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We investigate the property of the bound states with an infinite number of classical turning points in the
semiconductor superlattices~SL’s! with the double-barrier and double-well structural defects. The anomalous
parity sequence of these bound states violating the conventional parity rule is predicted. A physical mechanism
on the origin of the bound states in the structural defect SL’s, different from the mechanism addressed in the
previous literature, is proposed. Based upon it, the parity anomaly can be interpreted very well. In addition, we
also study the property of the optical transition in this system, for instance, the evaluation of the optical
transition probability from the bound states to the bound states, from the bound states to the delocalized
scattering states, and from the scattering states to other scattering states, in detail.@S0163-1829~98!02432-1#
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I. INTRODUCTION

It is well known that every eigenstate in the quantu
systems with space-reverse symmetry has a definite pa
i.e., the parity of the wave function of the stationary sta
must be either even or odd under the space reverse tr
form, as long as the eigenstate is nondegenerate. For
bound states with classical turning points in a on
dimensional quantum system, according to the oscillat
theorem,1 the conventional parity rule is active. The parity
the bound states should alternate between even and odd
ity in sequence and the parity of the lowest bound st
~ground state! must be even. However, in 1929, Von Ne
mann and Wigner have suggested a new type of bound
embedded in the continuous energy spectrum~continuum!,
fundamentally violating the normal parity rule.2 Based on a
constructive method of amplitude modulation of a fre
particle wave function, they indicated that the spatially os
lating attractive potential could lead to the formation of
bound state lying above the potential barriers. More th
twenty years ago, some researchers have addressed tha
might exist Von Neumann–Wigner bound states in so
atomic and molecular systems3,4 and semiconducto
heterostructures.5,6 It has become a well known fact, throug
their studies, that the oscillation theorem is not applicable
the bound states embedded in the continuum. Although
Von Neumann–Wigner bound states contribute an exam
of the parity anomaly of the bound states, more knowled
about this effect cannot be further acquired from this kind
PRB 580163-1829/98/58~8!/4629~7!/$15.00
ty,
s
ns-
he
-
n

ar-
te

ate

-
-

n
here
e

o
e
le
e
f

bound state because there only exists one bound state
given Von Neumann–Wigner–type oscillating potential. T
parity anomaly of the von Neumann–Wigner bound sta
can be simply ascribed to the lack of classical turning poin

Recently, the Bragg reflection conditions were applied
the semiconductor superlattices~SL’s! to form the so-called
Bragg confined states~BCS’s! of electrons above the
barrier.7 Shortly later, the BCS’s were observed
experiments.8–10 The BCS’s are significantly different from
the Von Neumann–Wigner bound states. The former lies
the minigaps of the SL’s; by contrast, the latter is embedd
in the continuum. Many theoretical studies have clea
shown that the BCS’s can be regarded as specific struc
defect states.11–14 Moreover, there exist both the above
barrier and the below-barrier bound states in the SL’s w
structural defects. Apparently, the below-barrier structu
defect states not only are the bound states with classical t
ing points but are also isolated from the continuum. One
motivated to further reveal the parity anomaly of the bou
states in new quantum systems and its origin. In this wo
we present a detailed investigation of the parity of the belo
barrier bound states in the symmetric SL’s with structu
defects and a physical picture, different from the physi
mechanism addressed in the previous literature, for un
standing the origin of the parity anomaly of the relat
bound states. We also give the evaluation of the optical tr
sition probability of the related states~including the bound
states and delocalized scattering states! in this system.

This paper is organized as follows. In Sec. II, we give
4629 © 1998 The American Physical Society
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4630 PRB 58WANG, GU, YANG, AND WANG
brief description of the model structures and present the n
essary formulas used in calculations of levels of the bo
states. Then, the parity anomaly of the bound states is s
ied in detail. In Sec. III, we present the expressions of
normalized envelope wave functions for the bound states
the delocalized scattering states. Based upon them, the
cal transition characteristics of the system are investiga
Finally, a brief summary is reserved in Sec. IV.

II. PROPERTIES OF BOUND STATES

A. Model and calculation of bound levels

We consider two typical samples of the symmetric SL
with structural defects:~i! symmetric double-barrier structur
defect SL’s ~sample No. 1! in which two identical semi-
infinite SL’s are coupled by a ‘‘distorted’’ double-barrie
structure with different structural unit from the semi-infini
SL’s, as shown in Fig. 1~a!; ~ii ! symmetric double-well struc
ture defect SL’s~sample No. 2! in which a ‘‘distorted’’
double-well structure is embedded in a SL, as shown in F
1~c!. We also draw the schematic diagrams of the rela
triple- and quadruple-quantum-well structures in order to d
cuss the origin of the structural defect states, as show
Figs. 1~b! and 1~d!. We choose the growth direction of th
SL’s as theZ axis and the center of the defect structure as
coordinate origin. For the half-space ofZ.0, the longitudi-
nal envelope wave function of an electron can be expres
as

Fd j~Z!5Ad je
ikd j~Z2Zd j !1Bd je

2 ikd j~Z2Zd j ! ~1!

for the d j th (d j5d0,d1) layer in the defect region, and

Fs j
~m!~Z!5@As je

iks j~Z2Zs j
m

!1Bs je
2 iks j~Z2Zs j

m
!#eikz~m21!L

~2!

for thes jth (s j5s1,s2) layer in themth period of the right
semi-infinite SL. HereZd j and Zs j

m designate the center co
ordinates of the corresponding layers,kz is the Bloch wave

FIG. 1. ~a! Schematic diagrams of the SL’s with the symmet
double-barrier structure defects~sample No. 1!; ~b! the correspond-
ing STQWS to sample No. 1;~c! schematic diagrams of the SL’
with the symmetric double-well structure defects~sample No. 2!;
~d! the corresponding SQQWS to sample No. 2. The structural
fect regions are plotted with the dotted lines.
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vector,L the period of the semi-infinite SL, and the longitu
dinal wave number of the electron,km j (m5d,s), in them j th
layer is given by

km j5F2mm j~E2Um j !

\2
2kxy

2 G 1/2

. ~3!

In Eq. ~3!, kxy is the transverse wave number of the electro
E the total energy of the electron;Um j50 ~in the well ma-
terial! or U0 ~in the barrier material!. U0 is the conduction-
band edge offset, andmm j is the energy-dependent effectiv
mass of the electron in them j th layer, incorporating the ef-
fect of the band nonparabolicity, it is given by15

mm j5mm j
0 @11am j~E2Um j !#, ~4!

where mm j
0 (5mw

0 or mb
0) is the electron effective mass a

the conduction-band edge, andam j (5aw or ab) the non-
parabolicity parameter of the band~in the well or barrier
material!. In terms of Ref. 15, we can infer the relationsh
betweenaw andab as

ab5
mw

0

mb
0

aw . ~5!

For the structural defect states lying in the minigaps of
SL, the Bloch wave numberkz should take a complex valu
in the form as16

kz5
np

L
1 iq ~q.0,n50,1,2, . . . !. ~6!

By using the Bastard boundary conditions at the interface
Z5wd0/2,wd0/21wd1 ,wd0/21wd11ws1, and wd0/21wd1
1ws11ws2 (wm j is the width of them j th layer!, we can
derive the following equations

S Ad0

Bd0
D 5Q̂S As1

Bs1
D , ~7!

@ Î 2~21!ne2qLP̂#S As1

Bs1
D 50, ~8!

where Î is a unit matrix. The matricesQ̂ and P̂ are defined
by

Q̂5T̂21~md0 ,kd0 ,wd0!M̂ ~md1 ,kd1 ,wd1!T̂~ms1 ,ks1 ,2ws1!,
~9!

P̂5T̂21~ms1 ,ks1 ,ws1!M̂ ~ms2 ,ks2 ,ws2!T̂~ms1 ,ks1 ,2ws1!,
~10!

with

M̂ ~m,k,x!5T̂~m,k,2x!T̂21~m,k,x!, ~11!

T̂~m,k,x!5S eikx/2 e2 ikx/2

~ ik/m!eikx/2 2~ ik/m!e2 ikx/2D . ~12!

It is evident from Eq.~1! that the even and odd parit
bound states correspond to the conditionsAd05Bd0 and

e-
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Ad052Bd0, respectively. From Eqs.~7! and~8!, we deduce
the equations for determining the structural defect states

cosh~qL!50.5~21!n~ P̂111 P̂22!, ~13!

@17~21!ne2qLP̂22#~Q̂112Q̂21!7~21!ne2qLP̂21

3~Q̂227Q̂12!50, ~14!

where the signs‘‘7 ’’ correspond to the even and odd pari
states, respectively.

B. Parity anomaly of bound states

We now employ Eqs.~13! and ~14! to perform the nu-
merical calculations for both Samples No. 1 and No. 2 co
posed of GaAs/Al0.3Ga0.7As material. The well and barrie
widths of the semi-infinite SL in two samples are fixed at
and 30 Å, respectively. The related physical parameters
two samples can be evaluated as follows:17 U05225 meV,
mw

0 50.067me , andmb
050.092me , whereme is the mass of

the free electron. The nonparabolicity parameteraw is taken
to be 0.642 eV21.18 The first and second allowed miniband
of SL expand over the energy ranges of@35.03, 47.20#~meV!
and @131.46, 177.38#~meV!, respectively. For simplicity, all
the calculations were limited to the case ofkxy50.

The dependence of the bound-state levelsEi on the width
DB(5wd1) of two identical defect barriers in sample No.
@as shown in Fig. 1~a!# is displayed in Fig. 2~a!, fixed the
defect well width at 85 Å. Solid~dotted! curves correspond
to the even~odd! parity states. It is clearly seen that the lev
intervals DE215E22E1 and DE435E42E3 of the bound
states gradually reduce asDB increases. This result seems
be similar to the level splitting effect in a coupled-doub
quantum-well structure when the width of the coupling b
rier is broadened. However, the fact is more interesting

FIG. 2. ~a! Dependence of the below-barrier structural def
states on the widthDB of two identical defect barriers in sampl
No. 1; ~b! variations of the bound levels withDB in the correspond-
ing STQWS@as shown in Fig. 1~b!# to sample No. 2. Solid~dotted!
curves correspond to the even~odd! parity states. Four horizonta
dashed lines divide the below-barrier energy spectrum into
minibands and three minigaps.
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these bound states exhibit anomalous parity behavior, s
stantially violating the conventional parity rule of the boun

states. For instance, whenDB,24 Å, the parity of both the
ground stateE1 and the first excited stateE2 is even,
whereas the second and the third excited states (E3 andE4)
have the odd parity. For 24<DB,35 Å, only one even par-
ity stateE1 and one odd parity stateE3 survive. Their parity
sequence accords with the conventional parity rule. Wh
35<DB,38 Å, only one odd parity stateE3 ~as the lowest
bound state! is survived. These results evidently show th
the conventional parity rule is no longer applicable to t
bound states in the SL’s with the structural defects.

In the previous literature,14 it has been addressed that th
bound states in the structural defect SL stem from the re
nant states or bound states in the separate defect region
the SL. Apparently, the existence of four below-barrier d
fect bound states in sample No. 1 does not match this ph
cal picture in which only two below-barrier resonant sta
survive for an isolated double-barrier-defect structure wit
defect well of 85 Å width. So, we have to search a ne
physical mechanism for understanding the parity anomaly
the structural defect states in sample No. 1.

As is well known, besides the bound states, there are
scattering states lying within the minibands in the structu
defect SL’s.14 It is worthy to pointing out that these scatte
ing states do not posses definite parity owing to their dou
degeneracy. The formation of the minibands is attributed
the splitting of levels due to the periodicity coupling betwe
the adjacent quantum wells in the perfect SL’s. When int
ducing the structural defects into the ideal SL, this period
ity coupling is locally broken down around the structur
defect layers. As a result, the periodicity broken coupli
between the adjacent quantum wells occurs within the reg
including the structural defects and two nearest quan
wells to them in the left and right semi-infinite SL’s. Th
periodicity-broken coupling leads to the appearance of n
splitting levels, different from the splitting levels stemme
from the periodicity coupling. Some of them may lie with
the minibands of the SL’s and turn into the delocalized sc
tering states without definite parity. On the other hand,
other part of them resides in the minigaps of the SL’s a
becomes the bound states. Therefore, one may reason
conjecture that the below-barrier structural defect states
sample No. 1 originate from some of the bound states in
related symmetric-triple-quantum-well structure~STQWS!
as shown in Fig. 1~b!. To confirm this conjecture, we exam
ine the dependence of the bound levels on the widthDB of
two identical barriers in the STQWS. The results are sho
in Fig. 2~b!. It can be seen that the first excited state~no
marked dotted line betweenE18 andE28 states! with odd par-
ity and the fourth excited state~no marked solid line between
E38 and E48 states! with even parity just respectively fal
within the first and second minibands of the SL when
<DB<50 Å. Consequently, when the left and right sem
infinite barrier regions in the STQWS are replaced by t
semi-infinite SL’s, these two bound states tend to turn i
the delocalized scattering states without definite parity
they merge with the minibands of the SL. On the other ha
it is noted that the structural defect statesEi in sample No. 1
and its analogous onesEi8 in the STQWS exhibit quite simi-

t

o



f
it

r
us
fr
e-
ca

w

.
h
e

p
on

to
,

th
in

th
um

ity

at-
ite
mi-

rre-
n
’s.
as
or-
d
aly

the
f
and
umi-
tool

and
are
ted
f the
the

ion
e

on
m-
ini-

an

ical
f

e

ve-
or-

ec
.

l
tw

4632 PRB 58WANG, GU, YANG, AND WANG
lar varying tendency. Moreover, theDB value for Ei state
disappearing at the miniband edge is very close to the one
Ei8 state being truncated by the miniband edge. Hence,
believed with certainty that the structural defect statesEi in
sample No. 1 are the development of the bound statesEi8
when the semi-infinite barrier regions in the STQWS a
replaced by two semi-infinite SL’s. The parity anomalo
sequence of the bound states in the sample No. 1 arises
the fact that during this evolution two of the abov
mentioned bound states in the STQWS turn into the delo
ized scattering states without definite parity.

To further support the above-mentioned conclusion
present another evidence by envisaging sample No. 2@as
shown Fig. 1~c!# with the fixed defect barrier width of 20 Å
The variation of the bound levels with the widt
DW (DW5wd1) of two identical defect wells in sampl
No. 2 is illustrated in Fig. 3~a!. The even~odd! parity state
levels are plotted with solid~dotted! lines. It is evident that
all the structural defect state levelsEi monotonically de-
crease and lastly merge into the minibands as theDW in-
creases. When broadeningDW from 10 up to 66 Å, the
number of below-barrier bound states increase from 1 u
4. The parity of these bound states obeys the conventi
parity rule. However, when 66,DW<69 Å, there are three
bound states, i.e.,E3, E6, andE7. Their parity is in turn odd,
even, and odd. When 69,DW<75 Å, only two odd parity
states are survived owing to the disappearance ofE6 state.
When 75,DW<80 Å, we can find three bound states due
the emergence ofE1 state, and their parity is in turn even
odd, and odd. Apparently, when 66,DW<80 Å, the parity
of the bound states in sample No. 2 completely violates
conventional parity rule. To get better insight into the orig
of the parity anomaly, we examine the behaviors of
bound states in the related symmetric quadruple-quant
well structure~SQQWS! as shown in Fig. 1~d!. The depen-
dence of these bound levels onDW is displayed in Fig. 3~b!.
It is noted that the first excited state with the odd par

FIG. 3. ~a! Dependence of the below-barrier structural def
states on the widthDW of two identical defect wells in sample No
2; ~b! variations of the bound levels withDB in the corresponding
SQQWS@as shown in Fig. 1~d!# to sample No. 2. Solid~dotted!
curves correspond to the even~odd! parity states. Four horizonta
dashed lines divide the below-barrier energy spectrum into
minibands and three minigaps.
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~betweenE18 andE28 states! completely falls within the first
miniband of the SL. It tends to turn into a delocalized sc
tering state without definite parity when the semi-infin
barrier regions in the SQQWS are replaced by two se
infinite SL’s. Comparing Figs. 3~a! with 3~b!, we can find the
same similarities between the defect bound stateEi and its
analogous oneEi8 as that seen in Figs. 2~a! and 2~b!. This
brings us a suggestion once again that the bound stateEi in
sample No. 2 doubtless is the development of the co
sponding stateEi8 when the semi-infinite barrier regions i
the SQQWS are replaced by two identical semi-infinite SL
It is worth pointing out that during this evolution as soon
the relatedEi8 state are merged into the minibands, the c
respondingEi state toEi8 state disappears from the boun
state series. It is this reason that leads to the parity anom
of the survival bound states in sample No. 2.

III. OPTICAL TRANSITION CHARACTERISTICS

Since the famous optical-absorption experiment on
multiwell structures done by Dingle,19 the measurements o
the optical-transition spectra, such as the absorption
emission spectra, and the photoluminescence and photol
nescence excited spectra, etc., have become a powerful
to explore the quantum properties in the quantum wells
SL’s. The optical-transition spectra in these structures
determined by the transition probabilities between the rela
electronic states. It can be expected that the existence o
bound states and their anomalous parity sequence in
structural defect SL’s leads to some new optical-transit
characteristics, different from that in the complete SL’s. W
are now in a position to investigate the optical transiti
characteristics in the SL’s with structural defects. For si
plicity, we ignore the dependence of the sublevels and m
bands on the transverse wave numberkxy . So, the optical
transition probability from an initial stateEi to a final state
Ef in the approximation of an isotropic conduction band c
be expressed as

Wi f 5
2p

\ S eA0

m*
D 2

z^F f~Z!u p̂zuF i~Z!& z2d~Ef2Ei2\v!,

~15!

where the functiond(Ef2Ei2\v) reflects the conservation
of energy;m* is the effective mass of the electron;A0 andv
are respectively the amplitude and frequency of the opt
excitation wave;F i , f(Z) are the envelope wave function o
the electron along theZ direction. In order to calculate the
transition probabilityWi f , we have to take into account th
normalization of the related envelope wave functions.

A. Normalization of envelope wave functions
for bound and delocalized states

First, we discuss the normalization of the envelope wa
function of the bound states. We introduce the relative co
dinate in each layer for the half-space ofZ>0 as follows:

Z̃d05Z2Zd0 ~0<Z̃d0<wd0/2!, ~16!

Z̃d15Z2Zd1 ~2wd1/2<Z̃d1<wd1/2!, ~17!
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Z̃s j
m5Z2Zs j

m ~2ws j/2<Z̃s j
m<ws j/2!. ~18!

So, according to Eqs.~1!, ~2!, and ~6!, the envelope wave
function of the bound states forZ>0 can be reexpressed a

FE6
~Z!5H Ad0

6 F~1,61,kd0 ,Z̃d0!,

Ad0
6 F~Ad1

6 ,Bd1
6 ,kd1 ,Z̃d1!,

Ad0
6 @~21!ne2q6L#m21F~As j

6 ,Bs j
6 ,ks j ,Z̃s j

m!,
~19!

whereAd0 is the normalized constant; the signs ‘‘6 ’’ corre-
spond to even and odd parity states;E6 and q6 are deter-
mined by Eqs.~13! and ~14!. The functionF(A,B,k,Z) is
defined as

F~A,B,k,Z!5AeikZ1Be2 ikZ. ~20!

By using Bastard boundary conditions at interfaces, we
tain

S Ad1
6

Bd1
6 D 5Ŝd1,d0S 1

61D , ~21!

S As1
6

Bs1
6 D 5Ŝs1,d1S Ad1

6

Bd1
6 D , ~22!

S As2
6

Bs2
6 D 5Ŝs2,s1S As1

6

Bs1
6 D , ~23!

with

Ŝm,n5T̂21~mm ,km ,2wm!T̂~mn ,kn ,wn!. ~24!

In terms of the normalized condition of the bound-state wa
functions with a definite parity*0

`uFE6
(Z)u251/2, we have

Ad0
6 5

1

A2~ I d
61I sl

6!
~25!

with

I d
65E

0

wd0/2

uF~1,61,kd0 ,Z!u2dZ

1E
2wd1/2

wd1/2

uF~Ad1
6 ,Bd1

6 ,kd1 ,Z!u2dZ, ~26!

and

I sl
65

1

12e22q6L(i 51

2 E
2wsi/2

wsi/2

uF~Asi
6 ,Bsi

6 ,ksi ,Z!u2dZ.

~27!

We now consider the normalization of the wave functio
of the delocalized states with double degeneracy. The en
dispersion relationE(kz) of the scattering states is dete
mined by

cos~kzL !5 1
2 ~ P̂111 P̂22!5 1

2 ~ P̂118 1 P̂228 !, ~28!
-

e

s
gy

where the matrixP̂ is given in Eq.~10! and the matrixP̂8 is
defined as

P̂85T̂~ms2 ,ks2 ,ws2!M̂ ~ms1 ,ks1 ,ws1!T̂~ms2 ,ks2 ,2ws2!.
~29!

Out of the defect region, the wave functions of the deloc
ized scattering states should be the superposition ofkz and
2kz states Bloch wave functions. Considering the structu
symmetry, the two linearly independent wave functions~for
the half space ofZ>0) of the delocalized scattering state
with an energyE(kz)5E(2kz) lying within the minibands
can be expressed in terms of the even and odd parity stat

Fkz

6~Z!5H Cd0
6 F~1,61,kd0 ,Z̃d0!,

Cd0
6 F~Cd1

6 ,Dd1
6 ,kd1 ,Z̃d1!,

Cd0
6 @Cs j

6Gs j~kz ,Z̃s j
m!1Ds j

6Gs j~2kz ,Z̃s j
m!#,

~30!

where Cd0
6 is a normalization constant. The functio

Gs j(kz ,Z̃s j
m) is defined as

Gs j~kz ,Z̃s j
m!5F~1,Qs j~kz!,ks j ,Z̃s j

m!eikz~m21!L ~31!

with

Qs1~kz!5
P̂21e

ikzL

12 P̂22e
ikzL

~32!

and

Qs2~kz!5
P̂218 eikzL

12 P̂228 eikzL
. ~33!

Applying the Bastard boundary conditions at interfaces
the wave functionsFkz

6(kz ,Z), we can obtain the equation

for determining the coefficients$
D

d1
6

Cd1
6

% and$
D

s j
6

Cs j
6

% as follows:

S Cd1
6

Dd1
6 D 5Ŝd1,d0S 1

61D , ~34!

S Cs1
6

Ds1
6 D 5R̂s1

21Ŝs1,d1S Cd1
6

Dd1
6 D , ~35!

S Cs2
6

Ds2
6 D 5R̂s2

21Ŝs2,s1R̂s1S Cs1
6

Ds1
6 D , ~36!

where the matrixR̂s j is defined as

R̂s j5S 1 1

Qs j~kz! Qs j~2kz!
D .

The wave function in the continuum~miniband! spectrum
can be normalized according to

E
2`

1`

Fkz

6~Z!@Fk
z8

6
~Z!#* dZ5d~kz2kz8!. ~37!
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After considering the definite parity of wave functions, t
normalization condition can be rewritten as

2E
0

wd0/21wd1
Fkz

6~Z!@Fk
z8

6
~Z!#* dZ12E

wd0/21wd1

1`

Fkz

6~Z!

3@Fk
z8

6
~Z!#* dZ5d~kz2kz8!. ~38!

The first term in Eq.~38! has a finite value, and its contribu
tion can be neglected with respect to the second term.
using the relation

lim
N→`

(
m51

N

e6 i ~kz2kz8!~m21!L5d~kz2kz8!, ~39!

we can obtain the normalized coefficient

Cd0
6 5

1

A2I 6
, ~40!

where

I 65(
i 51

2 F uCsi
6u2E

2wsi/2

wsi/2

uF~1,Qsi~kz!,ksi ,Z!u2dZ

1uDsi
6u2E

2wsi/2

wsi/2

uF~1,Qsi~2kz!,ksi ,Z!u2dZG . ~41!

B. Numerical results and discussions

Substituting the normalized wave functions given in E
~19! and~30! into Eq. ~15!, we can easily calculate the opt
cal transition probability. As an example, we perform t
numerical calculation for the double-barrier structure def
SL @as shown in Fig. 1~a!# with the barrier width of 15 Å.
Because the dipole transition between two bound states
identical parity is forbidden, thus the transition probabil
between theE1 andE2 states vanishes, and so does the tr
sition probability between theE3 and E4 states. The
permitted transition probabilities between two bound sta
are respectively W1350.236931025(C0), W1450.1339
31023(C0), W2350.771731023(C0), and W2450.1172
31024(C0), here the unitC0 is defined as

C052p\S eA0

m*
D 2

. ~42!

These numerical results show that the transition probabili
from E1 to E4 states and fromE2 to E3 states are the sam
order of magnitude, but they are approximately one or t
orders of magnitude larger than the probability fromE1 to
E3 states or fromE2 to E4 states. Note thatE1 andE4 states
lie within the first and third minigaps, and the values of th
corresponding indexn @given by in Eq. ~6!# are an even
number (n50 and 2), however, both theE2 and E3 states
are located at the second minigap, and the values of t
corresponding indexn are odd number (n51 and 3!. That is
to say, the transition probability between two bound sta
with identical odd/even property of their indexn is larger
than that between two bound states with different odd/e
property of their indexn.
y

.

t

ith

-

s

s

o

r

ir

s

n

The transition characteristics among the bound states
scattering states are displayed in Figs. 4~a!–4~d!. Figures
4~a!, 4~b!, 4~c!, and 4~d! demonstrate the variation of th
transition probability from theE1, E2, E3, andE4 levels to
two minibands of the SL with the Bloch wave numberkz .
Dotted ~solid! lines correspond to the transitions from th
bound levels to the first~second! miniband. From Figs. 4~a!–
4~d!, it is evident that the transition spectra from the bou
states to the delocalized states exhibit the interesting
tures:~i! The transition probabilities from the bound states
the delocalized states located at the center and edge o
Brillouin zone are quite small;~ii ! there always exists a
maximum in every transition probability plot;~iii ! the posi-
tions of these maxima depend on the odd/even propert
the indexn of the bound states. As the indexn of the bound
states is even number, the peak position closes the cent
the Brillouin zone, otherwise the peak appears to be clos
the edge of the Brillouin zone;~iv! the transition probabili-
ties from the bound states with even parity to two miniban

FIG. 5. Transition probabilities between two minibands for t
same double-barrier structure defect SL as in Fig. 4 and for
corresponding complete SL. The solid and dotted lines corresp
to the cases of the defect SL and complete SL, respectively.

FIG. 4. Transition probabilities from the bound states to t
delocalized states in the double-barrier structure defect SL state
the text.~a!, ~b!, ~c!, and~d! correspond to the transitions from th
levelsE1, E2, E3, andE4 to two minibands, respectively. The do
ted and the solid lines represent the transition probabilities from
levelsEi to the first and second minibands, respectively.
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are of the same order of magnitude, while the ones from
bound states with odd parity to two minibands possess q
different order of magnitude.

The transition probability between two minibands as
function of the Bloch wave numberkz of the SL for the
double-barrier structure defect SL and the correspond
complete SL is displayed in Fig. 5. The solid line and dot
line correspond to the defect SL and the complete SL. C
paring the solid line and the dotted line, it is found th
except for the values in the defect SL being larger than th
in the complete SL, they both exhibit a similarly varyin
tendency: the transition probability in the whole Brillou
zone possesses the same order of magnitude, which is
pletely different from the transition from the bound states
the delocalized states; and the transition probability betw
two delocalized states at the edge of the Brillouin zone
larger than that at the center of the Brillouin zone.

All of the above optical-transition characteristics in t
structural defect SI may be measured by the infrared abs
tion and emission spectra. Apparently, the optical absorp
between theE1 and E2 states and the optical emission b
tween theE4 andE3 states cannot be observed in the infra
absorption and emission spectra. It arises from the rea
that the optical transition between two bound states w
identical parity is forbidden. So, we suggest that the ano
lous parity sequence in the structural defect SL’s can
identified by measurements of the related infrared absorp
and emission spectra.

IV. SUMMARY

We have presented a detailed analyses on the prope
of the below-barrier defect states with an infinite number
classical turning points in the semiconductor SL’s with
-
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A

L

e
te
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e
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n
s

p-
n

on
h
a-
e
n

ies
f

structural defects. The anomalous parity sequence of
structural defect states is predicted. This parity anom
arises from the following source: The structural defect sta
stem from splitting of levels caused by the periodicit
broken coupling between the adjacent quantum wells in
region composed of the structural defects and two nea
quantum wells to them in the left and right semi-infini
SL’s. The parity sequence of these splitting levels obeys
conventional parity rule. When some of these splitting lev
are merged into the minibands of the SL’s and become
delocalized scattering states without definite parity, the p
ity sequence of the final survival structural defect states
hibits anomalous. In addition, we evaluate various transit
probabilities, for instance, from the bound states to the bo
states, from the bound states to the delocalized states,
from the delocalized states to other delocalized states in
structural defect SL. It is found that the transition probabil
strongly depends on the properties of the states involving
transition process, for instance, their localization status,
state parity, and the odd/even parity of the indexn of the
bound states. Finally, we suggest that the anomalous p
sequence in the structural defect SL’s can be identified
measurements of the related infrared absorption and e
sion spectra.
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