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Ferromagnetic ground state of an orbital degenerate electronic model for transition-metal oxides
Exact solution and physical mechanism

Shun-Qing Shen and Z. D. Wang
Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China

~Received 16 July 1998!

We present an exact ground-state solution of a one-dimensional electronic model for transition-metal oxides
in the strong-coupling limit. The model contains doubly degenerated orbit for itinerant electrons and the Hund
coupling between the itinerant electrons and localized spins. The ground state is proven to be a full ferromag-
net for any density of electrons. Our model provides a rigorous example for metallic ferromagnetism in
narrow-band systems. The physical mechanism for ferromagnetism and its relevance to high-dimensional
systems, likeR12xXxMnO3 , are discussed. Due to the orbital degeneracy of itinerant electrons, the superex-
change coupling can be ferromagnetic rather than antiferromagnetic in the half-filled one-band case.
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The origin of ferromagnetism in narrow-band systems i
long standing problem and has recently attracted rene
attention. Essentially speaking, there are three basic rout
ferromagnetism:~1! it is formulated in the Hubbard mode
for an intermediate short-range Coulomb interaction with
pronounced peak in the density of state near the band ed1

~2! the Hund’s rule coupling in the presence of the orbi
degeneracy of itinerant electrons leads to ferromagnetis2

and ~3! the motion of electrons in the localized spin bac
ground forces the spins to align parallelled.3 Significant
progress has been made in our understanding of ferrom
netism in last several years. Recent reviews on this sub
are seen in Refs. 4–6 and references therein. On the o
hand, ferromagnetism inR12xXxMnO3 and related ordering
states have stimulated extensive interests due to the phe
enon of the colossal magnetoresistance. The physical ori
still lack full understanding. Electronic models for this fam
ily of materials contain all the three factors which favor fe
romagnetism, and are ideal candidates to test all phys
mechanisms for ferromagnetism. Various techniques are
plied to investigate magnetism in these models.7 Due to the
complexity of the systems quite a few rigorous solutions
rigorous results are obtained from the models. Usually rig
ous results are very helpful to shape the physics of theo
cal models, especially in such a strong correlated elec
system.

In this paper, we shall present an exact solution of
ground state for a one-dimensional electronic model
transition-metal oxides in the case of strong coupling. T
ground states are proven to be ferromagnetic by means o
Perron-Frobenius theorem. The physical mechanism an
relevance to three-dimensional cases are discussed. D
the orbital degeneracy of itinerant electrons, the supe
change coupling can be ferromagnetic rather than antife
magnetic in the half-filled one-band case.

An electronic model Hamiltonian for the transition-met
oxides is defined on a discrete latticèwith N` site and is
written as

H5Ht1Hu1H j1Hh , ~1!
PRB 590163-1829/99/59~5!/3291~4!/$15.00
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where

Ht5 (
i j ,g,g8,s

t i j
gg8ci ,g,s

† cj ,g8,s ,

Hu5 (
i ,g,g8,s,s8

~12dg,g8ds,s8!Ugg8ni ,g,sni ,g8,s8 ,

H j52 (
i ,gÞg8,s,s8

Jgg8~ci ,g,s
† ci ,g,s8ci ,g8,s8

† cj ,g8,s

1ci ,g,s
† ci ,g8,sci ,g,s8

† ci ,g8,s8!,

Hh52(
i ,g

JHSi•Si ,g .

ci ,g,s
† andci ,g,s are creation and annihilation operators foreg

electron with spins (561) on orbitalg(561) at sitei ,
respectively.Si is the maximal total spin of threet2g elec-
trons (S53/2), andSi ,g5(ss8ŝss8ci ,g,s

† ci ,g,s8/2 is a spin

operator for aneg electron andŝ are the Pauli matrices.Ht
describes the process of electrons hopping between nea
neighbor sites.Hu is of the on-site Coulomb interaction.H j
is the Hund exchange coupling between itinerant electr
on different orbitals at the same site andJgg8 is always posi-
tive. Hh is the Hund coupling between localized spins a
itinerant electrons at the same sites. In this model the t
spin operator

Stot5 (
i P`

Si1(
i ,g

Si ,g ,

commutes with the Hamiltonian,@Stot ,H#50. Hence the to-
tal spin and itsz component are good quantum numbers. T
maximal total spin isSmax5N`S1Ne/2 (Ne is the number
of electrons and we just considerNe,2N`). We call the
state withSmax a ferromagnet.

This model has been investigated by many authors.7 In
order to establish some rigorous results for this model
first consider a one-dimensional open chain and focus
3291 ©1999 The American Physical Society
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attention on the case that~i! t i j
gg852tdg,g8d i , j 61 and t.0;

~ii ! Ugg85U51` if g5g8; ~iii ! Ugg85U8 if gÞg8; ~iv!
Jgg85J.0 for gÞg8; ~v! JH.0. It is worth stressing tha
the condition~ii ! excludes the double occupancy of electro
on the same orbital at the same site, which is essentia
solve the one-dimensional model exactly.

To solve the model rigorously, we first investigate t
ground-state properties by means of the Perron-Frobe
theorem.8 The ground state is proven to be nondegene
and possesses the maximal total spin. In this case we
write down the ground-state wave function explicitly by u
lizing the Bethe ansatz. The solution is valid for any dens
of electrons. The Perron-Frobenius theorem~for a real sym-
metric matrix! states:

Let M5$mi j % be a real, symmetric, and square matrix.
the matrix M satisfies the conditions: (i) all its off-diagon
matrix elements are nonpositive, mi j <0; (ii) any i and j are
connected by the matrix, i.e., we can always find an integ
such that(Mn) i j Þ0, then the lowest eigenvalue is nondege
erate and all elements of the corresponding eigenvector
be taken to be positive.

This theorem was successfully applied to prove the e
tence of ferromagnetism in the quantum double-excha
model,9 the one-band Hubbard model,10 and the orbitally de-
generate Hubbard model.11 In order to apply this theorem to
the present model@Eq. ~1!#, we have to choose a suitab
basis set to write the Hamiltonian in the form of a re
symmetric and square matrix which obeys the two con
tions. Consider the system containsNe electrons. As thez
component of the total spinStot

z is a good quantum numbe
the Hilbert space can be decomposed byStot

z . AssumeN1

electrons ong521 orbit with spins1<s2< . . . <sN1
are

located at sitesx1,x2, . . . ,xN1
, and N2 electrons ong

51 orbit with spin sN111<sN112< . . . <sN11N2
are lo-

cated at sitesxN111,xN112, . . . ,xNe
. xm51, . . . ,N` and

mi50, . . . ,2S. As N12N2 is also a good quantum numbe
thus we choose specificStot

z , N1 andN2 . ~We shall show the
lowest energy state is located atN15N2 if Ne is even, or
N15N261 if Ne is odd.! Denotea to be one of the configu
rations of electrons and localized spins,

ua&5cx1 ,21,s1

† . . . cxN1
,21,sN1

†

3cxN111 ,1,sN111

† . . . cxNe
,1,sNe

†

3~S1
1!m1~S2

1!m2 . . . ~SN`
1 !mN`u0&,

where the stateu0& has the properties:
~1! cxm ,gm ,sm

u0&50 for anym51, . . . ,Ne ;

~2! Si
2u0&50 for any i 51, . . . ,N` .

As we just construct a basis within the subspaceStot
z , it is

required that

Stot
z 5 (

m51

Ne sm

2
1(

i 51

N`

~mi2S!. ~2!

A complete set of bases consists of all possible configu
tions of $$xm%,$gm%,$sm%,$mi%% with the condition~2!. a in
ua& represents one of the possible configurations.
s
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On this basis we come to show that the Hamiltonian s
isfies the condition of non-positivity and connectivity.

~1! Nonpositive off-diagonal elements: On the basis
choose, the Hamiltonian can be expressed in the form
square matrix. All nonzero off-diagonal elements of the m
trix ^auHua8& are:~a! 2t if xn5xn861 and all other indices
are the same;~b! 2J if sn56sm8 , xn5xm8 , gn52gm8 and
all other indices are the same;~c! 2JH if mi1sn5mi8
1sm8 , gn5gm8 , xn5xm8 5 i and all other indices are th
same. All the nonzero elements are negative ift,J,JH.0.
Therefore the Hamiltonian matrix satisfies the first conditi
of the Perron-Frobenius theorem.

~2! Connectivity: all bases are connected throughH: ~a!
the hopping terms connect all lattice sites within the orbitg;
~b! the Hund couplingJ connects the two orbits at the sam
site;~c! the Hund couplingJH connects the orbits of itineran
electrons and the localized spins. Combination of~a!, ~b!,
and ~c! shows all bases are connected byH.

On this basis, the lowest energy state withStot
z is ex-

pressed in the form

uC&5(
a

f ~$xm%,$gm%,$sm%,$mi%!ua&. ~3!

According to the Perron-Frobenius theorem, we conclu
that the lowest energy state withStot

z is nondegenerate and a
coefficientsf can be chosen to be positive,f .0.

Since the lowest energy state withStot
z $Eq. ~3!% is nonde-

generate and the total spin is a good quantum number, th
fore the state must be an eigenstate of the total spin

~Stot!
2uC&5Stot~Stot11!uC&. ~4!

To determineStot , we first construct an eigenstate with th
maximal total spinSmax5N`S1Ne/2,

uF~Stot
z 52N`S2Ne/2!&

5 (
$xm%

cx1 ,21,21
† . . . cxN1

,21,21
†

3cxN111 ,1,21
† . . . cxNe

,1,21
† u0&.

The other 2Smax eigenstates with total spinSmax and different
z components are expressed by utilizing spin SU~2! symme-
try

uF~Stot
z !&5~Stot

1 !MuF~Stot
z 52N`S2Ne/2!&5(

a
ua&,

~5!

where M5Stot
z 1N`S1Ne/2 and the summation runs ove

all possible configurations in the subspace ofStot
z . The main

feature of the state is that all coefficients on the basis in
subspaceStot

z are equal. This state is not orthogonal to t
lowest energy stateuC& if they have the samez component
of total spin,

^CuF&Þ0, ~6!

since all coefficients inuC& are positive. As both states ar
eigenstates of the total spinStot , we have

^Cu~Stot!
2uF&5Stot~Stot11!^CuF&5Smax~Smax11!^CuF&.

~7!
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Hence we conclude thatStot5Smax, i.e., the lowest energy
state possesses the maximal total spin. In other words,
state is fully ferromagnetic.

The lowest energy state withStot
z is fully ferromagnetic.

According to spin SU~2! symmetry of the model, the groun
state is (2Smax11)-fold degenerate. This property makes
possible to write down the ground- state wave function
plicitly. The coefficients in the ground state are independ
of spin indices, i.e.,

f ~$xm%,$gm%,$sm%,$mi%!5g~$xm%,$gm%!. ~8!

Hence the Schro¨dinger equation,HuC&5EguC&, is reduced
to

2t (
m,d561

g~$x1 , . . . ,xm1d, . . . ,xNe
%,$gm%!

1Ueff (
n,m

dxn ,xm
~12dgn ,gm

!g~$xm%,$gm%!

5~Eg2NeJ/22N`s!g~$xm%,$gm%!, ~9!

whereEg is the ground-state energy of the model. In the c
of ferromagnetism, the Schro¨dinger equation is reduced to
one-band Hubbard model with the on-site Coulomb inter
tion, Ueff5U82J if we use the orbit indices instead of usu
spin indices. This equation can be solved exactly by me
of the Bethe ansatz.12 The solution tog is expressed as

g~$xm%,$gm%!5(
P

@Q,P#expF i (
m51

Ne

kPm
xQmG , ~10!

whereP and Q are two permutations of (1,2,. . . ,Ne). The
coefficients@Q,P# have the relation

@Q,P#5Ynm
i ,i 11@Q,P8#; ~11!

Ynm
i ,i 115

~sinkn2sinkm!Pi ,i 112 iU eff/2

~sinkn2sinkm!1 iU eff/2
, ~12!

where

P5~P1 , . . . Pi5n,Pi 115m, . . . PN!;

P85~P1 , . . . Pi85m,Pi 118 5n, . . . PN!.

kn (n51, . . . ,N`) are determined by Eqs.~11! and ~12!.
The ground state is located in the subspaceN15N2 if the
number of electrons is even, orN15N261 if the number of
electrons is odd. Its lowest energy is

Eg522t (
n51

Ne

coskn2
1

2
NeJ2N`JHS. ~13!

The properties of the Lieb-Wu’s solution have been d
cussed extensively.13 Except for the fillingNe5N` , there is
no energy gap. Hence the ground state is a metallic fe
magnet.

We have obtained the exact solution of the ground stat
the electronic model for transition-metal oxides in a on
dimensional open chain for any density of electrons in
case ofU51`. The state is proven to be fully ferromag
netic. Here we come to discuss the physical mechanism
he
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ferromagnetism and its possible relevance to realistic
three-dimensional systems. The model we discuss cont
all possible factors which favor ferromagnetism: large o
site Coulomb interaction, orbital degeneracy of itinera
electrons and the Hund’s rule coupling. In the case oJ
5JH50, the model has a highly spin-degenerated grou
state whenU51`. Any finite U will remove the degen-
eracy to form a spin singlet state. Thus without the Hun
rule coupling the only strong on-site Coulomb interacti
cannot drive electrons to form ferromagnetism. On the c
trary, the nonzero Hund’s rule coupling, i.e.,JÞ0 andJH
Þ0, will also remove the degeneracy to form a ferromagn
This indicates that the interplay between the on-site C
lomb interaction and the Hund’s rule coupling plays an
sential role in the stability of ferromagnetism in the mode

The ferromagnetism may also be survived in the case
finite U and largeJ andJH . To see this effect, we consider
more realistic and three-dimensional model which is us
extensively to describe the doped lanthanum manganese
ides. The final consequences are also valid to the o
dimensional case. The transfer integrals in the model
R12xXxMnO3 are assumed to take a Slater-Koster fo
given by the hybridization betweeneg orbit and nearest oxy-
genp orbit14

t i j
gg852ttgg8

x ,2ttgg8
y ,2ttgg8

z ~14!

for r j5r i6 x̂,r i6 ŷ and r i6 ẑ, respectively, where

tx5S 1

4
2

A3

4

2
A3

4

3

4
D , ty5S 1

4

A3

4

A3

4

3

4
D , tz5S 1 0

0 0D .

g561 represent (0
1)53z22r 2 orbit and (1

0)5x22y2 orbit
of the eg electron, respectively. In reality, the parameters
the model for the manganites are roughly estimated asU
@JH ,J@t. Hence we can obtain an effective Hamiltonian
Ne5N` by means of combination of the projection tec
nique and the perturbation technique15

Heff52
t2

U82 J/2
(
i j

S Si•Sj1~S11/2!~S13/2!

~S11/2!~S13/2! D Pi j
d

1
t2

U81 3J/2 1JHS
(
i j

S Si•Sj2~S11/2!2

~S11/2!~S13/2! D Pi j
d

1
t2

U1JHS(i j S Si•Sj2~S11/2!2

~S11/2!2 D Pi j
s , ~15!

whereSi is a spin operator withS11/2 as a ferromagnetic
combination of the localized spin and itinerant electron at
same site.Pi j

s(d) is the projection operator for the orbital oc
cupancy

Pi j
s 5t i

at j
a ;

Pi j
d 5t i

a~12t j
a!

with a5x,y,z, which depends on the direction ofr i2r j .
From the effective Hamiltonian, the first term favors ferr
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magnetic correlation and the other two terms favor antifer
magnetic correlation. WhenU51` or sufficiently large, the
third term is suppressed. Comparing the first and sec
terms, we find that the ferromagnetic coupling is alwa
stronger than antiferromagnetic coupling since

t2

U82J/2
.

t2

U81 3J/21JHS
~16!

and Pi j
d always has nonnegative eigenvalues. WhenJHS is

sufficiently large andU82J/4 is kept unchanged, the firs
term is predominant even for a finiteU. However, whenU
decreases to finite, an antiferromagnetic frustration is in
duced. The stability of ferromagnetism depends on the c
petition between the strong Hund coupling and the effec
finite U. In LaMnO3, whereNe5N` , a ferromagnetic and
insulating phase was observed at low temperatures.16 This
experimental observation is in qualitative agreement with
analysis. Oppositely, if we neglect the orbital degeneracy
eg electrons and use a one-band Kondo lattice model to
scribe the sample, we always have an antiferromagn
phase at low temperatures.17 It implies that the orbital degree
.

-

d
s

-
-
f

r
f

e-
tic

of freedom is very important for us to understand the ph
diagrams of doped manganese oxides. When the syste
doped, i.e.Ne,N` , due to the strong Hund coupling,JH

@t, the motion of itinerant electrons tends to force the
calized spins to align parallell. Thus the double-exchan
mechanism as well as the orbital degeneracy and stronU
should be also responsible for the metallic ferromagnetism
R12xXxMnO3. The detailed discussion of the phase d
grams will be published elsewhere.

Summarizing, the model on an open chain is solvable
the case ofU51`. The ground state is a metallic ferroma
netic except for the densityNe /N`51. The charge and or
bital degrees of freedom are determined by a Lieb-Wu so
tion for the one-dimensional Hubbard model. Th
ferromagnetism can be survived in finiteU and higher di-
mensional systems. Due to the orbital degeneracy of itine
electrons and strong on-site repulsionU, the superexchange
coupling can be ferromagnetic rather than antiferromagn
in the one-band case.

This work was supported by a CRCG research grant at
University of Hong Kong.
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