereD is uniform ~e.g., far from the
vortex core!. Thus it can be obtained perturbatively. Assum
D;eiu in cylindrical coordinates and in the gaugeA
5A(r ) û. SincePx

22Py
2 transforms ase62iu and scales as

1/r 2 at r→`, we immediately see that to the first orderS
;a(r )e3iu1b(r )e2 iu @the concrete forms ofa(r ) andb(r )
are unimportant, except that botha(r ) andb(r ) vanish asr
and 1/r 2 as r→0 and`, respectively# so thatuSu2;a(r )2

1b(r )212a(r )b(r )cos 4u. ~For complexa andb, there are
u-independent phase shifts in the argument of the co
function, but they do not alter our general conclusion. This
also the case in similar discussions hereafter!. ThereforeuSu2
is fourfold symmetric near the vortex core and vanishes
from the core. This result has been obtained previously
many authors,10–12,14in different contexts, and has been ve
fied by our numerical simulations.13,15 In particular, Franz
et al. were able to obtain explicit analytical as well as n
merical solutions for the single vortex state,12 which is useful
for a quantitative comparison between the theory and
experiments. The relative phase of these two compon
varies continuously around the vortex core. However, suc
kind of vortex-inducedS is insufficient, at least at low fields
to change the bulk quasiparticle DOSN(v)
;1/V*V(kd(v2Aek

21uDku2) in that the inducedScompo-
nent is localized near the vortex core. Moreover, the beh
ior of S does not show any sign ofincreasing sensitivityto
the applied field at decreasing temperatures. Therefore
may rule out the role of thes channel in the abnormal ther
at
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mal conductivity of Krishanaet al.4

On the other hand, atT,TSD , Á is already broken in the
uniform phase. Lowest-order perturbative treatment ofS is
no longer valid atT!TSD . S and D are now of competing
order far from the core with a locked relative phase6p/2
because of the fact that they are uniform there. In ot
words, symmetry consistency requires thatS develops a
winding component;eiu in addition to thee2 iu and e3iu

components, i.e., S;aeiu1be3iu1ce2 iu1higher-order
terms near the vortex core. Thus generallyuSu25a21b2

1c212(ab1ac)cos 2u12bccos 4u, developing a striking
twofold, rather than a fourfold, symmetry near the vort
core. The situation is similar for theD component. The rela-
tive phase varies again near and around the vortex, bu
locked to 6p/2 far away from the core. As the twofold
symmetry is generated solely fromaeiu, the quantitya(r
→`)56 ih can also be thought of as the order paramete
the twofold-symmetric vortex structure. Recent numeri
calculations support the scenario that a structure phase
sition for the vortex profile convolute with the uniform
Á-breaking phase transition.13 Such an exotic vortex can
possibly be observed either by magneto-optical spect
copy, or more possibly by its response to a ‘‘rotating’’ a
plied currentJ5J(cosvtx̂1 sinvtŷ). At low fields and in a
high-quality crystal, there should be a resonance in the v
tex dissipation at a frequency comparable to the scale of
energy barrier for the vortex to rotate by an angle ofp/2 or
p.

The mixing of the two order parametersS andD gives a
nontrivial upper critical field,Bc2. In our case, the linearized
GL equations are

2aSS1K@2P2S1~Px
22Py

2!D#5ES,

aDD1K@P2D1~Px
22Py

2!S#5ED,

where we have added an eigenenergy termE on the right-
hand side of the equations.E50 corresponds to the solutio
of the GL equations. The condition that the ground-state
ergyEg50 determines the upper critical field. This proble
has been treated in Refs. 11 and 12 where an implicit s
tion for Bc2 was obtained. Here we give an explicit solutio
along the line of Sigrist and Veda.16 By the inspection that
@Px ,Py#52ieB, we can define the bosonic operatorsa and
a† such that@a,a†#51, with

a5~Px1 iPy!/A4eB, a†5~Px2 iPy!/A4eB.

HereB is the magnetic induction, the fluctuation of which
the upper critical field can be neglected. In terms of t
bosonic operators, the above linearized GL equations
come

@4KeB~2n̂11!12aS#S12KeB~aa1a†a†!D5ES,

2KeB~aa1a†a†!S1@2KeB~2n̂11!1aD#D5ED.

Heren̂5a†a is the Landau quantum number.SandD can be
expanded in terms of the Landau levelsun& as (S,D)
5(n(an ,bn)un&. If there were no coupling betweenSandD,
we would obtain the usual result that the lowest Landau le
n50 determines the upper critical field. In our case, ho
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ever, the eigenvalue problem involves coupling between
the next-nearest Landau levels. Expanding the order par
eters up ton52, we can find the ground-state energyEg
variationally. The upper critical field is obtained by settin
Eg50, and is Bc25@52aSD1A(aSD

2 16aSD125)#B0/8
with B052aD/2eK being the temperature-dependent ba
upper critical field for the puredx22y2 superconductors. In
full dimensions, B052aD\c/2eK5F0/2pj2 with F0
52p\c/2e5hc/2e and j252K/aD . It should be pointed
out that the above variational ground state is closely sim
to that obtained in Refs. 11 and 12, whereS are given by a
difference between two Gaussian functions. This is cl
from the fact thatS has two nodes in such a case, as
Landau state withn52 does. Indeed, these solutions beha
similarly: Bc2→B0 at T→TD ~or aSD→`), but it is always
larger thanB0, developing an upward curvature in the tem
perature dependence near and belowTD .11,12 ~It diverges in
the unphysical regiona→2`.! This is due to the very ef-
fect that the subdominant channel contributes excess en
lowering by adjusting the shape of the vortex.

Finally, the Abrikosov vortex lattice has also been a
dressed in the literature.10–13The nontrivial fourfold or two-
fold vortex structures have important impact on the latt
structure. Due to the intrinsic anisotropies arising fromuSu2
they favor generally an oblique vortex lattice.10–13Of course,
with increasing temperatures, the amplitude ofS decreases
and one generally expects a crossover to the hexagonal
tex lattice nearTD . Another way of seeing this is as follows
Since the vortex lattice can be constructed in terms of
~highly degenerated! ground-state wave functions for the lin
earized GL equations, itcannotbe strictly hexagonal if the
amplitude of then52 Landau level is finite.16 Franzet al.
were also able to conclude that the orientational angle of
vortex lattice with respect to the crystal axisa is no longer
arbitrary~as in the case of a single order parameter!, but can
only take the four possible valuesa56p/2,6p,12 as was
found in numerical simulations.15 In the limit of aSD→` ~or
T→TD), however, the amplitude forun52& vanishes and we
recover the usual result for a pureD order parameter.

Before closing this section, we would like to point o
that all conclusions drawn fordx22y21 is superconductors
are also true for thedxy1 is superconductors due to the a
parent symmetry.

IV. dx22y21 idxy SUPERCONDUCTORS

We consider the caseTD.TD8 . Similar to the above
case, there is also a second-orderÁ-breaking phase transi
tion. Here the transition temperatureTDD8 is given by
aD8D[aD8 /uaDu,21/3 ~with aD,0), or TD8D

5ATD8
3 /TD. Below TDD8 and in the uniform phase,D8

56 ihD with h5A2(113aD8D)/(31aD8D). However,
aboveTDD8 no D8 component can be induced by a vortex
the absence of a mixed-gradient term couplingD8 with D.
Below TDD8 , symmetry requires that both components wi
in the same manner, e.g.,D,D8;eiu. Also because of this
the upper critical field is independent ofaD8D so long as
aD8D.21 ~or simply T.0). In this case,D8/D50 at the
upper critical field, even thoughD8Þ0 in the absence of the
field.
ll
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e
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In fact, becauseD and D8 are not coupled by gradients
the system has two metastable states withD850 and D8
Þ0, respectively. The stable state is that with lower fr
energy. This is related to the fact that theÁ-breaking phase
is frustrated at the vortex core ifaD8D.21: While winding
simultaneously forD andD8 increases the kinetic energy o
the superfluid, the nonzeroD8-component may lower the
homogeneous energy at low fields. We believe the com
ing energies may drive a transition from th
dx22y21 idxy-wave vortex state to a puredx22y2-wave vortex
state at a field lower than the upper critical field. By t
observation that the system is in thedx22y21 idxy-wave
phase at zero field but is not at the upper critical field, a
that the system would be in thedx22y21 idxy-wave vortex
state at all fields whenaD8D521, there must be at least on
field-inducedphase transition belowTDD8 . The transition
field is zero andBc2 for T5TDD8 and T50, respectively,
and should generally increase with decreasing tempera
Above the transition line is the region of puredx22y2 mixed
state. Such a transition would predict that the quasipart
excitation gap~which should be proportional touD8u) de-
creases with increasing field below the transition line, a
eventually vanishes above the transition line, where resid
density of states can arise from the Doppler-shift due to
supercurrent around the vortex.5,17 ~The field-induced low-
lying quasiparticle states are possible only for a nodal pair
function.! This translates that atT,TDD8 the thermal con-
ductivity should increase rather than decrease with incre
ing field, being consistent with the general trend of the d
at sub-Kelvin temperatures in Ref. 5. But the concrete fi
dependence of the thermal conductivity may be different
fact, the mechanism proposed in Ref. 5 rules out theD8
component.

V. STRONG COUPLING EFFECTS:
PHENOMENOLOGICAL THEORY

As the electrons in unconventional superconductors
strongly correlated because of theird-shell character, we
now incorporate the strong-coupling effects in a pure p
nomenological manner by including the Zeeman ener
This energy follows from the interaction between the ma
netic field and the angular momentum of the Cooper pair
strong-coupling effects. The underlying mechanism
simple: Cooper pairs with a definite projection of intern
orbital momentum will respond to the direction of the vort
supercurrent, which is determined by the magnetic field18

The desired energy density is16

24pehE d2Rg~R!DR* R3
¹R

i
DR} ih~D* D82c.c.!,

~7!

whereh5¹A is the local magnetic induction,g(R) is rep-
resentative of the strong-coupling effect, andDR is the
Cooper-pair wave function in the center-of-mass frame, i
the inverse Fourier transform ofDk5S1D cos 2uk
1D8 sin 2uk subject to the weak-coupling conditionuku
5kF ,

DR;E Dke
ik–Rduk5SJ0~kR!1~D cos 2uR

1D8 sin 2uR!J2~kR!,
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with Jn(kR)5* cosnfeikR cosfdf, and uR being the angle
betweenR and thea axis in the copper-oxide plane. Here w
have adopted the local limit by neglecting the spatial va
tion of the order parameters in evaluating the stro
coupling term, sincelF!j, with j being the coherence
length of the superconductor. Note that the final result of
strong-coupling term does not include theScomponent. This
is not accidental but results from symmetry. For convenie
we rewrite thenondiamagneticcontribution~7! in the form
as dkK(2ieh)(D* D82c.c.) with the only phenomenologi
cal dimensionless parameterdk. Notice that the Zeeman
term can also be rewritten as gradient ter
dkK@(PxD)* PyD82(PyD)* PxD81c.c.# due to the fact
that @Px ,Py#52ieh.

To simplify the matter, here we only consider th
dx22y21 idxy superconductor in the presence of a stron
coupling effect. In this case, the new free energy reads,

F5
N~0!

2 E
V

aDuDu21aD8uD8u21g@ 3
8 uDu41 3

8 uD8u4

1 1
4 uDu2uD8u21 1

8 ~D* D81c.c.!2#1K@ uPDu21uPD8u2

12iehdk~D* D82c.c.!#1E
V

~¹A!2/8p. ~8!

In the case ofaD[aD8,0 anddkÞ0, it is known that
there could be a first-order phase transition from the Me
ner state to a state with a sudden penetration of afinite den-
sity of vortices at a lower critical fieldHc1.19 ~The transition
is of first order sinceBc1Þ0 at H5Hc1.! However, in the
extreme London limit that we shall adopt~suitable for high-
Tc superconductors!, we expect that bothHc1 andBc1 would
be too small to alter our subsequent discussion, and wil
neglected.

Let us now discuss the outcome of Eq.~8!. To be concrete
but without loss of generality, we assumeTc5TD5100 K
andTD8510 K. As discussed in the previous section, at z
magnetic field, there is a second orderÁ-breaking phase
transition at a critical temperatureTDD85ATD8

3 /TD'3.16 K.
Below TDD8 , D856 ihD. Explicitly, uDu25(3
1aD8D)D0

2/2 and uD8u252(113aD8D)D0
2/2. Here D0

2

52aD /g. Henceforth we shall normalize the order para
eters in units ofD0, and the induction field byB0 defined
previously. They are understood as dimensionless quant
unless specified otherwise. Practically for high-Tc supercon-
ductors, bothD0 and B0 saturate at low temperatures~e.g.,
T<20 K!: D0;2Tc;200 K andB0;Bc2(0);40– 100 T.20

Following from Eq. ~8!, in the presence of the nondia
magnetic coupling between the order parameters and
magnetic field (dkÞ0), a puredx22y2 state is stable only in
zero field aboveTDD8 , while aÁ-brokendx22y26 idxy state
is established at all temperatures at finite fields, albeit w
varying amplitude ofD8. We now concentrate on the low
field regime and in the London limit, so that the kinetic e
ergy of the superfluid and the inhomogeneity due to vorti
can be safely neglected. The same methodology has
applied in Ref. 6. AtT.TDD8 and low fields, the order pa
rameters can be treated perturbatively, and are, up to
-
-
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second order ine[dkB (.0 for ease of presentation! with
B as the spatial average of the local inductionh,

uDu52/A32euD8u/4, ~9!

uD8u5~e/A3!/~aD8D11/3!. ~10!

This amounts to a minimum gap on the Fermi surface

D0'2uD8uTc;2eTDTD8D /~T2TD8D!}dkB/~T2TD8D!
~11!

at e!1 andT.TD8D ~not very close toTD8D). Neglecting
for the moment the suppression due to quasiparticle sca
ing at the vortices, we observe that the thermal conductiv
ke at T.TD8D in the presence of a minimum gapD0 is given
by,

ke~T,B!/ke~T,0!;~1/T!exp~2D0 /T!

;~1/T!exp@2const3dkB/~T2TD8D!T#. ~12!

It should be appreciated that this exponential decay inB is
increasingly sharpened byT(T2TD8D) instead of onlyT. In
Eq. ~12! a power lawke(T,0)}T2 is used, which follows
from the fact that aboveTD8D the zero-field state is a pur
dx22y2 state. Further we have implicitly neglected the chan
in uDu, which is merely of the second order ine from Eq.
~9!. The exponential decay develops a crossover atD0;T,
or,

Bk}T~T2TD8D!, ~13!

which indeed resembles a scaling lawBk}T2 addressed by
Krishana et al.4 As an example, we plotuD8u and
ke(T,B)/ke(T,0) in this context in Figs. 1~a! and 1~b!, re-
spectively. HereuD8u is calculated exactly from the optimi
zation of the free-energy subject to the neglecting of kine
energy and field energy, which should be reliable at l
fields. Defining a criterion for the kink transition~more pre-
cisely, crossover!, the paraboliclike contour lines unambigu
ously reproduce the scaling law for the kink field.4 The
sharpening feature of the crossover is also clear. Includ

FIG. 1. Gray-scale contour plots of~a! uD8u and ~b!
ke(T,B)/ke(T,0)'(1/T)exp(2D0 /T) as functions ofB andT. Here
dk51/2 and D052uD8uTc with Tc5100 K. T* ;3.16 K is the
zero-field Á-breaking transition temperature. See the text for d
tails.
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the additional suppression ofke from quasiparticle scatterin
by vortices would render even better qualitative agreem
with the experimental results, but we shall not go into furt
details. Interestingly, Eq.~13! predicts a downward curvatur
of the Bk(T) curve in a log-log plot on the low-temperatu
side, which seems to be the case in Fig. 4~b! of Ref. 4. We
have also performed exact calculation of the full set of
equations ensuing from Eq.~8! to find that the results in the
low-field regime remains essentially unchanged, while at
termediate fields,uD8u saturates a while and then diminish
gradually together withuDu near the upper critical fieldBc2.
The latter is given by, in dimensionless form,

Bc25@12aD8D1A~11aD8D!224aD8Ddk2#/2

3~12dk2!.

At Bc2 the ratiouD8u/uDu is given by

uD8u/uDu5dkBc2 /~aD8D1Bc2!.

This means thatÁ breaking is retained up to the upper cri
cal field. However, it is clear, in conjunction with Fig. 1~a!,
that the strong-coupling effect vanishes near the critical t
peratureTc ~whereaD8D→`), a necessary ingredient for th
theory to be compatible with the general properties of hi
Tc superconductors at temperatures nearTc . Also interest-
ingly, in the context of this theory,~i! the power lawke
}T2 is invalid at finite fields aboveTD8D , which seems to be
consistent with the experimental data in Ref. 4, and would
violated belowTD8D even in the absence of magnetic fie
~ii ! ke increases with increasing magnetic field belowTD8D .
On the other hand, the theory does not involve a phase
sition for the development of a plateau inke , because there
is no further symmetry breaking at finite fields in our theo

VI. SUMMARY

We have developed a GL theory with respect to the th
relevant singlet pairing channels in unconventional sup
conductors. The case ofd1 is superconductors has been d
cussed. The twofold symmetric structure of vortices be
the Á-breaking temperature is predicted. The case
dx22y21 idxy superconductors has been addressed in de
In the absence of strong-coupling effects, we find that
subdominantdxy-wave order parameter cannot be induced
vortices above theÁ-breaking temperature, in contrast to t
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case in ad1 is superconductor. Below theÁ-breaking tem-
perature, we predict a field-induced first-order phase tra
tion from thedx22y21 idxy vortex state to thedx22y2 vortex
state at higher fields. By including the strong-coupling effe
phenomenologically, thedx22y21 idxy state can be induced
by the magnetic field even above the zero-fieldÁ-breaking
temperature. Near and above this transition temperature
induceddxy-wave order parameter may be compared w
some results for the abnormal thermal conductivity repor
in Ref. 4. Although our theory could give the general tre
that the thermal conductivity would increase with increas
field below theÁ-breaking temperature, it cannot result in
pure dx22y2 state near the zero temperature, which w
claimed to be essential to explain the sub-Kelvin therm
conductivity in Refs. 5 and 17. If that is the case, we arg
that there are two possibilities for the material used in Ref
either some significant change occurs for thedxy channel
near zero temperature such that thedxy-wave order param-
eter is suppressed drastically or nodxy channel is present a
all.

It should be pointed out that thes and dxy channels are
only two, but not all of the possible subdominant sing
pairing channels in adx22y2-dominant superconductor. W
have neglected, e.g., thekxky(kx

22ky
2) channel~in the A2g

representation!, which would appear in the case of a mo
general pairing interaction, or in a higher-order expansion
the gap equation.21 This order parameter could also be i
duced by spatial inhomogenieties of thedx22y2 order param-
eter, and would indirectly induce adxy order parameter.
However, odd-parity order parameters cannot be induce
singlet-pairing superconductors.

In this paper, we have only performed accessible anal
cal as well as qualitative discussions on the theory. M
exact and numerical results are awaited. The theory is
highly useful for studying the vortex dynamics of unconve
tional superconductors.15
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