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The electronic states and magnetotransport properties of quantum wave@We&s in the presence of
nonuniform magnetic fields perpendicular to the QW plane are investigated theoretically. It is found that the
magnetoconductance of those structures as a function of Fermi energy exhibits stepwise variation or square-
wave-like oscillations, depending on the specific distributigrzgh in magnitude and directipof nonuniform
magnetic fields in QW’'s. We have investigated the dual magnetic strip structures and three magnetic strip
structures. The character of the magnetotransport is closely related to the effective magnetic potential and the
energy-dispersion spectrum of electron in the structures. It is found that dispersion relations seem to be
combined by different sets of dispersion curves that belong to different individual magnetic subwaveguides.
The magnetic effective potential leads to the coupling of states and the substantial distortion of the original
dispersion curves at the interfaces in which the abrupt change of magnetic fields appears. Magnetic scattering
states are created. Only in some three magnetic strip structures, these scattering states produce the dispersion
relations with oscillation structures superimposed on the bulk Landau levels. It is the oscillatory behavior in
dispersions that leads to the occurrence of square-wave-like modulations in conductance.
[S0163-182607)08844-9

[. INTRODUCTION electron character, and it is confined to a narrow one-
dimensional region localized near the line where the mag-

The character of electron transport in microstructures crenetic field is minimum. Transport properties of electrons
ated by high-mobility GaAs-AlGa, _,As heterostructures in  become one dimensional. In the the opposite direction the
a perpendicular magnetic field has become an extremely ex-andau states propagate throughout the rest of the sample
tensive research subject of great theoretical and experimentaith a velocity that depends on the field gradient, i.e., elec-
interest! The prospect of building devices based on the electrons are drifting in the interior of the sample.
tron coherent transport feature is an exciting area of semi- More recently, Chklovskii studied the structure of the
conductor and device research. One important low2DEG edge in the quantum Hall regime using the composite-
dimensional device is the electron waveguide, which can béermion approach® When assuming that the electron density
achieved via field effects on a two-dimensional electron gasoughly follows the positive background and hence the com-
(2DEGQ systen?® Another important quantum interference posite fermions experience a roughly linearly varying effec-
device is dual-coupled quantum waveguides, which can bdive magnetic field, there are three types of classical orbits
have as an electron waveguide couflét: Electron-  for composite fermions in this fieltf12?!drifting orbits that
transport properties in nonuniform magnetic fields have alsenove along the edge in the direction of electron drift, snake
attracted much attention and are now under intensive invesrbits that move in the opposite direction, and closed orbits
tigations in recent year$:-%° that do not drift along the edge.

Recently, Milier studied the single-particle electronic  In the previous work® we have theoretically investigated
structure of a 2DEG in the wide quantum waveguide undethe magnetotransport properties of dual-coupled quantum
the application of a nonuniform magnetic fi@d*? He found ~ wires in uniform magnetic fields, in which two quasi-one-
that in the presence of laterally linearly varying magneticdimensional quantum wires are coupled through a thin iso-
field in the interior of the sample the Landau states are ndating potential barrier. The dispersion curves exhibit an os-
longer stationary but propagate perpendicularly to the fieldtillation structure superimposed on the bulk Landau levels,
gradient and exhibit a remarkable time-reversal asymmetryowing to the energy splits at the cross points of two disper-
In one of the allowed directions the propagation has freesion curves that belong to different quantum wires. That
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leads to the appearance of square-wave modulation in con- 0, Osys=WwW
ductance. VeW=1 . otherwise

Motivated by these works, in this paper we investigate the :
characters of electronic states and the magnetotransport \ magnetic field with magnitud®(y) is applied in thez
the quantum waveguides in nonuniform magnetic fields thatlirection. In the effective electron mass approximation and
take a form of laterally segmented uniformity, i.e., abruptlychoosing the Landau gauge for the vector potential of
changing the magnitude or polarity of magnetic fields be-A=[—A,(y),0,0] and B,(y)=dAy(y)/dy, the wave func-
tween the adjacent magnetic channels. It is believed that thgon of the Schrdinger equation of a single electron can be
interfaces, at which the abrupt change of magnetic fieldexpressed as
takes place, play a similar role of the isolating barrier inside
the waveguides. The I_atera_l stepwise varying magnetic fields, W (x,y)=e"k&y(y), (1)
such as dual magnetic strip and three magnetic strip struc- )
tures, partition the waveguide into several parallel channelgvherey(y) satisfies the one-dimensional Satlimger equa-
Due to the coupling effect of electronic states between adjation
cent channels the magnetoconductance as a function of

Fermi energy demonstrates a quantization change in a simple #2 d? h2
staircase fashion or square-wave-like oscillations, depending | — 5— WJF >mE [ky—eAy(Y)/AC]?>+V(y) | ()

sensitively on the type of modulations, the magnitude, and
the relative polarity of the magnetic fields. To understand =E(y). (2a)

this feature, we have calculated the effective potential in-

duced by the magnetic field and the energy-dispersion rele{jﬁre’m* =O._06]zn|%is the isqtroEic gg‘gctive mass for GaAs.
tions of the propagating modes. It is found that dispersionT e magnetlc leld enters in t. e Sdmger equation as an
dditional momentum proportional to the vector potential.

relations seem to be combined by different sets of dispersio . . ) i .
curves that originally belong to individual magnetic chan- or the convenience of th_e fpllowmg d!scussmns, we Intro-
nels. However, owing to the drastic change of magneticduce th.e gffecnve potential incorporating the effect of the
fields at interfaces the strong magnetic scattering takes pladB@dnetic field a¥/eq(y) and Eq.(28) becomes

and leads to significant distortion of the dispersions at cross
points where two sets of original dispersion curves intersect.
The appearance of magnetic scattering states remarkably
modifies the behavior of the dispersions of electrons in the _ i
structures. Our calculations show that in some threeWNereVe(y) is defined by
magnetic-strip structures the coupling effect gives rise to the
dispersions with oscillation structures superimposed on the

2 d2
~ 3 gy VeV Vely) [ =Euy), (@)

2

— 2
bulk Landau levels. It is this oscillatory behavior in the dis- Veii(y) = 5 [kx—eAo(y)/C]”. (33
persions that causes the square-wave-like modulations in the o )
magnetoconductance spectrum. The total potential isV(y)=Vei(y)+V(y). To solve this

This paper is organized as follows: Section Il is a brieféquation, we expandi(y) in terms of a set of complete
description of the model device structure and the necessafases, corresponding to the transverse eigenfunctions of the
formulas used in calculations. The calculated results are prédW at the zero field,
sented in Sec. Il with analyses. Finally, a brief summary is
reserved for Sec. IV. N

dx(y):gl fi(y)e;, 4
Il. MODEL AND FORMULAS where
The system considered is a long narrow quantum wave-
guide (QW) of a width W subjected to a nonuniform mag- 2 |7
netic field perpendicular to the QW lying in theY plane. fi=\wsinwY|

The nonuniform magnetic-field distribution takes a simple

stepwise variation in magnitude or polarity of magneticandc; is determined by
fields, such as dual-magnetic-strip-like or three-magnetic-
strip-like structures, and partitions the QW into several par-Ns KW\ 2

allel channels, in each of them the magnetic field is constantd, H(—) —jz}am
An experimental realization of our model devices may bel=1

achieved by depositing several strips of magnetic or super- - 2
conducting material on top of a 2DEG, say, on the surface of  —(n|| k, / (—) —2A0(y)w/¢o} |j>]Cj=0, (5)
GaAs/ALGa _,As heterostructures. The adjacent channels W

are coupled to each other through the interface showing thgherek?=2m*E¢ /%2, ¢,=hc/e is the quantum flux, and
abrupt change of magnetic fields. We choose, for simplicity

of calculation, the hard-wall confinement potential for the w

boundaries. The transverse potential inside the QW is set to <n|G(y)|j>Ef fa(Y)G(Y)f;(y)dy.

zero, i.e., 0

ko
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FIG. 1. Results for the QW with dual-magnetic-strip modulation
structure(a) Schematic view of a model device. The dual magnetic
strips partition the QW into two parallel SQW's; in each of them
the perpendicular magnetic fielth the z or —Z direction is con-
stant. The widths of the SQW’s aw¥; andW,, respectively. Total
width of the QW isW=W,;+W,. The magnetic fields arB, and
B, for SQW1 and SQW?2, respectively. The currents carried by
edge states are schematically shown by the arrow line. Parameters _ho (W K 27Aq(Y)
are as follows:W=2000 A, W,=W,=1000 A, B,;=0, and B, Vo= |, V| Ka™ bo
=2.5T. (b) Energy-dispersion relation of electrdthe reduced
wave numbek,=k, /(7w/W)]. (c) Calculated conductande units
of 2e?/h) as a function of Fermi energyd) Magnetic effective lIl. RESULTS AND ANALYSES
potential.

FIG. 2. Results for the QW with dual-magnetic-strip modulation
structure(a) Schematic view of the model device. The geometrical
structure and relevant parameters are the same as (@jgexcept
for By=2.5T andB,=—2.5T. (b) Energy-dispersion curvesc)
Calculated conductance curvéd) Magnetic effective potential.

) o (y)dy. (7

We now calculate the energy spectrum and the magneto-
) . i conductance of the system where we have fixed the width of
Hereafter we always employ dimensionless quantities. The,q QW to beW=2000A. First, we consider the dual-

. . . _ 2 2_
energy is measured in units &= (%°/2m")(7/W)*; the  magnetic-strip structures. The relevant vector potential takes
length is measured bW. In the dimensionless representa- he form

tion the effective potential of E3a) can be expressed by

_ Bo(y—Wq)+Bi(W—W/2), W;sysW

Vet )= Eal ke 2A0() W2/ bo 7, @ Ady)= 5.y wWi2), o=yw,.

— 8
wherek,=k, /(7/W) andy=y/W. It is worth pointing out ®
that this effective potential possesses the following scaling’ he schematic view of the typical model devices are shown
invariance: WherW— aW and at the same timB—B/«?  in Figs. Xa) and Za). The dual magnetic strips partition the
the normalized effective potential remains unchanged. Equé@W into two parallel sub-wave-guidéSQW’s), in each of
tion (5) can be solved in an expanded b&$i&>For a given them the perpendicular magnetic field is constant. The
energy Er, we obtain a set of eigen-wave-numberswidths of the SQW's ar&V; andW,, respectively, andV,

{= kx,n} and eigen-wave-function{spr?(y)}_ =W,=W/2=1000 A. The magnetic fields are denoted3as
Assuming that two reservoirs connecting to the QW filland B, for SQW1 and SQW?2, respectively. The currents
all the states below the Fermi energy completely and the Qvgarried by edge states are indicated by the arrow lines. We

is long enough so that there is no backscattering proceggonsider two cases: one B, =0 andB,=2.5T [see Fig.
related to the end of QW, then, the magnetoconductance df@], the other isB;=+2.5T andB,=—-2.5T [see Fig.
the structures is given BY 2(a)]. The corresponding energy dispersion relations of elec-
trons are displayed in Figs(d) and 2b), respectively. The
corresponding conductances as a function of Fermi energy of
G(EF)=(2e2/h)Np(EF), (6) electrons are plotted in Figs(Q and Zc). It is seen from
Fig. 1(b) that the energy spectrum is constructed by the com-
whereN,(E¢) stands for the number of propagating modesbination of two sets of dispersion curves separated by a dis-
with positive group velocity at the Fermi energge. The  tance in wave-number space. One set of dispersion curves is
group velocity of an electron in the propagating mafgis  parabolic, located around the origin kf{=0, belonging to
evaluated with the SQW1 withB;=0. Only bulk propagating modes exist.
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The other set of curves belongs to the SQW2 wish  ary of SQW2 with the increase &f , the width of the para-
=2.5T, in which there exists both bulk Landau levels andboliclike well becomes narrower and total potential well, in-
edge states located at the upper boundanpnotonically corporating the confinement potential, develops a deep
increasing behavior in dispersipriTwo sets of dispersion triangular well. Therefore, the Landau levels with large indi-
curves intersect each other to create cross points. Since thes are completely squeezed out from the well; thus, the
abrupt change of the magnetic fields at the interface of twquidth of the Landau plateaus is shortened with the increase

SQW's, the coupling effect between states takes place. f the Landau-level index. We now can perfectly understand
leads to the creation of the magnetic scattering statéand 4| the behaviors of dispersion curves in Figb)L

substantially distorts the behavior of dispersions around the e now discuss the second model device, as shown in
Cross points, as seen in Fi_q.bj. Figure Xc) shows the cal- Fig. 2a). Two SQW's are now experienced to the magnetic
Culated Conductance Of thIS QW as a funCtlon Of the Fermfie|ds W|th the same magnitude in abso'ute Va|ue and Oppo_
energy. The conductance steps up normally in the wellsjte polarity:B,= +2.5 T andB,= — 2.5 T. The correspond-
known staircase fashion with integer conductance plateaus ii'hg energy dispersions are depicted in Figp)2The lines in
units of 26°/h. This character can be well understood fromthe |eft branch of each subband are contributed from the
the energy dispersion of the QW. As the Fermi energy ofeft-moving edge states located, respectively, at the upper-
electron increases, additional .pr.opagating chan_nels al®ost and lowermost boundaries, as shown in Fig), 2vith
opened. Thus, the conductance is increased stepwise.  twofold degeneracy. The coupling between them is absent
_ To give a better understanding on the character of dispefgye to their large separation in space. However, two lines of
sion curves, we display the profile of effective potential gach subband in the right branch of dispersions are ascribed
Vei(y) for several values df, in Fig. 1(d). For above chosen to the contribution of magnetic scattering states owing to the
parameters of the model device, the corresponding effectivebrupt reversal of polarity of the magnetic fields at the inter-
potential, Eq.(3b), reads face. That is the reason why the dispersion behavior exhibits
high asymmetry in wave-number space owing to different
~ origins. For differentB; and B,, for instance,B;=2.75T
B Ea(ky)?, 0=<y/W<0.5 andB,=—2.5T, we found that all the left branches of the
Ver(y) = El[’lzx—ﬂ(y/W—O.S)]z, 0.5<y/W=<1, ©) d_ispersion curves split into two lines group_ed in pairs. By
simply enumerating the number of propagating modes at the

where 8=2B,W?/ ¢,. Thus, in the SQW1V, is constant Fermi level the conductance can be evaluated as a function
. 1 g €

. . : of Fermi energy, as shown in Fig(Q. The stepwise varia-
anq its value increases quadratically with. Inzthe SQW2 tion still persists but the width of plateaus changes alterna-
region, whenk,<0, V. takes the form oE,B8“(y/W—0.5

2 = : ) \ ~  tively between narrow and broad steps.

+[kd/B)? and it is a monotonically increasing function.  To get a better understanding of the dispersion behavior
Thus, electron propagation in the SQW1 has a free-electrop, Fig. 2(b), we now study the profile of the effective poten-
feature, and, therefore, the corresponding energy dispersiqp). The results are shown in Fig(d for several values of
should be parabolic in shape whig<0. However, fork, ¥ _ It is clearly seen that the trianglelike potential barrier is
>0, Ve exhibits a modified parabolic well potential with a produced around the interfacial region between two SQW’s
finite height at the left edge of the v_veI_I owing to zero fiel_d in When'IzX<O. WhenFXBO, however, this barrier completely
the SQW1. The depth of the well is increased quadraticallyjisahnears and is replaced by a potential well. The height of
with k, and the positiony,/W of the well bottom shifts  the triangular barrier rapidly decreases with the decrease of
toward the upper boundary of the SQW2 as increaing |k,|. The total potential exhibits a coupled double-quantum-
i.e.,Yo/W=0.5+k,/B. The oscillating frequency of the har- well structure with a triangular barrier of finite height. The
monic oscillator is constant proportional ByW?, indepen-  energy levels in the trianglelike quantum wells contribute to
dent ofk,. It is the existence of the modified parabolic well the left branch of the dispersions. Whiep< — 10, the height
that leads to the emergence of the Landau levels in the regiosf the triangle barrier is so low that the coupling between
of k,>0. For smallk,, the well is quite shallow, conse- two quantum wells becomes strong, thus, the split of two
quently, there is no Landau level and electrons are propagagqual energy levels in the wells appears, leading to the “bi-
ing almost freely. The corresponding dispersion curve idurcation” of subbands in energy dispersion spectrum. When
parabolic. When increasinky, to a certain value, the modi- k, is zero, the triangular barrier reduces to zero, and the
fied parabolic well becomes deep enough to lead to the odouble wells becomes a single well, as shown in Fig).2
currence of the first Landau level. Thus, the first LandauFor k,>0, the effective potential remains the single-

plateau emerges. As continuously increadipg the well is  quantum-well structure where minimum increases \kith|t
deepened, as a result, more Landau levels are formed in the those electron states in the single wells that contribute to
well. This is the reason why the position of kink points from the right branch of dispersions.

the parabolic dispersion to the Landau plateau in dispersion We now turn to envisage the character of the QW’s with
curves shifts toward the larger wave-number region forthree magnetic strip structures. Schematic view of this kind
larger Landau index, as shown in Figbl Of course, the of model devices is shown in Fig(8. Three magnetic strips
rapidly monotonically increasing behavior in dispersions forproduce stepwise varying magnetic field in the QW with
much largerk, is originated from the contribution of the width of W and partition the QW into three parallel SQW's.
edge states of the upper boundary of SQW2. Owing to thd he widths of the SQW'’s are denoted\&g§, W,, andWjs,
parabolic well bottom gradually shifting toward the bound- respectively. The relevant vector potential takes the form
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B3(y_Wl_W2)+Bz(W1+W2_W/2), (W1+W2)$y$W
Aoly)= Ba(y—W/2), Wi sy<(Wi+W,) (10)
Bl(y_Wl)+BZ(Wl_W/2)Y O$Y<W1

Besides the edge states, extra magnetic scattering states aoattering states that causes the remarkable distortion of the
created owing to the drastic change of magnetic fields at thdispersion relation at cross points and the appearance of
interfaces between two adjacent SQW'’s. The currents carriekinks. Owing to the presence of magnetic fields in SQW1
by the edge states are shown by the arrow lines. Parametesad SQWS3, electron energies are increased compared with
for the first magnetic sandwiching device are as folloWs:  that in the SQW2 with zero field, consequently, the disper-
=2000 A, W;=W,=W;=W/3, B;=B3=25T, andB,  sjon curves exhibit valley structures in the center region of

FX. The spectral pattern is symmetric due to the complete
g'symmetry of the structure for this device. It is clearly seen

3(c). This conductance spectrum exhibits a trivial stepwis rom Fig. A3 that the current directions for uppermost and

dependence. T_he energy spectrum seems to be complned ermost boundary states are reversed.
three sets of dispersion curves separated by some distances

in wave-number spage: one set o dispersion curves has parga o FEATC (e LEERCE BERT L TEERE S
bolic shape, located ik,=0 region, belonging to the SQW2 ~ g P

with zero field, in which electron propagation has free- Ky, as sho_wn in I_:ig. @). Itis clearly seen that the pr_ofile of
electron character. The other two sets of dispersion curved® Potential achieves space-reversal symmetry with respect
are ascribed to the SQW1 and SQW3, experienced to a finit® the central line of the QW when changing the sigrkof
magnetic field, in which there exist both magnetic scattering-or the finite values ok, all the potentials exhibit stepped
states and bulk Landau levels. These three sets of dispersiguantum-well structures. The potential plateaus are located
curves intersect each other, producing many cross pointat the center of the device and their heights are increased
Owing to the overlap of wave functions and the drasticyith [k,|. In the plateau region of the potential, electrons can
change of magnetic fields at each interface the strongyaye| freely and the corresponding dispersions are parabolic.
coupling effect takes place, leading to the creation of Mage o EX> 0, the relevant quantum wells locate inside the

netic scattering states. It is the emergence of the magnethW3 with finite height in the left edge of the wells. It is
these modified parabolic wells that lead to the formation of

) the Landau levels in the dispersions. The largerkhethe
8 deeper the depth of the parabolic well, thus, more Landau
. levels in the well. This is the reason why the kink position of

the second subband in the right branch of dispersion curves
shifts to a large value ok, compared with that of the first

2 subband. Owing to the bottom position of the potential wells
shifting toward the upper boundary of SQW3 with the in-

5 crease ok, , for much largek, , the modified parabolic well
approaches the upper boundary of the SQW3, and becomes a
triangular well when incorporating the hard-wall confined
potential. The triangular well with narrow width squeezes the
Landau levels out of it, leading to the disappearance of the
Landau levels with large index. This is the reason why there
is no longer kink in dispersions of third subband and above.
Similarly, we can interpret the behavior of the left branch of
dispersion curves.

To further reveal the character of the magnetic sandwich-
ing structural device, we investigate other model devices in
detail. We now consider a magnetic-field configuratign:
=B3;=0 andB,=2.5T, as shown in Fig. (4. The corre-

0 5 10 1
E (meV)

(b)

-20 -10 0 10 20

FIG. 3. Results for the QW with three-magnetic-strip modula-

tion structure.(a) Schematic view of a model device. The three- di di A h i Fit) 2and th
magnetic-strips partition the QW into three parallel SQW's. TheSPONING energy CISpersions are shown in (@) 4an e

magnetic fields ar@,, B,, andBs for three SQW's, respectively. '€Sulting conductance spectrum is displayed in Fig).4'he

The widths of the SQW's aré/;, W,, andW;, respectively. Total Magnetic effective potential is displayed in Figdy It is
width of the QW isW=W,+W,+W;. The currents carried by €vident from Fig. 4b) that the dispersions are combined by
edge states in the SQW are schematically shown by the arrow lineflree sets of dispersion curves originally belonging to three
Parameters are as followsv=2000 A, W,=W,=W,=W/3, B, individual SQW'’s. The left branch comes from the SQW1
=B;=+2.5T, andB,=0. (b) Energy-dispersion relation of elec- With parabolic dispersion and the right branch from the
tron. (c) Calculated conductance as a function of Fermi enely. SQWS3 with also parabolic shape owing to the absence of
Magnetic effective potential. magnetic fields. However, the middle of dispersion curves is
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Ve (meV}

~ FIG. 4. Results for the QW with three-magnetic-strip modula- ~ FIG. 5. Results for the QW with three-magnetic-strip modula-
tion structure.(a) Schematic view of the model device. The geo- tion structure(a) Schematic view of the model device. Parameters
metrical structure and relevant parameters are the same as&ig. 3are the same as Fig(a except forB;=B;=1.5T. (b) Energy-

except for B;=B3;=0 and B,=+2.5T. (b) Energy-dispersion dispersion relation of electronc) Calculated conductance as a

curves.(c) Calculated conductance curves) Magnetic effective  function of Fermi energy(d) Magnetic effective potential.
potential.

ascribed to the SQW2 with a finite field where the bulk Lan- x- The effective potential in the SQWSQWS3 is constant

dau levels exist. The dispersions are symmetric due to th@nd its value increaseslecreasgswith k,. Electrons move
symmetry of the device structure. Two consecutive sets off€€ly in these regions and the corresponding dispersions are
dispersion curves are separated by a distance in wav@arabolic. In the SQW2 the magnetic quantum well is
number space and intersected each other. Owing to th@rmed and takes a form of declined parabola with finite
abrupt change of magnetic fields at interface, the couplind'®ight in both edges. The position of the potential bottom
effect takes place. It leads to the creation of the magneti€Nifts far away from the center of the QW with the increase
scattering states and the occurrence of the kink points iff [k,|. The larger thek,|, the greater the declined degree of
dispersions. As contrasted with the device of Fige)3the Pparabolic well is. Thus, the well depth becomes much shal-
magnetic field now is applied in the middle region, i.e., inlow, only a few of Landau levels can be found in the well.
SQW?2; therefore, the energy subbands in the SQW2 ar&he Landau levels with large indices disappear for ldkge
lifted with respect to the zero-field regions in the SQW1 andThis is the reason why the width of Landau plateaus de-
SQW3. Finally, the bump structures in dispersion are formedreases as increasing the Landau subband index. The exis-
in the central region ok,. At the same time, minigaps are tence of Landau bumps and minigaps in dispersions guaran-
formed. The dispersions exhibit oscillatory structures. Wheriees the appearance of the square-wave-like modulation in
scanning the Fermi energy, it is these bumps and minigapgonductance spectrum.

that lead to the emergence of the square-wave-shaped oscil- Theé square-wave-like modulation spectrum of conduc-
lations in conductance spectrum, as seen in Fig). &4or  tance can be modified and improved by applying a finite field
instance, as the Fermi energy increases, additional propagde the SQW1 and SQW3 regions. For instance, we consider
ing channels are opened, thus, conductance increas#¥ similar device as that of Fig.(@ except forB;=B;
2(2€?/h), instead of the step of €/h). When the Fermi =1.5T. The energy dispersions, the conductance spectrum,
energy of the electron sweeps through minigaps, conducand the magnetic effective potential are depicted in Figs.
tance dips are present owing to the quenching of the prop&(b), 5(c), and 8d), respectively. It is evident that the dis-
gating modes. The depth of the conductance dips depends @@rsions have similar behavior of Figtb4 and the conduc-

the number of quenched propagating modes at the givet@nce exhibits much more regular square-wave-like modula-
Fermi energy. As increasing the Fermi energy continuouslytion in Fig. §c), comparing with Fig. &).

the new propagating channels are opened and the conduc- To offer more information on the appearance of square-
tance reaches higher plateau, forming the Square-wave-"M@ave-"ke modulation of conductance, we now study another
conductance spectrum. The conductance spectrum consigtgvice with sandwiching magnetic structure, as shown in
of a series of peaks and valleys. Fig. 6@). In this device,B;=B3;=2.5T andB,=—-3.0T.

To provide the good explanation of the character of dis-The other parameters are the same as those in f&g. This
persions, we present the calculated magnetic effective poteflevice is composed of two blocks of dual-magnetic-strip
tial in Fig. 4(d). It is clearly seen that the profile of the structures of Fig. @). Considering the structural symmetry
potential shows a space-reversal symmetry with respect t@n this device, it is expgcted that the dispersion relations
the central line of the model device when altering the sign oshould be symmetric abolt =0 point. The dispersions, the
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© VI. SUMMARY

We have studied transport properties of electrons in the
QW’s under the application of stepped varying magnetic
o4 fields. To reveal the nature of the magnetic scattering states
owing to the abrupt change of magnetic fields at interfaces,
we investigate in detail two kinds of model devices, one is

% 5 10 15 dual-magnetie-strip structure, the other is three-magnetic-
E (mev) strip structure. Magnetoconductance as a function of the
b . . . . .
15 o @ Fermi energy demonstrates monotonically increasing varia-

tion in staircase or square-wave-like oscillations, consisting
of plateaus and valleys. The detailed patterns of the magne-
toconductance depend on the distribution of nonuniform
magnetic fields. In the dual-magnetic-strip structures, the
magnetoconductance spectrum always exhibits the stepwise
increasing variation. To understand the origin of the conduc-
tance spectrum, we have calculated the energy-dispersion re-
lations of the propagating states and the relevant magnetic
effective potential. The stepped varying magnetic fields par-
~ FIG. 6. Results for the QW with three-magnetic-strip modula- tition the QW into several subwaveguides; in each of them
tion structure.(a) Schematic view of the model device. The geo- yho magnetic field is constant. The whole dispersion curves
metrical structure and relevant parar_neters_ are the same a9 ®ig. 3can be regarded as the combination of dispersion curves of
except forB,=-3.0T. (¢) Energy-q'Spersm Curve@ Caleu- the individual SQW'’s. The coupling effect between SQW'’s
lated conductance curves!) Magnetic effective potential. leads to the creation of the magnetic scattering states, thus,

conductance spectrum, and the magnetic effective potentié!l“e dispersiqns are experienced the.s'ubsta.ntial d.istortion at
are displayed in Figs.(B), 6(c), and &d), respectively. It is the cross points where two sets of original dispersion curves
easy to Specify the Origin of the dispersion curves. For injntersect each other. It causes the bend of the dispersion
stance, the left branch comes from the contribution of thecurves, the emergence of valleys or bumps superimposed on
lowermost edge states with left-moving modes; the righthe flat bulk Landau levels, and the production of minigaps.
branch generates from the uppermost edge states with righ@scillatory structures in dispersions appear. It is these com-
moving modes. In the central region of the dispersion curvesplex dispersions that lead to various complicated conduc-
their behaviors are mainly determined by the property of thdance patterns. The characters of the dispersions can be well
SQW2 and the coupling effect among the magnetic scatteinterpreted by analyzing the relevant magnetic effective po-
ing states. The coupling effect leads to the substantial distotential. We have presented detailed analyses for several
tion of the dispersions. According to similar analyses as dismodel devices. Consequently, a new way of artificially tai-
cussed above, it is expected that the conductance spectrdfiing the conductance spectrum is proposed by introducing
should consist of dipéwith different depths and widthsind  laterally stepped varying magnetic fields perpendicular to the
plateaus(with different heights and widths The conduc- QW plane. It may be useful for guiding the design of new
tance spectrum exhibits the square-wave-like oscillation§luantum devices in practice.

that we are interested in. To save space, we do not repeat

similar analyses as done in the above samples. When keep-

ing B;=25T andB,=—-3.0T and setting3;=0, similar ACKNOWLEDGMENTS
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