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Role of scattering-factor anisotropy in electron, positron, and photon holography

S. Y. Tong, C. W. Mok, and Huasheng Wu
Department of Physics, The University of Hong Kong, Hong Kong, China

L. Z. Xin
Department of Physics and Laboratory for Surface Studies, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201
(Received 13 March 1998

We have studied the angular anisotropy in the scattering factor of electrons, positrons, and photons in solids.
We show that as a function of angle, the maximum number of dips in the scattering factor's magnitude and
jumps of nearr in its phase are related to the angular momenta of the bound and resonance states of the
potential. The effect of the scattering factor’'s anisotropy on low-energy electron and positron holographic
wave-front reconstruction is discussed. Applying the variable-axis small-cone method, a good-quality recon-
structed image is only possible within angular regions where the scattering factor is near isotropic. Thus the
usable window for low-energy electron wave-front reconstruction is element dependent; the window size
decreases as the atomic number increases. Positrons, on the other hand, are like photons and are not bound by
the potential. For positrons or photons, there is no elemental dependence of the usable window and the entire
backscattering regime is suitable for holographic reconstruction. We have established two rules that predict the
maximum number of magnitude dips and phase jumps in the scattering factor for any element.
[S0163-182608)06639-9

[. INTRODUCTION scattering factors. We first state these rules.
Rule 1.The maximum number of dips in the scattering

Recently, we have witnessed considerable interest in agactor |f(6)| equalsthe number of zeros in the Legendre
plying the holographic wave-front reconstruction method topolynomial P|min(0), wherel i, is the lowest partial wave
strongly scattering systems?®Using the analogy with opti- that is not a bound or resonance state of the ion-core poten-
cal holography, it has been pointed out that in the case ofia].
electron scattering in solids, the relative phase between a Rule 2.At each dip of|f(#6)|, its phase¢(6) jumps by
reference wave and an object wave scattered from an atoRearly . The angular window in whiclkp(6) is near isotro-
R; from the reference atom is given by pic decreases ds,, increases.
el (kKR —k-Ry) il dms(k) + dswlk) + dsHk)] 1.2 Hare k is the wave The ion-core potential in a solid is ti{euffin-tin) poten-
vector of the electron pointing from the reference atom to thajal V(r) plus the centrifugal potenti&(l + 1)%2/2mr?. An-
detector andpys(k), dsw(K), and ps{(k) arek-dependent other way to state rule 1 is that the maximum number of dips
phases arising from multiple scattering, source wave, angh |f(0)| equals the number different partial wavess, |,
scattering factor, respectively® In optical holography, the p, ... that are either bound to or in resonance with the ion-
three phases are either small or isotrdffién that case, a core potential. A corollary to rules 1 and 2 is that for either
Fourier transformation over directions with the kere&f R the positron® or photorf® scattering factor, the magnitude
at a single energy is sufficient to reconstruct three-{f(g)| has no dip and its phas#(6) has nox jump. This is
dimensional images in real spate. because positrons or photons are not bound by the ion-core

For strongly scattering systems, Tong and co-wofkers potential, therefore|,,;;=0 in each case. We shall derive
and Barton and Termineffohave shown that the multiple these rules and illustrate their usefulness in the following
scattering phasepys(k) can be eliminated by integrating sections.
normalized diffraction spectra over wave numbers with the
kernele™'(* 'R and summing the integrals over a setof || ANGULAR ANISOTROPY IN THE ELECTRON
directions. The directional dependen@e., anisotropy in SCATTERING EACTOR
dsw(k) and ¢sHk) can be eliminated by applying a
variable-axis small-cone method to the normalized diffrac- It is widely known that electron scattering factors are
tion spectra'!’ In this method, the real-space image at eachhighly anisotropic in both amplitude and phase. However, no
direction is formed by using the energy-dependent diffracwork has explained the origin of the angular anisotropy. In
tion spectra within a small cone whose axis points in theFig. 1 we show polar plots of the amplitude of the electron
opposite direction. The axis of the cone varies in-synch withscattering factor for Ni at four energies. We see that the
the direction of real-space reconstruction. In an earlier faperangular anisotropy is energy dependent and the amplitude
we have examined the anisotropy of the source wave. In thifo(#)| exhibits a number of cusps. Besides the dependence
paper we shall study the anisotropy of the scattering factoron energy, the number of cusps|ify(6)| also depends on
We shall develop two rules generally applicable to describéhe element. For example, Si has two cusps at 100 eV, while
the angular anisotropies in electron, positron, and photofV or Au has four cusps at 300 eV. Up to now, no rule exists
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FIG. 1. Polar plots of the amplitude of the Ni electron scattering
factor. In each panel, forward scattering is to the right and back-
scattering to the left. The origin is &,0) in each panel.
T T T T T
to predict the maximum number of cusps for a given ele- 0 10 20 30 40 50

ment. In the following we shall explain the origin of the
cusps and establish rules to predict the maximum number for
each element. The rules apply to scattering factors of elec-FIG. 2. Thel=0, 1, and 2 phase shifts of Ni at low energies.
trons, positrons, and photons.

To begin with, we calculate the electron and positron scatdifferent shells for the 12 elements. The bound and reso-
tering factors for 12 elemental materials, ranging from rowsnance electronén asterisks are shaded.
2 to 6 of the Periodic Table. For each element, we first obtain To save space, we select for presentation here four repre-
the self-consistent full linearized augmented-plane-wavesentative elements for electron scattering, C, Si, Ga, and Pb,
band-structure potenti&?. We then apply the spherical ap- and two elements for positron scattering, Si and Ga. The
proximation to this potentiali.e., take its muffin-tin form  interested reader can refer to Ref. 28 for results of the other
From the ion-core potential, we generate the first 30 partiablements, as well as to obtain the electron and positron phase
wave phase shifts. While phase shifts are defined up to
modulo 7 in the scattering factor, their behavior &s-0 As
depends on how many bound states the potential has. All
partial wave phase shift§(E—0)=0 unless the potential
has a bound state in théth subshell. If it does, the®d,(E 3
—0)=nm, wheren is the number of bound states with the [ _6 """""""""""""""""""""""""""""
particularlth guantum number. This is known as Levinson’s \ —
theorem?’ An electron that is not bound by the ion-core
potential can be in resonance with the potential. If an elec-
tron in anlth subshell is in resonance, the partial wave
phase shift rises nearly by in a narrow(1-2 e\) energy 2n
range. We demonstrate in Figs. 2 and 3 the behavior of thez
phase shifts aE near zero. For N{Fig. 2) and As(Fig. 3),
the =0 phase shift starts atm3at E=0 eV because each
element has thregshell bound states. THe=1 phase shift
starts at Zr at E=0 eV because each element has wshell
bound states. For Ni, thed3electron is in resonance with the [ P T SO
potential; therefore, thé=2 phase shift starts at zero and
rises rapidly to neatr at 7 eV and remains near at higher
energies. The @ electron in As is a bound state and hence
thel=2 phase shifts starts at at E=0eV. In Table | we
list the limiting values of the phase shifts Bt=0eV for
each of the 12 elements. We also indicate the resonance | T T ; |
jumps by asterisks. For each element we list the lowest Leg- ¢ 10 20 30 40 50
endre polynomial for the partial wave that is neither bound to
nor in resonance with the ion-core potential. We call this a
free state. In Table Il we show the electron distribution in the FIG. 3. Thel=0, 1, and 2 phase shifts of As at low energies.

Energy(eV)

Phase Shi

Energy(eV)
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TABLE I. Limiting values aseE—0 of each electron partial 1.50 : : » " . , , i 30
wave phase shift for the elements listd?].is the Legendre poly-
nomial of the lowest free-state partial wave. Theesonance at low 075 | C Si 115
energy is indicated by an asterisk. \/
0 0
S p d f g -
Element (I=0) (I=1) (1=2) (1=3) (I=4) E 225 || 145
S \
C 1w P, , s | \,y Ga
Al 27 1w P, L
Si 2m r P, o7 | |
Fe 3 27 Ow+1w* Ps3 W\/
Ni 3 27 Om+1lw* Ps 0 ‘ ‘ ‘ s . . , , 0
Cu 37 2 Om+1la* P, 0°  40° 80° 120° 160° 0°20° 60° 100° 140° 180°
Ga 3r 2 1m Ps 0 (degree)
As s 2m L Ps FIG. 4. Magnitude of electron scattering factor vs angle for C
* - y
A9 am 3w Lot dm Ps Si, and Ga at giOO eV and Pb at 300 eV. Left, vertical scale for C,
w 5 47 2w+1lw* 1w P, Ga; right, vertical scale for Si, Pb.
Au 5 A7 2w+ 1wt 1w P,
Pb Sir 47 3w 1w P, one dip in|f.(#)|, while its lowest free-state partial wave

|P1(#)| has a single zero. A similar correspondence can be
found for the other elements. Even the angles at which

shifts. We show in Fig. 4 the electron scattering factor|fe(6)| has dips match somewhat closely with the zeros of
|fo(0)| for C, Si, and Ga at 100 eV and Pb at 300 eV. For|P|min(9)|, although we do not expect quantitative correlation
anisotropy in the amplitude, we see that the C scatterinfpecause the former is energy dependent.

factor has a single dip, a#=90°; Si has two dips, at According to rules 1 and 2, the dips fif(6)| and jumps
=41° and 110°; Ga has three dips, and Pb has four dipsn ¢.(6) have origins in the bound and resonant states of the
While the number of dips and the angles at which they occuion-core potential. To understand this, we consider the sim-
are energy dependent, Fig. 4 shows the maximum number @flest case, which is C. The C potential hasssbbund state,
dips for each element. In Fig. 5 we plot the phag€d) for  thus §4(E) starts from# at E=0. For a weakly bound 4

the same four elements. We notice tlga( 6) jumps nearly  electron, 5,(E) decreases fromr as E increases. The first
by 7 at the angle of each dip. To explain these observationdree-state partial wavé,(E), on the other hand, starts from
we look at the zeros of the Legendre polynomials. In Fig. 6zero atE=0 and rises rapidly through/2, peaks belowr,

we plot the absolute valué®,(6)| for =1, 2, 3, and 4. The and then slowly decreases at higher energies. Thus, at 100
value of P (6) changes sign before and after each zero. ImeV, the angular anisotropy of the scattering factor is domi-
mediately, we see the correlation between the dig$df¥)|  nated by that of the first free-state partial wave, which be-
and the zeros diP,(6)| listed in Table I. For example, C has haves asP;(6) (see Fig. 7. The dominance of thé=1

TABLE Il. Electrons in different shells for each of the 12 elements. The bound or resonance elédémoied by asteriskare shaded.

Atomic no.| K L M N o P
& Element|1 s|2 s p|3 s p dj4 s pdf |[5S5spdfgi6spd..
6 C 31 2 2 |
: |
13 Al 2206 21 |
14 Si poaliael 00
26 Fe s Ruet 2
28 Ni ciZdnr2ngy 2
29 Cu  [:2fnius): 1
31 Ga  piu2finidiel: 2
33 As |3 2:16:4:: 2
47 Ag {112 2060 (2
74 W 2 216 2
79 Au  pii2 2060 !
82 Pb_ piiZif:ndied: 22
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Ga at 100 eV and Pb at 300 eV. ) . . .
FIG. 7. First few electron partial wave phase shifts for C, Si, Ga,

) ] ] and Pb. Negative slope solid liné=0), dotted line {=1), dash-
partial wave over thé=0 partial wave is accentuated by the dotted line (=2), and dashed linel €3). Positive slope solid

21+ 1 factor in the scattering factor. Sin€g(6) has a zero |ines (=4,5,...). Thephase shifts aE=0 eV are expressed in
at 90° and its sign changes at that angle, the amplitude atdians, modular.
carbon’s scattering factor goes through a minimum near that

angle and its phase changes By The latter is because as gy |n all these materialéFe, Ni, Cu, Ga, As, and Agthe
P1(6) changes sign, both the real and imaginary parts of thecattering factor is dominated by the angular anisotropy of
scattering  factor also change sign[f(6)=(2l  the|=3 free-state partial wave.
+ 1)Siif 4P(0)+i(2+1)cos4 sin 4P (6)]. Heref () is the The situation with the row six heavy metd/, Au, and
Ith partial wave component of the scattering fadtof). Pb) is only slightly more complicated. Here thé dore level
Turning now to Si, Table | shows that B0, &y starts at  js more tightly bound, resulting ifi;, which starts fromr at
2w and g, starts atw. The two phase shifts decrease in valueg—q tg increase through anothef2, before slowly decreas-
asE gets larger. The first free-state partial wdwe2 again ing at higher energies. The first free-state partial waye
rises rapidly throughr/2. Because of thel2-1 factor, itis  starts from 0 and increases througf® asE increases. We
not necessary to consider the effectlefO relative tol  can see from Fig. 7 that for Pb, the anisotropy of the scatter-
=2. AtE=100 eV for Si,é;, is neara/2, while 6, is cross-  jng factor reflects those d?, at 300 eV and those d?; at
ing the abscissa. Thus the angular anisotropy of the Si scaing ev. The same holds true for W and Au. The reader can
tering factor at 100 eV is dominated by the free-state€2  refer to Ref. 28 for the angular anisotropies of W, Au, and Pb
partial wave. From Fig. 7 it is easy to see that the situatioryt 100 eV. The fact thdf(6)| of Pb has four dips at 300 eV
with the Ga scattering factor is similarly dominated by theang only three at 100 eV does not affect the validity of rule
angular anisotropy of the=3 partial wave. Thé=2 phase 1 which is concerned with the maximum number of dips.
shift starts atm and remains close to this value over a few | the variable-axis small-cone method of low-energy
hundred eV. For the transitional metal elements Fe, Ni, an@jectron holography;>'” we separate out diffraction paths

Cu, thel =2 phase shift “resonates” from zero to nearat  from atoms where the scattering factor is nearly isotropic. To
a very low energy and remains closert@ver a few hundred

10 -— 10
10
C Si
08 | |P,| 5t 15
06| I
04 0 0
02! 5 Ga Pb I's

0
038
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02}
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FIG. 8. Coefficientr(#) vs electron scattering angle obtained for
FIG. 6. Absolute value of Legendre polynomials vs angle. C, Si, Ga, and Pb.
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FIG. 9. Coefficien{B(6) vs electron scattering angle obtained for
C, Si, Ga, and Pb.

FIG. 11. Positron’s coefficients(6) and B(6) vs scattering
angle for Si and Ga.

understand how the angular anisotropy in the phase of theient 8(6) produces an error in the position of the recon-
scattering factor affects the small-cone window, we followstructed image and a smah(6) guarantees that this error
previous work§ 36 and expand the phase as would be small(see Ref. 2 for an explicit formula of the
erron. The angular window affects the radial and transverse
resolutions of the reconstructed image. Reference 2 gives the
dependence of image resolution on the angular window.

Pu(0)=a(0)+ B(O)Kk+--- . oY)

We have evaluated the coefficient&d) and B(6), which are
averaged quantities, over an energy range considered. We
show in Figs. 8 and 9 the two coefficients, respectively, for
electron scattering of C, Si, Ga, and Pb. The energy range
used for C is 4—12 hartre¢$09—-326 eV, while that for Si,
Ga, and Pb is 4—15 hartre€09—-408 eV. The holographic
method requires that(6) and 3(6) be nearly isotropic within  |f . (g)| and|f ,(6)| have no dip, i.e., they are monotonically
the angular cone of wave-front reconstructloR.We see decreasing functions of, and (i) the phases of ;(6) and
from the figures that in the backscattering regime, this conf (g) do not have sharp jumps. We show in Fig. 10 the
dition is satisfied for angular cones with half angles of 80°positr0n’s|fp(9)| and phasep,(¢) for Si and Ga at 100 eV.
for C, 60° for Si, 30° for Ga, and 15° for Pb. The reason why|n the backscattering regiméf ()| is nearly isotropic;
we consider only the backscattering regime is because thgence it satisfies the requirement of the holographic recon-
holographic method also requires the magnit|id@)| to be  struction method. The coefficienta(¢) and B(¢) for the
near isotropic. This condition eliminates the forward- positron’s scattering phase,(6) evaluated in the energy
scattering region wheré (6)| is strongly peaked. Within the range 4-15 hartrees are shown in Fig. 11. Sint@ and
respective backscattering small conezf) varies by less  g(¢) are nearly isotropic in the scattering range 50°-180°,
than 1 rad angB(¢) varies by less than 0.05 A. The coeffi- there is no need to apply a small cone to the wave-front
reconstruction. The larger usable angular range for positron
45 ‘ - - : 30 holography means that the reconstructed image will have a
. > better transverse resolutiérn Fig. 12 we show the first few
Ga | 15 phase shifts of positron scattering for Si and Ga. Because no
'\ \ core level is present, all the phase shifts start from zero at
30 L B A 10 E=0. Another consequence of the repulsive potential is that
all positron phase shifts are negatfe.
Finally, in Figs. 13 and 14 we compare the magnitudes of

lll. ISOTROPIC BEHAVIOR OF THE POSITRON
BACKSCATTERING FACTOR

Because positrons and photons are not bound by the
atomic potential, it follows from rules 1 and 2 thét)

I, (0)1 (A)
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FIG. 12. First few positron
=0,13...

phase shifts for Si and Ga.
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FIG. 13. Radial plot of f( )| for the electron ¢ ), positron €*), and photor(y) at a wavelength of 3.3 A. For the radial scale, each
circular ring is 0.25 A. The scattering factor of the photon is multiplied b3, 10

the Si scattering factor for electrons™), positrons €*), IV. COMPARING MULTIPLE SCATTERING

and photons(y) at 3.3-A and 1.3-A wavelengths, respec- IN ELECTRON, POSITRON,

tively. The 3.3-A wavelength corresponds to a@h or e~ AND PHOTON DIFFRACTION

energy of 13.6 eV and & energy of 3.8 keV. The 1.3-A

wavelength corresponds to aif or e~ energy of 95 eV and In this section we provide a simple formula for estimating

ay energy of 9.6 keV. From these figures we see [hgt0)| the importance of multiple scattering for a particle in a solid.
and f(6)| are nearly isotropic in the entire backscatteringWe can use the scattering factors shown in Figs. 13 and 14 to
regime. Moreover, these scattering factors are smooth fun@stimate the size of multiple scatterings. Following previous
tions at all angles. The electron scattering factor, on the otheworks*7 the ratio of a double-scattering event vs single-
hand, contains large angular anisotropies, which must becattering event is given, within the small-atom approxima-

avoided in holographic wave-front reconstruction. tion, by

15 |

05 |

>o
o

\\‘ 0°
} 4
/

-0.5

FIG. 14. Same as in Fig. 13, except for a 1.3-A wavelength.
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large as 60% at backward scattering. For photon scatter-
ing, the ratio|f(6g)|/R<1, indicating that single scattering
is sufficient.

V. CONCLUSIONS

We have shown that for electron scattering, the angular
anisotropy in the scattering factor is caused by bound and
resonance states of the atomic potential. These states cause
the first few partial wave phase shifts to be naar at low
energy. This fact, coupled with thd 21 factor, results in
the electron scattering factor of an element exhibiting the
angular anisotropy of its first free-state partial wave. This
behavior allows us to predict the maximum number of dips
in |fe(6)].

We have also shown that for positron or photon diffrac-
tion, because of the absence of bound or resonance states, the
scattering factor is isotropic in the entire backscattering re-
gime. Thus positron and photon diffraction spectra are well
suited for holographic wave-front reconstruction and the
larger usable angular window produces better resolved
imagest— The reader may be interested to learn that by

15. If we assume that the near backscattering factorsemoving the first few partial waves from a positron’s scat-
[f(0:)|=|f(6)]|; then we obtain a useful estimate of the sizetering factor, it is possible to create similar angular anisotro-

of double scattering

M [f(6R)]

SR ®
In other words, the ratio oM to S is given by the ratio of
the scattering factor in directiofir to the bond length. For

Si, the nearest-neighbor bond length is 2.35 A. From Fig. 1

the positron scattering factor in the forward zone<(®
<90° is larger than 0.25 A. Because H@) is the ratio of

amplitudes, the double-scattering contribution to the inten-
sity is 2M/S, which gives a value of the double-scattering
contribution for positron scattering in the forward zone

greater than 20%. In the backward zone €@<180°,

pies seen for electrons. The removal of the first few phase
shifts is equivalent to simulating bound or resonance states
for these partial waves. For example, if we remove khe
=0 and 1 phase shifts from the positron’s scattering factor of
Si, the remaining(artificial) scattering factor exhibits two
dips (as inP,). Similarly, if we remove thd =0, 1, and 2
Aphase shifts, the resulting Si scattering factor exhibits three
dips (as in P3). The reader can refer to Ref. 28 for these
results.

ACKNOWLEDGMENTS

This work was supported in part by the Hong Kong Re-
search Grant Council, the RGC Central Allocation Vote,

double-scattering contribution for positron scattering is neaHKU CRCG, DOE Grant No. DE-FG02-84ER 45076, and
10%. In comparison, for electrons, the double-scattering conNSF Grant No. DMR-9214054. We also acknowledge help-
tribution to the forward zone is at least 40% and it can be asul discussions with D. R. Snider.

1S. Y. Tong, Adv. Phys(to be publishef

2s. Y. Tong, T. P. Chu, Huasheng Wu, and H. Huang, Surf. Rev.

Lett. 4, 459 (1997).
3S.Y. Tong, H. Li, and H. Huang, Phys. Rev.58, 1850(1995.

113, G. Tobin, G. D. Waddill, H. Li, and S. Y. Tong, Phys. Rev.

Lett. 70, 4150(1993.

12H.Wu, G. J. Lapeyre, H. Huang, and S. Y. Tong, Phys. Rev. Lett.
71, 251(1993.

4A. Szoeke, inShort Wavelength Coherent Radiation: Generation 13C. M. Wei, S. Y. Tong, H. Wedler, M. A. Mendez, and K. Heinz,

and Applications edited by D. T. Attwood and J. Boker, AIP

Conf. Proc. No. 147AIP, New York, 1986.

53. J. Barton, Phys. Rev. Letil, 1356(1988.

6S. Y. Tong, H. Li, and H. Huang, Surf. Rev. Lett. 303 (1994).

7S. Y. Tong, H. Huang, and C. M. Wei, Phys. Rev.4B, 2452
(1992.

83. J. Barton, Phys. Rev. Le@7, 3106(199J); J. J. Barton and L.
J. Terminello, inThe Structure of Surfaces Jledited by S. Y.

Tong, M. A. Van Hove, K. Takayanagi, and X. D. Xie

(Springer, Berlin, 1991
9S. Y. Tong, H. Li, and H. Huang, Phys. Rev.48, 4155(1992.
10C. M. Wei and S. Y. Tong, Surf. Sci. Let274, L577 (1992.

Phys. Rev. Lett72, 2434(1994).

14C. M. Wei, I. H. Hong, P. R. Jeng, S. C. Shyu, and Y. C. Chou,
Phys. Rev. B49, 5109(1994).

151, H. Hong, P. R. Jeng, S. C. Shyu, Y. C. Chou, and C. M. Wei,
Surf. Sci. Lett.312 L743(1994.

183, Y. Tong, H. Huang, and X. Q. Guo, Phys. Rev. Léf, 3654
(1992.

"Huasheng Wu and G. J. Lapeyre, Phys. Re®%1B14 549(1995.

18M. Zharnikov, M. Weinelt, P. Zebisch, M. Stickler, and H. P.
Steinruck, Phys. Rev. Let?.3, 3548(1994).

19D, K. saldin, K. Reuter, P. L. De Andres, H. Wedler, X. Chen, J.
B. Pendry, and K. Heinz, Phys. Rev. 3, 8172(1996.



10 822 S. Y. TONG, C. W. MOK, HUASHENG WU, AND L. Z. XIN PRB 58

203, v, Tong, C. M. Wei, T. C. Zhao, H. Huang, and H. Li, Phys. Sanchez-Hanke, Phys. Rev. Let6, 3132(1996.

Rev. Lett.66, 60 (1991). 28E. Wimmer, H. Krakauser, M. Weinert, and A. J. Freeman, Phys.
21G. R. Harp, D. K. Saldin, and B. P. Tonner, Phys. Rev. L&f. Rev. B24, 864(1981); H. L. Jansen and A. J. Freemabid. 30,
”s 1012(1990. _ . 561(1984.

I. H. Hong, D. K. Liao, Y. C. Chou, C. M. Wei, and S. Y. Tong, 2R, G. Newton, Scattering Theory of Waves and Particles
” Phys. Rev. B54, 4762(1996. (McGraw-Hill, New York, 1968.

S. Y. Tong, Hua Li, and H. Huang, Phys. Rev. L&, 3102 28C.\W. Mok, Huashang Wu, and S. Y. Tong, Surf. Rev. Léth.
0 (1991. be publisheg

D. Gabor, NaturéLondon 161, 777(1948. 2%Hua Li and S. Y. Tong, Surf. Sci. Lete81 L347 (1993.

25T, Gog, P. M. Len, G. Materlik, D. Bahr, C. S. Fadley, and C.



