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Self-consistent analysis of a quantum capacitor
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We analyze the behavior of the magnetocapacitance for a three-probe capacitor. The self-consistent evalu-
ation of the internal potential is found to play a large role in determining quantitative values of the capacitance.
For capacitor plates of mesoscopic size, this potential reduces the charge accumulation by more than an order
of magnitude compared to that obtained with noninteracting models. However, the qualitative behavior of the
magnetocapacitance is not substantially altered by the self-consistency. A simple but physically motivated
model gives an analytical formula which compares well with the numerical data.@S0163-1829~98!05347-8#
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It has been known for many years that quantum effe
can influence the behavior of a capacitor.1 Classically, ca-
pacitance is obtained by solving an electrostatic proble
determining the small bias voltage difference,DV, which is
needed to transfer a chargeDQ between two conductors. Th
electrostatic capacitanceCe5DQ/DV is geometrical: it only
depends on the geometric properties of the two conduct
However, early studies of quantum corrections toCe focused
on the fact that the Fermi energyEF of the conductors
changes with the bias voltage, so that an experiment
measured capacitance should reflect this quantum effec
was found1 that this density of states~DOS! correction is in
‘‘series connection’’ toCe , so that the total capacitance
given by 1/C51/Ce1( i1/(e2Di), wherei 51,2 denotes the
two conductors, andDi5dNi /dE is the DOS of conductori
at its Fermi energy.

More recent studies of quantum effects to capacita
have focused on wave phenomena:2 for mesoscopic or mi-
croscopic conductors, quantum coherence of the entire
pacitor including the leads can be maintained. Hence
experimentally measured capacitance becomes an ele
chemical one,2 C5eDQ/Dm, whereDm is the electrochemi-
cal potential variation between the two electronreservoirs
which are connected to the two capacitor plates. This n
rally leads to a dynamic perspective on capacitance:3 C mea-
sures the dynamic charge response when the chemical p
tial of a reservoir is changed by a small amount. T
consequences of wave phenomena for capacitance are
ous, including, for example, the role played by the lea
which limits the transport modes,3,4 the symmetries of the
capacitance matrix,5 and the relationship to quantum chao
scattering in mesoscopic cavities.6

An important physical ingredient in the case of very sm
capacitor plates is the electron-electron interaction.2 For
macroscopic metal plates this interaction is largely screen
but for tiny plates where the DOS is low, the screeni
length can be long enough to play an important role. Fr
the point of view of ac quantum transport, the interaction
also needed to maintain charge and current conservat2

The simplest way to introduce the interaction is through
RPA-type treatment which is adequate for the capac
PRB 580163-1829/98/58~23!/15393~4!/$15.00
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problems2 studied so far. Nevertheless, such an analysis
volves the self-consistent solution of quantum scattering
gether with the Poisson equation for the potential distribut
in the capacitor, and thus can be complicated for pract
device geometries.

It is easy to see why it is necessary to solve a s
consistent problem.2 When the chemical potential of a rese
voir is suddenly changed byDm from equilibrium, charge
with densityDr inj is injected into the capacitor. The value o
the injected charge can be determined by solving a quan
scattering problem. However, because of the electr
electron interaction, an induced charge densityDr ind(r ) is
established inside the capacitor to oppose the injection.
total charge density of the system is thus given byDr(r )
5Dr inj1Dr ind . It is this induced charge density which
self-consistently determined by iterating the Poisson eq
tion for the potential distributionU(r ) inside the system. The
total charge on a plate is then obtained asDQ5*Dr(r )dr ,
where the integral is carried out over the entire volume of
plate, and the capacitance is defined asC5eDQ/Dm.

This Brief Report examines the quantitative effect of t
self-consistent interaction on the behavior of magnetocap
tance for a three-probe mesoscopic capacitor. The same
tem was used previously to examine the symmetry proper
of the capacitance7 when the applied external uniform mag
netic field B is reversed. Because thequalitative magnetic-
field symmetry properties do not depend on the electr
electron interaction in an essential way, Ref. 7 resolved
technical difficulties of the complete self-consistent proble
by using classical image charges and then correcting the
jectivity. While this procedure is acceptable forqualitative
discussion of the problem, the image charges are not
equate to accountquantitatively for the induced charge
Therefore, this paper focuses on thequantitativecontribution
of the full self-consistent cycle to the values ofC5C(B): to
the best of our knowledge, this important information h
never previously been documented for practical calculati
of finite-sized mesoscopic conductors.

To be specific, the three-probe device represented by
white lines in Fig. 1 consists of a two-probe semiconduc
plate of size 3300 Å33300 Å, connected to reservoirs 1 an
15 393 ©1998 The American Physical Society
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2 through quantum wires both of width 1650 Å. The scatt
ing potential of the system is specified asV(r )50 every-
where except at the boundaries, where it is assumed t
infinite.

In the vertical direction the plate is 260 Å thick—a re
sonable value for confined electrons in heterostructures,
rather smaller than the screening length. The second cap
tor plate is a metal gate on top of and parallel to the se
conductor plate: it is attached to a reservoir by the th
probe, as shown. The gate has a cross section of 550
35500 Å, similar in size to the plate, but in the vertic
direction it is much thicker—many times the screeni
length, so that the interaction is completely screened d
inside the gate along this direction. Between the two cond
tors there is an insulating layer with thicknessd5360 Å. All
space surrounding the plates has a uniform dielectric c
stante513.1 typical of heterostructures.

The calculation proceeds using the theoretical deve
ment of Ref. 2. The injected density from thei th probe is
calculated8,9 from the injectivity dn(r ,i )/dE, which is de-
fined in terms of the scattering wave functionsCm of the
free electrons incoming from probei : dn(r ,i )/dE
5(muCm(r )u2/hvm . Herevm is the speed of the incomin
wave with mode indexm, andh is the Planck constant. Thu
the injected charge isDr inj(r )5( i@dn(r ,i )/dE#Dm i . The
induced charge due to injection through a probei is given by
Dr ind(r )52*P(r ,r 8)eU(r 8)dr 8, where the Lindhard func-
tion P(r ,r 8), in the Thomas-Fermi linear screenin
model, is the sum of emissivities,2 P(r2r 8)5d
(r2r 8)( idn( i ,r )/dE. For smallDm i , the internal potential
U(r ) can be written aseU(r )5ui(r )Dm i , in terms of a
characteristic potentialui(r ) satisfying a Poisson equation,2

2e¹2ui~r !14pe2F(
j

dn~ j ,r !

dE Gui~r !54pe2
dn~r ,i !

dE
.

~1!

FIG. 1. Contour plot of the characteristic potentialu1(r ) for a
plane parallel to the plate and inside it, and for a magnetic fielB
50. The contour lines are in steps of 0.05, up to a maximum
0.65. The solid white square indicates the position of the plate
its leads, and the dashed square indicates the position of the g
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When the magnetic fieldB is not zero, the injectivity
dn(r , j )/dE does not equal the emmisivitydn( j ,r )/dE for a
conductor with more than one probe, but the sums over
indices j are equal.9 Thus the emissivities in Eq.~1! can be
replaced with injectivities evaluated in terms of the scatt
ing wave function discussed above. Onceui(r ) is obtained
from Eq. ~1!, the electrochemical capacitance2 becomesCkl
52e2*@ul(r )dn(r ,k)/dE#dr for kÞ l .

To carry out the calculation described in the preced
paragraph, some technical difficulties must be solved
certain approximations made. The quantum scattering p
lem is solved using a finite element numerical method do
mented in Ref. 10 with the Fermi energy chosen to inclu
two modes. It involves no particular complications. How
ever, the numerical solution of Eq.~1! is more involved. The
difficulties that arise are the same as those for the comp
tion of capacitance for a system of conductors which is
closed in a large 3D volumeV. In this situation, even ifV is
so large that its surface is far away from all interior charg
the solution of the strictly classical Poisson problem sho
that there are induced charges on its surface, so that
definition of capacitance requires considerable car12

Roughly speaking, the relative magnitude of the charge
the surface ofV is a measure of the corrections to the co
ventional classical definition. We will assume that simil
arguments apply in the quantum case.

Fortunately, however, the capacitance—at le
classically—depends only upon the interaction between s
cific portions of the system and not upon the details of
boundary conditions at infinity. Thus, in our situation, it
convenient to replace the real configuration by one where
plate and gate are enclosed by grounded metal shields.
reservoirs are outside these shields, and the leads enter
through small holes. In the solution of Eq.~1!, the potentials
ui(r ) can then be locally determined by neglecting the r
ervoirs and leads, and retaining only the plate and gate d
sities.

The grounded shields define a ‘‘solution box’’ whose si
is chosen to be large enough that the potential on its bou
ary can be safely set to zero~mimicking r→`!. The box was
chosen as 8800 Å38800 Å35120 Å. For such a large box
a conventional relaxation method to solve Eq.~1! is imprac-
tical, because it requires a prohibitively large amount
computer time, and a multigrid method11 was therefore de-
veloped.

After the ui(r ) have been obtained, a crucial numeric
check is to verify the overall charge distribution of the sy
tem. As discussed above, it is not necessary that the cha
on the gate and on the plate be equal in value and opposi
sign, but it is important to know the relative magnitude
their difference in charge. For the chosen box size,
charges on the gate and the plate balanced to within 20%
that we estimate our capacitance calculations to be relia
also to within 20%.

A typical profile of the characteristic potentialu1(r ) for
chemical potentialsDm1Þ0 andDm i50 for i 52,3 is shown
in Figs. 1 and 2. The presence of two densities of states f
the two contacts means that the electrostatic potential ha
be highly nonuniform in order for the injected charge to
uniformly screened. It is also the source of the valleys in
characteristic potential. Thus the self-consistent first-or
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potential response introduces a complicated, highly non
form modification to the scattering potential, even for
open ballistic system. The plot in Fig. 2 also illustrates
limitations of leaving out of consideration the charge in t
leads. The drops in the potential at the junctions where
leads are attached are unphysical. However, a cut has t
imposed somewhere because it is difficult explicitly to mo
the reservoir and its connection to the lead.

The numerical results for the capacitanceC31 as a func-
tion of an external uniform magnetic field6B, applied per-
pendicular to the plane of Fig. 1, are shown as solid lines
Figs. 3 and 4. The two figures differ only in direction of th
field B. Several observations are in order. First, it is evid
that C31(B)ÞC31(2B): this is the asymmetry anticipate
from a general argument based on ac transport theory.2 It is
experimentally and theoretically confirmed in Ref. 5, a
numerically verified in Ref. 7. Second, the near regula
spaced peaks whenuBu.5000 G are due to Aharonov-Bohm
effects as discussed in Ref. 7. Thesequalitative results are
not affected by the self-consistent calculation of the indu
charge density. Third, and most important, is that the inc
sion of self-consistency drastically reduces the values ofC31
by about a factor of ten. The reason is related to the red
tion of the accumulated charge on the plate~and the gate!:
Dr~r ! is much smaller than the injectedDr inj(r ) because the
induced chargeDr ind(r ) cancels a large part of the injecte
charge at each local point. For our particular system
reduces the total charge to about 10% of the injected va

Using the numerically determined local DOS~injectivity
and emissivity!, it is also possible to compute the enti
C31(B) curves analytically after making some approxim
tions. For this purpose, Eq.~1! is reduced to 1D by averagin
the local DOS in thex-y plane. Furthermore, since the pla
is thin, it may be treated as an infinitesimally thin sheet
charge, just as the metal gate becomes an infinitely long

FIG. 2. Contour plot of the characteristic potentialu1(r ) ~not to
scale! for a plane perpendicular to the plate at magnetic fieldB
50. The contour lines are in steps of 0.05, up to a maximum
0.55. The solid heavy lines correspond to the boundaries of
plate and the gate. Inset: the same plot, to scale, showing the e
computational cell and the positions of the conductors inside it
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with cross-sectional areaA. Since the distanced between the
two conductors is small compared with the linear size of
plate, fringing fields can be neglected. The probes exten
r5`, and thus the boundary conditions areui(r )51 whenr
is inside a leadi , and zero otherwise. The 1D Poisson equ
tion is then solved in the same spirit as that of Ref. 2
matching the solutions ofu1(z) across the thin sheet o
charge. It is not difficult to obtain the formula

C315
eA

4p

l12

l1

1

d1e~l31l12!
, ~2!

f
e

tire

FIG. 3. CapacitanceC31 as a function of the applied uniform
magnetic fieldB. Solid line: from full self-consistent numerica
analysis; dotted line: from the one-dimensional model calculat
with the numerical density of states as input parameters. The
sonable agreement of the two curves is clear.

FIG. 4. CapacitanceC31 when the direction of applied uniform
magnetic field is reversed to2B. Solid line: from full self-
consistent numerical analysis; dotted line: from the on
dimensional model calculation with the numerical density of sta
as input parameters.
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where A5(3300 Å)2 is the plate area. The lengthsl
are defined as l i5@4pe2ds i /dE#21 for i 51,2,
l125@4pe2( i 51

2 ds i /dE#21, and l35@4pe2dn3 /dE#21/2.
The quantitiesds i /dE5*@dn(r ,i )/dE#dr for i 51,2 are the
average DOS per unit area for the sheet of charge~the inte-
gration is over a unit area!, anddn3 /dE is the average DOS
per unit volume for the gate. These quantities can be
tained from the numerical solutions of the self-consist
problem. The approximate results from Eq.~2! are plotted in
Figs. 3 and 4 as the dotted lines, and are seen to repro
the numerical results remarkably well. The simple analyti
formula ~2! allows us to observe that the peaks in the capa
tance curves are due to the peaks in the injectivity from l
1, while the valleys correspond to values of the field at wh
there are peaks in the injectivity from reservoir 2. The a
proximate results~2! consistently underestimate the values
C31(B), due, it seems, to the neglect of the fringing fiel
and to the assumption of a constant local DOS through
the metal gate.

Finally, it is interesting to discuss the classical limit of th
capacitor. If the potential of probe 1 on the plate is raised
V while keeping the other probes grounded, then a cur
will flow from probe 1 to 2. Along the way there is n
resistance anywhere except at the junction between
probes and the plate. Assuming these probes are iden
there are thus two equivalent resistors, with a voltage dro
V/2 on each. Hence, the classical plate, with an infinite D
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and zero screening length~thel’s!, must become an equipo
tential atV/2. The classical ‘‘electrochemical’’ capacitanc
of the system is thusCe/2, whereCe[eA/(4pd) is the clas-
sical electrostatic capacitance of a parallel plate capac
Here we put the word electrochemical in quotes beca
such a concept makes no sense in classical physics: it me
means that we measure the potential drop from thereservoirs
while the drop across the two conductors can be quite dif
ent. The quantum formula of Eq.~2! reproduces this conclu
sion: letting the DOS become infinite yieldsd@e(l31l12)
andl125l1/2, which givesC315Ce/2.

To summarize, the self-consistent solution of the inter
potential distribution plays an important role in determini
the capacitance of a mesoscopic capacitor. For the small
tem used as an example, the induced charge reduces the
accumulated charge to about one-tenth of the injected va
thus affecting the value ofC in a drastic way. Other symme
try properties of the capacitance matrix do not change qu
tatively as a result of the self-consistency. A surprising res
is that formula~2!, obtained from a crude analysis, whe
evaluated with the computed density of states, reproduces
full numerical solutions quite well, in spite of the high de
gree of nonuniformity of the potential distribution.
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