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The electronic states and magnetotransport properties of quantum waveguides~QW’s! in the presence of
nonuniform magnetic fields perpendicular to the QW plane are investigated theoretically. It is found that the
magnetoconductance of those structures as a function of Fermi energy exhibits stepwise variation or square-
wave-like oscillations, depending on the specific distributions~both in magnitude and direction! of nonuniform
magnetic fields in QW’s. We have investigated the dual magnetic strip structures and three magnetic strip
structures. The character of the magnetotransport is closely related to the effective magnetic potential and the
energy-dispersion spectrum of electron in the structures. It is found that dispersion relations seem to be
combined by different sets of dispersion curves that belong to different individual magnetic subwaveguides.
The magnetic effective potential leads to the coupling of states and the substantial distortion of the original
dispersion curves at the interfaces in which the abrupt change of magnetic fields appears. Magnetic scattering
states are created. Only in some three magnetic strip structures, these scattering states produce the dispersion
relations with oscillation structures superimposed on the bulk Landau levels. It is the oscillatory behavior in
dispersions that leads to the occurrence of square-wave-like modulations in conductance.
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I. INTRODUCTION

The character of electron transport in microstructures c
ated by high-mobility GaAs-AlxGa12xAs heterostructures in
a perpendicular magnetic field has become an extremely
tensive research subject of great theoretical and experime
interest.1 The prospect of building devices based on the el
tron coherent transport feature is an exciting area of se
conductor and device research. One important lo
dimensional device is the electron waveguide, which can
achieved via field effects on a two-dimensional electron
~2DEG! system.2,3 Another important quantum interferenc
device is dual-coupled quantum waveguides, which can
have as an electron waveguide coupler.4–11 Electron-
transport properties in nonuniform magnetic fields have a
attracted much attention and are now under intensive in
tigations in recent years.12–20

Recently, Müller studied the single-particle electron
structure of a 2DEG in the wide quantum waveguide un
the application of a nonuniform magnetic fieldB.12 He found
that in the presence of laterally linearly varying magne
field in the interior of the sample the Landau states are
longer stationary but propagate perpendicularly to the fi
gradient and exhibit a remarkable time-reversal asymme
In one of the allowed directions the propagation has fr
560163-1829/97/56~20!/13434~8!/$10.00
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electron character, and it is confined to a narrow o
dimensional region localized near the line where the m
netic field is minimum. Transport properties of electro
become one dimensional. In the the opposite direction
Landau states propagate throughout the rest of the sam
with a velocity that depends on the field gradient, i.e., el
trons are drifting in the interior of the sample.

More recently, Chklovskii studied the structure of th
2DEG edge in the quantum Hall regime using the compos
fermion approach.13 When assuming that the electron dens
roughly follows the positive background and hence the co
posite fermions experience a roughly linearly varying effe
tive magnetic field, there are three types of classical or
for composite fermions in this field:13,12,21drifting orbits that
move along the edge in the direction of electron drift, sna
orbits that move in the opposite direction, and closed orb
that do not drift along the edge.

In the previous work,20 we have theoretically investigate
the magnetotransport properties of dual-coupled quan
wires in uniform magnetic fields, in which two quasi-on
dimensional quantum wires are coupled through a thin i
lating potential barrier. The dispersion curves exhibit an
cillation structure superimposed on the bulk Landau leve
owing to the energy splits at the cross points of two disp
sion curves that belong to different quantum wires. Th
13 434 © 1997 The American Physical Society
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leads to the appearance of square-wave modulation in
ductance.

Motivated by these works, in this paper we investigate
characters of electronic states and the magnetotranspo
the quantum waveguides in nonuniform magnetic fields t
take a form of laterally segmented uniformity, i.e., abrup
changing the magnitude or polarity of magnetic fields b
tween the adjacent magnetic channels. It is believed tha
interfaces, at which the abrupt change of magnetic fie
takes place, play a similar role of the isolating barrier ins
the waveguides. The lateral stepwise varying magnetic fie
such as dual magnetic strip and three magnetic strip st
tures, partition the waveguide into several parallel chann
Due to the coupling effect of electronic states between a
cent channels the magnetoconductance as a functio
Fermi energy demonstrates a quantization change in a sim
staircase fashion or square-wave-like oscillations, depen
sensitively on the type of modulations, the magnitude, a
the relative polarity of the magnetic fields. To understa
this feature, we have calculated the effective potential
duced by the magnetic field and the energy-dispersion r
tions of the propagating modes. It is found that dispers
relations seem to be combined by different sets of disper
curves that originally belong to individual magnetic cha
nels. However, owing to the drastic change of magne
fields at interfaces the strong magnetic scattering takes p
and leads to significant distortion of the dispersions at cr
points where two sets of original dispersion curves inters
The appearance of magnetic scattering states remark
modifies the behavior of the dispersions of electrons in
structures. Our calculations show that in some thr
magnetic-strip structures the coupling effect gives rise to
dispersions with oscillation structures superimposed on
bulk Landau levels. It is this oscillatory behavior in the d
persions that causes the square-wave-like modulations in
magnetoconductance spectrum.

This paper is organized as follows: Section II is a br
description of the model device structure and the neces
formulas used in calculations. The calculated results are
sented in Sec. III with analyses. Finally, a brief summary
reserved for Sec. IV.

II. MODEL AND FORMULAS

The system considered is a long narrow quantum wa
guide ~QW! of a width W subjected to a nonuniform mag
netic field perpendicular to the QW lying in theX-Y plane.
The nonuniform magnetic-field distribution takes a simp
stepwise variation in magnitude or polarity of magne
fields, such as dual-magnetic-strip-like or three-magne
strip-like structures, and partitions the QW into several p
allel channels, in each of them the magnetic field is const
An experimental realization of our model devices may
achieved by depositing several strips of magnetic or su
conducting material on top of a 2DEG, say, on the surface
GaAs/AlxGa12xAs heterostructures. The adjacent chann
are coupled to each other through the interface showing
abrupt change of magnetic fields. We choose, for simplic
of calculation, the hard-wall confinement potential for t
boundaries. The transverse potential inside the QW is se
zero, i.e.,
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Vc~y!5H 0, 0<y<W

` otherwise.

A magnetic field with magnitudeB(y) is applied in theẑ
direction. In the effective electron mass approximation a
choosing the Landau gauge for the vector potential
A5@2A0(y),0,0# and Bz(y)5dA0(y)/dy, the wave func-
tion of the Schro¨dinger equation of a single electron can
expressed as

C~x,y!5e1 ikxxc~y!, ~1!

wherec(y) satisfies the one-dimensional Schro¨dinger equa-
tion

S 2
\2

2m*
d2

dy2 1
\2

2m* @kx2eA0~y!/\c#21Vc~y! Dc~y!

5Ec~y!. ~2a!

Here,m* 50.067m0 is the isotropic effective mass for GaAs
The magnetic field enters in the Scro¨dinger equation as an
additional momentum proportional to the vector potenti
For the convenience of the following discussions, we int
duce the effective potential incorporating the effect of t
magnetic field asVeff(y) and Eq.~2a! becomes

S 2
\2

2m*
d2

dy2 1Veff~y!1Vc~y! Dc~y!5Ec~y!, ~2b!

whereVeff(y) is defined by

Veff~y!5
\2

2m* @kx2eA0~y!/\c#2. ~3a!

The total potential isV(y)5Veff(y)1Vc(y). To solve this
equation, we expandc(y) in terms of a set of complete
bases, corresponding to the transverse eigenfunctions o
QW at the zero field,

c~y!5(
j 51

Ns

f j~y!cj , ~4!

where

f j~y!5A 2

W
sinS p j

W
yD ,

andcj is determined by

(
j 51

Ns H F S kFW

p D 2

2 j 2Gdn j

2^nuFkx Y S p

WD22A0~y!W/f0G2

u j &J cj50, ~5!

wherekF
252m* EF /\2, f05hc/e is the quantum flux, and

^nuG~y!u j &[E
0

W

f n~y!G~y! f j~y!dy.
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Hereafter we always employ dimensionless quantities.
energy is measured in units ofE15(\2/2m* )(p/W)2; the
length is measured byW. In the dimensionless represent
tion the effective potential of Eq.~3a! can be expressed by

Veff~ ỹ!5E1@ k̃x22A0~ ỹ!W2/f0#2, ~3b!

wherek̃x5kx /(p/W) and ỹ5y/W. It is worth pointing out
that this effective potential possesses the following sca
invariance: WhenW→aW and at the same timeB→B/a2

the normalized effective potential remains unchanged. Eq
tion ~5! can be solved in an expanded basis.22,23 For a given
energy EF , we obtain a set of eigen-wave-numbe
$6kx,n% and eigen-wave-functions$cn

6(y)%.
Assuming that two reservoirs connecting to the QW

all the states below the Fermi energy completely and the
is long enough so that there is no backscattering proc
related to the end of QW, then, the magnetoconductanc
the structures is given by24

G~EF!5~2e2/h!Np~EF!, ~6!

whereNp(EF) stands for the number of propagating mod
with positive group velocity at the Fermi energyEF . The
group velocity of an electron in the propagating modeca is
evaluated with

FIG. 1. Results for the QW with dual-magnetic-strip modulati
structure.~a! Schematic view of a model device. The dual magne
strips partition the QW into two parallel SQW’s; in each of the
the perpendicular magnetic field~in the ẑ or 2 ẑ direction! is con-
stant. The widths of the SQW’s areW1 andW2 , respectively. Total
width of the QW isW5W11W2 . The magnetic fields areB1 and
B2 for SQW1 and SQW2, respectively. The currents carried
edge states are schematically shown by the arrow line. Param
are as follows:W52000 Å, W15W251000 Å, B150, and B2

52.5 T. ~b! Energy-dispersion relation of electron@the reduced
wave numberk̃x5kx /(p/W)]. ~c! Calculated conductance~in units
of 2e2/h! as a function of Fermi energy.~d! Magnetic effective
potential.
e
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\

m* E
0

W

ca* S ka2
2pA0~y!

f0
Dca~y!dy. ~7!

III. RESULTS AND ANALYSES

We now calculate the energy spectrum and the magn
conductance of the system where we have fixed the width
the QW to beW52000 Å. First, we consider the dual
magnetic-strip structures. The relevant vector potential ta
the form

A0~y!5H B2~y2W1!1B1~W12W/2!, W1<y<W

B1~y2W/2!, 0<y,W1 .
~8!

The schematic view of the typical model devices are sho
in Figs. 1~a! and 2~a!. The dual magnetic strips partition th
QW into two parallel sub-wave-guides~SQW’s!, in each of
them the perpendicular magnetic field is constant. T
widths of the SQW’s areW1 andW2 , respectively, andW1
5W25W/251000 Å. The magnetic fields are denoted asB1
and B2 for SQW1 and SQW2, respectively. The curren
carried by edge states are indicated by the arrow lines.
consider two cases: one isB150 and B252.5 T @see Fig.
1~a!#, the other isB1512.5 T andB2522.5 T @see Fig.
2~a!#. The corresponding energy dispersion relations of el
trons are displayed in Figs. 1~b! and 2~b!, respectively. The
corresponding conductances as a function of Fermi energ
electrons are plotted in Figs. 1~c! and 2~c!. It is seen from
Fig. 1~b! that the energy spectrum is constructed by the co
bination of two sets of dispersion curves separated by a
tance in wave-number space. One set of dispersion curve
parabolic, located around the origin ofk̃x50, belonging to
the SQW1 withB150. Only bulk propagating modes exis

y
ers

FIG. 2. Results for the QW with dual-magnetic-strip modulatio
structure.~a! Schematic view of the model device. The geometric
structure and relevant parameters are the same as Fig. 1~a! except
for B152.5 T andB2522.5 T. ~b! Energy-dispersion curves.~c!
Calculated conductance curves.~d! Magnetic effective potential.
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The other set of curves belongs to the SQW2 withB2
52.5 T, in which there exists both bulk Landau levels a
edge states located at the upper boundary~monotonically
increasing behavior in dispersion!. Two sets of dispersion
curves intersect each other to create cross points. Since
abrupt change of the magnetic fields at the interface of
SQW’s, the coupling effect between states takes place
leads to the creation of the magnetic scattering states12,13and
substantially distorts the behavior of dispersions around
cross points, as seen in Fig. 1~b!. Figure 1~c! shows the cal-
culated conductance of this QW as a function of the Fe
energy. The conductance steps up normally in the w
known staircase fashion with integer conductance plateau
units of 2e2/h. This character can be well understood fro
the energy dispersion of the QW. As the Fermi energy
electron increases, additional propagating channels
opened. Thus, the conductance is increased stepwise.

To give a better understanding on the character of dis
sion curves, we display the profile of effective potent
Veff(y) for several values ofk̃x in Fig. 1~d!. For above chosen
parameters of the model device, the corresponding effec
potential, Eq.~3b!, reads

Veff~y!5H E1~ k̃x!
2, 0<y/W,0.5

E1@ k̃x2b~y/W20.5!#2, 0.5<y/W<1,
~9!

whereb52B2W2/f0 . Thus, in the SQW1,Veff is constant
and its value increases quadratically withk̃x . In the SQW2
region, whenk̃x<0, Veff takes the form ofE1b2(y/W20.5
1uk̃xu/b)2 and it is a monotonically increasing function
Thus, electron propagation in the SQW1 has a free-elec
feature, and, therefore, the corresponding energy disper
should be parabolic in shape whenk̃x<0. However, fork̃x
.0, Veff exhibits a modified parabolic well potential with
finite height at the left edge of the well owing to zero field
the SQW1. The depth of the well is increased quadratic
with k̃x and the positiony0 /W of the well bottom shifts
toward the upper boundary of the SQW2 as increasingk̃x ,
i.e.,y0 /W50.51 k̃x /b. The oscillating frequency of the har
monic oscillator is constant proportional toB2W2, indepen-
dent of k̃x . It is the existence of the modified parabolic we
that leads to the emergence of the Landau levels in the re
of k̃x.0. For small k̃x , the well is quite shallow, conse
quently, there is no Landau level and electrons are propa
ing almost freely. The corresponding dispersion curve
parabolic. When increasingk̃x to a certain value, the modi
fied parabolic well becomes deep enough to lead to the
currence of the first Landau level. Thus, the first Land
plateau emerges. As continuously increasingk̃x , the well is
deepened, as a result, more Landau levels are formed in
well. This is the reason why the position of kink points fro
the parabolic dispersion to the Landau plateau in disper
curves shifts toward the larger wave-number region
larger Landau index, as shown in Fig. 1~b!. Of course, the
rapidly monotonically increasing behavior in dispersions
much largerk̃x is originated from the contribution of th
edge states of the upper boundary of SQW2. Owing to
parabolic well bottom gradually shifting toward the boun
the
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ary of SQW2 with the increase ofk̃x , the width of the para-
boliclike well becomes narrower and total potential well, i
corporating the confinement potential, develops a d
triangular well. Therefore, the Landau levels with large in
ces are completely squeezed out from the well; thus,
width of the Landau plateaus is shortened with the incre
of the Landau-level index. We now can perfectly understa
all the behaviors of dispersion curves in Fig. 1~b!.

We now discuss the second model device, as show
Fig. 2~a!. Two SQW’s are now experienced to the magne
fields with the same magnitude in absolute value and op
site polarity:B1512.5 T andB2522.5 T. The correspond
ing energy dispersions are depicted in Fig. 2~b!. The lines in
the left branch of each subband are contributed from
left-moving edge states located, respectively, at the up
most and lowermost boundaries, as shown in Fig. 2~a!, with
twofold degeneracy. The coupling between them is abs
due to their large separation in space. However, two lines
each subband in the right branch of dispersions are ascr
to the contribution of magnetic scattering states owing to
abrupt reversal of polarity of the magnetic fields at the int
face. That is the reason why the dispersion behavior exhi
high asymmetry in wave-number space owing to differe
origins. For differentB1 and B2 , for instance,B152.75 T
andB2522.5 T, we found that all the left branches of th
dispersion curves split into two lines grouped in pairs.
simply enumerating the number of propagating modes at
Fermi level the conductance can be evaluated as a func
of Fermi energy, as shown in Fig. 2~c!. The stepwise varia-
tion still persists but the width of plateaus changes alter
tively between narrow and broad steps.

To get a better understanding of the dispersion beha
in Fig. 2~b!, we now study the profile of the effective poten
tial. The results are shown in Fig. 2~d! for several values of
k̃x . It is clearly seen that the trianglelike potential barrier
produced around the interfacial region between two SQW
when k̃x,0. When k̃x>0, however, this barrier completel
disappears and is replaced by a potential well. The heigh
the triangular barrier rapidly decreases with the decreas
uk̃xu. The total potential exhibits a coupled double-quantu
well structure with a triangular barrier of finite height. Th
energy levels in the trianglelike quantum wells contribute
the left branch of the dispersions. Whenk̃x<210, the height
of the triangle barrier is so low that the coupling betwe
two quantum wells becomes strong, thus, the split of t
equal energy levels in the wells appears, leading to the ‘
furcation’’ of subbands in energy dispersion spectrum. Wh
k̃x is zero, the triangular barrier reduces to zero, and
double wells becomes a single well, as shown in Fig. 2~d!.
For k̃x.0, the effective potential remains the singl
quantum-well structure where minimum increases withk̃x . It
is those electron states in the single wells that contribute
the right branch of dispersions.

We now turn to envisage the character of the QW’s w
three magnetic strip structures. Schematic view of this k
of model devices is shown in Fig. 3~a!. Three magnetic strips
produce stepwise varying magnetic field in the QW w
width of W and partition the QW into three parallel SQW’
The widths of the SQW’s are denoted asW1 , W2 , andW3 ,
respectively. The relevant vector potential takes the form
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A0~y!5H B3~y2W12W2!1B2~W11W22W/2!, ~W11W2!<y<W

B2~y2W/2!, W1<y,~W11W2!

B1~y2W1!1B2~W12W/2!, 0<y,W1 .
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Besides the edge states, extra magnetic scattering state
created owing to the drastic change of magnetic fields at
interfaces between two adjacent SQW’s. The currents car
by the edge states are shown by the arrow lines. Param
for the first magnetic sandwiching device are as follows:W
52000 Å, W15W25W35W/3, B15B352.5 T, and B2
50. The relevant energy spectrum is displayed in Fig. 3~b!.
The corresponding conductance spectrum is plotted in
3~c!. This conductance spectrum exhibits a trivial stepw
dependence. The energy spectrum seems to be combine
three sets of dispersion curves separated by some dista
in wave-number space: one set of dispersion curves has p
bolic shape, located ink̃x50 region, belonging to the SQW2
with zero field, in which electron propagation has fre
electron character. The other two sets of dispersion cur
are ascribed to the SQW1 and SQW3, experienced to a fi
magnetic field, in which there exist both magnetic scatter
states and bulk Landau levels. These three sets of dispe
curves intersect each other, producing many cross po
Owing to the overlap of wave functions and the dras
change of magnetic fields at each interface the stro
coupling effect takes place, leading to the creation of m
netic scattering states. It is the emergence of the magn

FIG. 3. Results for the QW with three-magnetic-strip modu
tion structure.~a! Schematic view of a model device. The thre
magnetic-strips partition the QW into three parallel SQW’s. T
magnetic fields areB1 , B2 , andB3 for three SQW’s, respectively
The widths of the SQW’s areW1 , W2 , andW3 , respectively. Total
width of the QW isW5W11W21W3 . The currents carried by
edge states in the SQW are schematically shown by the arrow li
Parameters are as follows:W52000 Å, W15W25W35W/3, B1

5B3512.5 T, andB250. ~b! Energy-dispersion relation of elec
tron. ~c! Calculated conductance as a function of Fermi energy.~d!
Magnetic effective potential.
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scattering states that causes the remarkable distortion o
dispersion relation at cross points and the appearanc
kinks. Owing to the presence of magnetic fields in SQW
and SQW3, electron energies are increased compared
that in the SQW2 with zero field, consequently, the disp
sion curves exhibit valley structures in the center region
k̃x . The spectral pattern is symmetric due to the compl
symmetry of the structure for this device. It is clearly se
from Fig. 3~a! that the current directions for uppermost a
lowermost boundary states are reversed.

To understand the dispersion relation of Fig. 3~b!, we cal-
culate the magnetic effective potential in this QW for seve
k̃x , as shown in Fig. 3~d!. It is clearly seen that the profile o
the potential achieves space-reversal symmetry with res
to the central line of the QW when changing the sign ofk̃x .
For the finite values ofk̃x , all the potentials exhibit steppe
quantum-well structures. The potential plateaus are loca
at the center of the device and their heights are increa
with uk̃xu. In the plateau region of the potential, electrons c
travel freely and the corresponding dispersions are parab
For k̃x.0, the relevant quantum wells locate inside t
SQW3 with finite height in the left edge of the wells. It
these modified parabolic wells that lead to the formation
the Landau levels in the dispersions. The larger thek̃x , the
deeper the depth of the parabolic well, thus, more Lan
levels in the well. This is the reason why the kink position
the second subband in the right branch of dispersion cu
shifts to a large value ofk̃x compared with that of the firs
subband. Owing to the bottom position of the potential we
shifting toward the upper boundary of SQW3 with the i
crease ofk̃x , for much largerk̃x , the modified parabolic well
approaches the upper boundary of the SQW3, and becom
triangular well when incorporating the hard-wall confine
potential. The triangular well with narrow width squeezes t
Landau levels out of it, leading to the disappearance of
Landau levels with large index. This is the reason why th
is no longer kink in dispersions of third subband and abo
Similarly, we can interpret the behavior of the left branch
dispersion curves.

To further reveal the character of the magnetic sandwi
ing structural device, we investigate other model devices
detail. We now consider a magnetic-field configuration:B1
5B350 andB252.5 T, as shown in Fig. 4~a!. The corre-
sponding energy dispersions are shown in Fig. 4~b!, and the
resulting conductance spectrum is displayed in Fig. 4~c!. The
magnetic effective potential is displayed in Fig. 4~d!. It is
evident from Fig. 4~b! that the dispersions are combined b
three sets of dispersion curves originally belonging to th
individual SQW’s. The left branch comes from the SQW
with parabolic dispersion and the right branch from t
SQW3 with also parabolic shape owing to the absence
magnetic fields. However, the middle of dispersion curves

-

s.
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ascribed to the SQW2 with a finite field where the bulk La
dau levels exist. The dispersions are symmetric due to
symmetry of the device structure. Two consecutive sets
dispersion curves are separated by a distance in wa
number space and intersected each other. Owing to
abrupt change of magnetic fields at interface, the coupl
effect takes place. It leads to the creation of the magne
scattering states and the occurrence of the kink points
dispersions. As contrasted with the device of Fig. 3~a!, the
magnetic field now is applied in the middle region, i.e.,
SQW2; therefore, the energy subbands in the SQW2
lifted with respect to the zero-field regions in the SQW1 a
SQW3. Finally, the bump structures in dispersion are form
in the central region ofk̃x . At the same time, minigaps are
formed. The dispersions exhibit oscillatory structures. Wh
scanning the Fermi energy, it is these bumps and minig
that lead to the emergence of the square-wave-shaped o
lations in conductance spectrum, as seen in Fig. 4~c!. For
instance, as the Fermi energy increases, additional propa
ing channels are opened, thus, conductance increa
2(2e2/h), instead of the step of (2e2/h). When the Fermi
energy of the electron sweeps through minigaps, cond
tance dips are present owing to the quenching of the pro
gating modes. The depth of the conductance dips depend
the number of quenched propagating modes at the gi
Fermi energy. As increasing the Fermi energy continuous
the new propagating channels are opened and the con
tance reaches higher plateau, forming the square-wave-
conductance spectrum. The conductance spectrum con
of a series of peaks and valleys.

To provide the good explanation of the character of d
persions, we present the calculated magnetic effective po
tial in Fig. 4~d!. It is clearly seen that the profile of the
potential shows a space-reversal symmetry with respec
the central line of the model device when altering the sign

FIG. 4. Results for the QW with three-magnetic-strip modul
tion structure.~a! Schematic view of the model device. The geo
metrical structure and relevant parameters are the same as Fig.~a!
except for B15B350 and B2512.5 T. ~b! Energy-dispersion
curves.~c! Calculated conductance curves.~d! Magnetic effective
potential.
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k̃x . The effective potential in the SQW1~SQW3! is constant
and its value increases~decreases! with k̃x. Electrons move
freely in these regions and the corresponding dispersions
parabolic. In the SQW2 the magnetic quantum well
formed and takes a form of declined parabola with fini
height in both edges. The position of the potential botto
shifts far away from the center of the QW with the increa
of uk̃xu. The larger theuk̃xu, the greater the declined degree o
parabolic well is. Thus, the well depth becomes much sh
low, only a few of Landau levels can be found in the we
The Landau levels with large indices disappear for largeuk̃xu.
This is the reason why the width of Landau plateaus d
creases as increasing the Landau subband index. The e
tence of Landau bumps and minigaps in dispersions guar
tees the appearance of the square-wave-like modulation
conductance spectrum.

The square-wave-like modulation spectrum of condu
tance can be modified and improved by applying a finite fie
to the SQW1 and SQW3 regions. For instance, we consi
the similar device as that of Fig. 4~a! except forB15B3
51.5 T. The energy dispersions, the conductance spectr
and the magnetic effective potential are depicted in Fi
5~b!, 5~c!, and 5~d!, respectively. It is evident that the dis
persions have similar behavior of Fig. 4~b! and the conduc-
tance exhibits much more regular square-wave-like modu
tion in Fig. 5~c!, comparing with Fig. 4~c!.

To offer more information on the appearance of squa
wave-like modulation of conductance, we now study anoth
device with sandwiching magnetic structure, as shown
Fig. 6~a!. In this device,B15B352.5 T andB2523.0 T.
The other parameters are the same as those in Fig. 5~a!. This
device is composed of two blocks of dual-magnetic-str
structures of Fig. 2~a!. Considering the structural symmetr
on this device, it is expected that the dispersion relatio
should be symmetric aboutk̃x50 point. The dispersions, the

- FIG. 5. Results for the QW with three-magnetic-strip modul
tion structure.~a! Schematic view of the model device. Paramete
are the same as Fig. 4~a! except forB15B351.5 T. ~b! Energy-
dispersion relation of electron.~c! Calculated conductance as
function of Fermi energy.~d! Magnetic effective potential.
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conductance spectrum, and the magnetic effective poten
are displayed in Figs. 6~b!, 6~c!, and 6~d!, respectively. It is
easy to specify the origin of the dispersion curves. For
stance, the left branch comes from the contribution of t
lowermost edge states with left-moving modes; the rig
branch generates from the uppermost edge states with ri
moving modes. In the central region of the dispersion curv
their behaviors are mainly determined by the property of t
SQW2 and the coupling effect among the magnetic scat
ing states. The coupling effect leads to the substantial dis
tion of the dispersions. According to similar analyses as d
cussed above, it is expected that the conductance spec
should consist of dips~with different depths and widths! and
plateaus~with different heights and widths!. The conduc-
tance spectrum exhibits the square-wave-like oscillatio
that we are interested in. To save space, we do not rep
similar analyses as done in the above samples. When k
ing B352.5 T andB2523.0 T and settingB150, similar
results can be obtained but the dispersions become asym
ric in the k̃x domain owing to asymmetry of the magnet
structure. So does the profile of the magnetic effective p
tential in they/W domain.

FIG. 6. Results for the QW with three-magnetic-strip modul
tion structure.~a! Schematic view of the model device. The geo
metrical structure and relevant parameters are the same as Fig.~a!
except forB2523.0 T. ~e! Energy-dispersion curves.~c! Calcu-
lated conductance curves.~d! Magnetic effective potential.
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VI. SUMMARY

We have studied transport properties of electrons in
QW’s under the application of stepped varying magne
fields. To reveal the nature of the magnetic scattering st
owing to the abrupt change of magnetic fields at interfac
we investigate in detail two kinds of model devices, one
dual-magnetie-strip structure, the other is three-magne
strip structure. Magnetoconductance as a function of
Fermi energy demonstrates monotonically increasing va
tion in staircase or square-wave-like oscillations, consist
of plateaus and valleys. The detailed patterns of the mag
toconductance depend on the distribution of nonunifo
magnetic fields. In the dual-magnetic-strip structures,
magnetoconductance spectrum always exhibits the step
increasing variation. To understand the origin of the cond
tance spectrum, we have calculated the energy-dispersio
lations of the propagating states and the relevant magn
effective potential. The stepped varying magnetic fields p
tition the QW into several subwaveguides; in each of th
the magnetic field is constant. The whole dispersion cur
can be regarded as the combination of dispersion curve
the individual SQW’s. The coupling effect between SQW
leads to the creation of the magnetic scattering states, t
the dispersions are experienced the substantial distortio
the cross points where two sets of original dispersion cur
intersect each other. It causes the bend of the disper
curves, the emergence of valleys or bumps superimpose
the flat bulk Landau levels, and the production of miniga
Oscillatory structures in dispersions appear. It is these c
plex dispersions that lead to various complicated cond
tance patterns. The characters of the dispersions can be
interpreted by analyzing the relevant magnetic effective
tential. We have presented detailed analyses for sev
model devices. Consequently, a new way of artificially t
loring the conductance spectrum is proposed by introduc
laterally stepped varying magnetic fields perpendicular to
QW plane. It may be useful for guiding the design of ne
quantum devices in practice.
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