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Role of scattering-factor anisotropy in electron, positron, and photon holography

S. Y. Tong, C. W. Mok, and Huasheng Wu
Department of Physics, The University of Hong Kong, Hong Kong, China

L. Z. Xin
Department of Physics and Laboratory for Surface Studies, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 532

~Received 13 March 1998!

We have studied the angular anisotropy in the scattering factor of electrons, positrons, and photons in solids.
We show that as a function of angle, the maximum number of dips in the scattering factor’s magnitude and
jumps of nearp in its phase are related to the angular momenta of the bound and resonance states of the
potential. The effect of the scattering factor’s anisotropy on low-energy electron and positron holographic
wave-front reconstruction is discussed. Applying the variable-axis small-cone method, a good-quality recon-
structed image is only possible within angular regions where the scattering factor is near isotropic. Thus the
usable window for low-energy electron wave-front reconstruction is element dependent; the window size
decreases as the atomic number increases. Positrons, on the other hand, are like photons and are not bound by
the potential. For positrons or photons, there is no elemental dependence of the usable window and the entire
backscattering regime is suitable for holographic reconstruction. We have established two rules that predict the
maximum number of magnitude dips and phase jumps in the scattering factor for any element.
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I. INTRODUCTION

Recently, we have witnessed considerable interest in
plying the holographic wave-front reconstruction method
strongly scattering systems.1–23 Using the analogy with opti-
cal holography, it has been pointed out that in the case
electron scattering in solids, the relative phase betwee
reference wave and an object wave scattered from an a
R1 from the reference atom is given b
ei (kR12k•R1)ei @fMS(k)1fSW(k)1fSF(k)#.1,2 Here k is the wave
vector of the electron pointing from the reference atom to
detector andfMS(k), fSW(k), andfSF(k) arek-dependent
phases arising from multiple scattering, source wave,
scattering factor, respectively.1–3 In optical holography, the
three phases are either small or isotropic.24 In that case, a
Fourier transformation over directions with the kerneleik•R

at a single energy is sufficient to reconstruct thre
dimensional images in real space.4,5

For strongly scattering systems, Tong and co-worker6,7

and Barton and Terminello8 have shown that the multiple
scattering phasefMS(k) can be eliminated by integratin
normalized diffraction spectra over wave numbers with
kernel e2 i (kR2k•R) and summing the integrals over a set
directions. The directional dependence~i.e., anisotropy! in
fSW(k) and fSF(k) can be eliminated by applying
variable-axis small-cone method to the normalized diffr
tion spectra.3,17 In this method, the real-space image at ea
direction is formed by using the energy-dependent diffr
tion spectra within a small cone whose axis points in
opposite direction. The axis of the cone varies in-synch w
the direction of real-space reconstruction. In an earlier pa3

we have examined the anisotropy of the source wave. In
paper we shall study the anisotropy of the scattering fac
We shall develop two rules generally applicable to descr
the angular anisotropies in electron, positron, and pho
PRB 580163-1829/98/58~16!/10815~8!/$15.00
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scattering factors. We first state these rules.
Rule 1.The maximum number of dips in the scatterin

factor u f (u)u equals the number of zeros in the Legend
polynomial Pl min

(u), where l min is the lowest partial wave
that is not a bound or resonance state of the ion-core po
tial.

Rule 2.At each dip ofu f (u)u, its phasef~u! jumps by
nearlyp. The angular window in whichf~u! is near isotro-
pic decreases asl min increases.

The ion-core potential in a solid is the~muffin-tin! poten-
tial V(r ) plus the centrifugal potentiall ( l 11)\2/2mr2. An-
other way to state rule 1 is that the maximum number of d
in u f (u)u equals the number ofdifferent partial wavess, l,
p, . . . that are either bound to or in resonance with the io
core potential. A corollary to rules 1 and 2 is that for eith
the positron16 or photon25 scattering factor, the magnitud
u f (u)u has no dip and its phasef~u! has nop jump. This is
because positrons or photons are not bound by the ion-
potential, therefore,l min50 in each case. We shall deriv
these rules and illustrate their usefulness in the follow
sections.

II. ANGULAR ANISOTROPY IN THE ELECTRON
SCATTERING FACTOR

It is widely known that electron scattering factors a
highly anisotropic in both amplitude and phase. However,
work has explained the origin of the angular anisotropy.
Fig. 1 we show polar plots of the amplitude of the electr
scattering factor for Ni at four energies. We see that
angular anisotropy is energy dependent and the amplit
u f e(u)u exhibits a number of cusps. Besides the depende
on energy, the number of cusps inu f e(u)u also depends on
the element. For example, Si has two cusps at 100 eV, w
W or Au has four cusps at 300 eV. Up to now, no rule exi
10 815 © 1998 The American Physical Society
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10 816 PRB 58S. Y. TONG, C. W. MOK, HUASHENG WU, AND L. Z. XIN
to predict the maximum number of cusps for a given e
ment. In the following we shall explain the origin of th
cusps and establish rules to predict the maximum numbe
each element. The rules apply to scattering factors of e
trons, positrons, and photons.

To begin with, we calculate the electron and positron sc
tering factors for 12 elemental materials, ranging from ro
2 to 6 of the Periodic Table. For each element, we first ob
the self-consistent full linearized augmented-plane-w
band-structure potential.26 We then apply the spherical ap
proximation to this potential~i.e., take its muffin-tin form!.
From the ion-core potential, we generate the first 30 par
wave phase shifts. While phase shifts are defined up
modulo p in the scattering factor, their behavior asE→0
depends on how many bound states the potential has.
partial wave phase shiftsd l(E→0)50 unless the potentia
has a bound state in thatl th subshell. If it does, thend l(E
→0)5np, wheren is the number of bound states with th
particularl th quantum number. This is known as Levinson
theorem.27 An electron that is not bound by the ion-co
potential can be in resonance with the potential. If an el
tron in an l th subshell is in resonance, thel th partial wave
phase shift rises nearly byp in a narrow~1–2 eV! energy
range. We demonstrate in Figs. 2 and 3 the behavior of
phase shifts atE near zero. For Ni~Fig. 2! and As~Fig. 3!,
the l 50 phase shift starts at 3p at E50 eV because eac
element has threes-shell bound states. Thel 51 phase shift
starts at 2p at E50 eV because each element has twop-shell
bound states. For Ni, the 3d electron is in resonance with th
potential; therefore, thel 52 phase shift starts at zero an
rises rapidly to nearp at 7 eV and remains nearp at higher
energies. The 3d electron in As is a bound state and hen
the l 52 phase shifts starts atp at E50 eV. In Table I we
list the limiting values of the phase shifts atE50 eV for
each of the 12 elements. We also indicate the resonanp
jumps by asterisks. For each element we list the lowest L
endre polynomial for the partial wave that is neither bound
nor in resonance with the ion-core potential. We call thi
free state. In Table II we show the electron distribution in t

FIG. 1. Polar plots of the amplitude of the Ni electron scatter
factor. In each panel, forward scattering is to the right and ba
scattering to the left. The origin is at~0,0! in each panel.
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different shells for the 12 elements. The bound and re
nance electrons~in asterisks! are shaded.

To save space, we select for presentation here four re
sentative elements for electron scattering, C, Si, Ga, and
and two elements for positron scattering, Si and Ga. T
interested reader can refer to Ref. 28 for results of the o
elements, as well as to obtain the electron and positron ph

-

FIG. 2. Thel 50, 1, and 2 phase shifts of Ni at low energies.

FIG. 3. Thel 50, 1, and 2 phase shifts of As at low energies.



to
o

rin

ip
cu
r

n
.

Im

s

e
be

ich
of

on

the
im-

t

100
i-
e-

l

C,
C,

PRB 58 10 817ROLE OF SCATTERING-FACTOR ANISOTROPY IN . . .
shifts. We show in Fig. 4 the electron scattering fac
u f e(u)u for C, Si, and Ga at 100 eV and Pb at 300 eV. F
anisotropy in the amplitude, we see that the C scatte
factor has a single dip, atu590°; Si has two dips, atu
541° and 110°; Ga has three dips, and Pb has four d
While the number of dips and the angles at which they oc
are energy dependent, Fig. 4 shows the maximum numbe
dips for each element. In Fig. 5 we plot the phasefe(u) for
the same four elements. We notice thatfe(u) jumps nearly
by p at the angle of each dip. To explain these observatio
we look at the zeros of the Legendre polynomials. In Fig
we plot the absolute valueuPl(u)u for l 51, 2, 3, and 4. The
value ofPl(u) changes sign before and after each zero.
mediately, we see the correlation between the dips inu f e(u)u
and the zeros ofuPl(u)u listed in Table I. For example, C ha

TABLE I. Limiting values asE→0 of each electron partia
wave phase shift for the elements listed.Pl is the Legendre poly-
nomial of the lowest free-state partial wave. Thep resonance at low
energy is indicated by an asterisk.

Element
s

( l 50)
p

( l 51)
d

( l 52)
f

( l 53)
g

( l 54)

C 1p P1

Al 2p 1p P2

Si 2p 1p P2

Fe 3p 2p 0p11p* P3

Ni 3p 2p 0p11p* P3

Cu 3p 2p 0p11p* P3

Ga 3p 2p 1p P3

As 3p 2p 1p P3

Ag 4p 3p 1p11p* P3

W 5p 4p 2p11p* 1p P4

Au 5p 4p 2p11p* 1p P4

Pb 5p 4p 3p 1p P4
r
r
g

s.
r
of

s,
6

-

one dip in u f e(u)u, while its lowest free-state partial wav
uP1(u)u has a single zero. A similar correspondence can
found for the other elements. Even the angles at wh
u f e(u)u has dips match somewhat closely with the zeros
uPl min

(u)u, although we do not expect quantitative correlati
because the former is energy dependent.

According to rules 1 and 2, the dips inu f e(u)u and jumps
in fe(u) have origins in the bound and resonant states of
ion-core potential. To understand this, we consider the s
plest case, which is C. The C potential has a 1s bound state,
thus d0(E) starts fromp at E50. For a weakly bound 1s
electron,d0(E) decreases fromp as E increases. The firs
free-state partial waved1(E), on the other hand, starts from
zero atE50 and rises rapidly throughp/2, peaks belowp,
and then slowly decreases at higher energies. Thus, at
eV, the angular anisotropy of the scattering factor is dom
nated by that of the first free-state partial wave, which b
haves asP1(u) ~see Fig. 7!. The dominance of thel 51

FIG. 4. Magnitude of electron scattering factor vs angle for
Si, and Ga at 100 eV and Pb at 300 eV. Left, vertical scale for
Ga; right, vertical scale for Si, Pb.
TABLE II. Electrons in different shells for each of the 12 elements. The bound or resonance electrons~denoted by asterisks! are shaded.
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partial wave over thel 50 partial wave is accentuated by th
2l 11 factor in the scattering factor. SinceP1(u) has a zero
at 90° and its sign changes at that angle, the amplitud
carbon’s scattering factor goes through a minimum near
angle and its phase changes byp. The latter is because a
P1(u) changes sign, both the real and imaginary parts of
scattering factor also change sign@ f l(u)5(2l
11)sin2 dlPl(u)1i(2l11)cosdl sindlPl(u)#. Here f l(u) is the
l th partial wave component of the scattering factorf (u).

Turning now to Si, Table I shows that atE50, d0 starts at
2p andd1 starts atp. The two phase shifts decrease in val
asE gets larger. The first free-state partial wavel 52 again
rises rapidly throughp/2. Because of the 2l 11 factor, it is
not necessary to consider the effect ofl 50 relative to l
52. At E5100 eV for Si,d2 is nearp/2, while d1 is cross-
ing the abscissa. Thus the angular anisotropy of the Si s
tering factor at 100 eV is dominated by the free-statel 52
partial wave. From Fig. 7 it is easy to see that the situat
with the Ga scattering factor is similarly dominated by t
angular anisotropy of thel 53 partial wave. Thel 52 phase
shift starts atp and remains close to this value over a fe
hundred eV. For the transitional metal elements Fe, Ni,
Cu, thel 52 phase shift ‘‘resonates’’ from zero to nearp at
a very low energy and remains close top over a few hundred

FIG. 6. Absolute value of Legendre polynomials vs angle.

FIG. 5. Phase of electron scattering factor vs angle for C, Si,
Ga at 100 eV and Pb at 300 eV.
of
at

e
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n

d

eV. In all these materials~Fe, Ni, Cu, Ga, As, and Ag!, the
scattering factor is dominated by the angular anisotropy
the l 53 free-state partial wave.

The situation with the row six heavy metals~W, Au, and
Pb! is only slightly more complicated. Here the 4f core level
is more tightly bound, resulting ind3 , which starts fromp at
E50 to increase through anotherp/2, before slowly decreas
ing at higher energies. The first free-state partial waved4
starts from 0 and increases throughp/2 asE increases. We
can see from Fig. 7 that for Pb, the anisotropy of the scat
ing factor reflects those ofP4 at 300 eV and those ofP3 at
100 eV. The same holds true for W and Au. The reader
refer to Ref. 28 for the angular anisotropies of W, Au, and
at 100 eV. The fact thatu f e(u)u of Pb has four dips at 300 eV
and only three at 100 eV does not affect the validity of ru
1, which is concerned with the maximum number of dips

In the variable-axis small-cone method of low-ener
electron holography,1–3,17 we separate out diffraction path
from atoms where the scattering factor is nearly isotropic.

FIG. 7. First few electron partial wave phase shifts for C, Si, G
and Pb. Negative slope solid line (l 50), dotted line (l 51), dash-
dotted line (l 52), and dashed line (l 53). Positive slope solid
lines (l 54,5, . . . ). Thephase shifts atE50 eV are expressed in
radians, modulop.

FIG. 8. Coefficienta~u! vs electron scattering angle obtained f
C, Si, Ga, and Pb.

d
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understand how the angular anisotropy in the phase of
scattering factor affects the small-cone window, we follo
previous works1–3,6 and expand the phase as

fk~u!5a~u!1b~u!k1¯ . ~1!

We have evaluated the coefficientsa~u! andb~u!, which are
averaged quantities, over an energy range considered.
show in Figs. 8 and 9 the two coefficients, respectively,
electron scattering of C, Si, Ga, and Pb. The energy ra
used for C is 4–12 hartrees~109–326 eV!, while that for Si,
Ga, and Pb is 4–15 hartrees~109–408 eV!. The holographic
method requires thata~u! andb~u! be nearly isotropic within
the angular cone of wave-front reconstruction.1–3 We see
from the figures that in the backscattering regime, this c
dition is satisfied for angular cones with half angles of 8
for C, 60° for Si, 30° for Ga, and 15° for Pb. The reason w
we consider only the backscattering regime is because
holographic method also requires the magnitudeu f (u)u to be
near isotropic. This condition eliminates the forwar
scattering region whereu f (u)u is strongly peaked. Within the
respective backscattering small cones,a~u! varies by less
than 1 rad andb~u! varies by less than 0.05 Å. The coeffi

FIG. 10. Magnitude~solid line! and phase~dashed line! of the
positron scattering factor for Si and Ga at 100 eV. Vertical sca
left, magnitude; right, phase.

FIG. 9. Coefficientb~u! vs electron scattering angle obtained f
C, Si, Ga, and Pb.
e

e
r
e

-
°

he

cient b~u! produces an error in the position of the reco
structed image and a smallb~u! guarantees that this erro
would be small~see Ref. 2 for an explicit formula of the
error!. The angular window affects the radial and transve
resolutions of the reconstructed image. Reference 2 gives
dependence of image resolution on the angular window.

III. ISOTROPIC BEHAVIOR OF THE POSITRON
BACKSCATTERING FACTOR

Because positrons and photons are not bound by
atomic potential, it follows from rules 1 and 2 that~i!
u f ph(u)u andu f p(u)u have no dip, i.e., they are monotonical
decreasing functions ofu, and ~ii ! the phases off ph(u) and
f p(u) do not have sharp jumps. We show in Fig. 10 t
positron’su f p(u)u and phasefp(u) for Si and Ga at 100 eV.
In the backscattering regime,u f p(u)u is nearly isotropic;
hence it satisfies the requirement of the holographic rec
struction method. The coefficientsa~u! and b~u! for the
positron’s scattering phasefp(u) evaluated in the energy
range 4–15 hartrees are shown in Fig. 11. Sincea~u! and
b~u! are nearly isotropic in the scattering range 50°–18
there is no need to apply a small cone to the wave-fr
reconstruction. The larger usable angular range for posi
holography means that the reconstructed image will hav
better transverse resolution.2 In Fig. 12 we show the first few
phase shifts of positron scattering for Si and Ga. Because
core level is present, all the phase shifts start from zero
E50. Another consequence of the repulsive potential is t
all positron phase shifts are negative.29

Finally, in Figs. 13 and 14 we compare the magnitudes

:

FIG. 11. Positron’s coefficientsa~u! and b~u! vs scattering
angle for Si and Ga.

FIG. 12. First few positron phase shifts for Si and Ga.l
50,1,3, . . .
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FIG. 13. Radial plot ofu f (u)u for the electron (e2), positron (e1), and photon~g! at a wavelength of 3.3 Å. For the radial scale, ea
circular ring is 0.25 Å. The scattering factor of the photon is multiplied by 103.
c-

ng
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b

ng
id.
4 to
us

le-
a-
the Si scattering factor for electrons (e2), positrons (e1),
and photons~g! at 3.3-Å and 1.3-Å wavelengths, respe
tively. The 3.3-Å wavelength corresponds to ane1 or e2

energy of 13.6 eV and ag energy of 3.8 keV. The 1.3-Å
wavelength corresponds to ane1 or e2 energy of 95 eV and
a g energy of 9.6 keV. From these figures we see thatu f p(u)u
and f ph(u)u are nearly isotropic in the entire backscatteri
regime. Moreover, these scattering factors are smooth fu
tions at all angles. The electron scattering factor, on the o
hand, contains large angular anisotropies, which must
avoided in holographic wave-front reconstruction.
c-
er
e

IV. COMPARING MULTIPLE SCATTERING
IN ELECTRON, POSITRON,

AND PHOTON DIFFRACTION

In this section we provide a simple formula for estimati
the importance of multiple scattering for a particle in a sol
We can use the scattering factors shown in Figs. 13 and 1
estimate the size of multiple scatterings. Following previo
works,1,2,7 the ratio of a double-scattering event vs sing
scattering event is given, within the small-atom approxim
tion, by
FIG. 14. Same as in Fig. 13, except for a 1.3-Å wavelength.
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M
S 5

u f ~uR!u
R

u f ~u f !u
u f ~u i !u

, ~2!

whereM denotes a double-scattering event andS a single-
scattering event. The anglesuR , u f , andu i are shown in Fig.
15. If we assume that the near backscattering fac
u f (u f)u'u f (u i)u; then we obtain a useful estimate of the si
of double scattering

M
S '

u f ~uR!u
R

. ~3!

In other words, the ratio ofM to S is given by the ratio of
the scattering factor in directionuR to the bond length. For
Si, the nearest-neighbor bond length is 2.35 Å. From Fig.
the positron scattering factor in the forward zone 0°<u
<90° is larger than 0.25 Å. Because Eq.~3! is the ratio of
amplitudes, the double-scattering contribution to the int
sity is 2M/S, which gives a value of the double-scatterin
contribution for positron scattering in the forward zo
greater than 20%. In the backward zone 90°,u<180°,
double-scattering contribution for positron scattering is n
10%. In comparison, for electrons, the double-scattering c
tribution to the forward zone is at least 40% and it can be

FIG. 15. Schematic diagram of single scattering~left! and
double scattering~right!.
ev

on

e

rs

4

-

r
n-
s

large as 60% at backwardp scattering. For photon scatte
ing, the ratiou f (uR)u/R!1, indicating that single scatterin
is sufficient.

V. CONCLUSIONS

We have shown that for electron scattering, the angu
anisotropy in the scattering factor is caused by bound
resonance states of the atomic potential. These states c
the first few partial wave phase shifts to be nearnp at low
energy. This fact, coupled with the 2l 11 factor, results in
the electron scattering factor of an element exhibiting
angular anisotropy of its first free-state partial wave. T
behavior allows us to predict the maximum number of d
in u f e(u)u.

We have also shown that for positron or photon diffra
tion, because of the absence of bound or resonance state
scattering factor is isotropic in the entire backscattering
gime. Thus positron and photon diffraction spectra are w
suited for holographic wave-front reconstruction and t
larger usable angular window produces better resol
images.1–3 The reader may be interested to learn that
removing the first few partial waves from a positron’s sc
tering factor, it is possible to create similar angular anisot
pies seen for electrons. The removal of the first few ph
shifts is equivalent to simulating bound or resonance sta
for these partial waves. For example, if we remove thl
50 and 1 phase shifts from the positron’s scattering facto
Si, the remaining~artificial! scattering factor exhibits two
dips ~as in P2). Similarly, if we remove thel 50, 1, and 2
phase shifts, the resulting Si scattering factor exhibits th
dips ~as in P3). The reader can refer to Ref. 28 for the
results.
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