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We report a first-principles calculation of structural properties and quantum conductance of aluminum
atomic wires. Our data together with a simple model allows us to predict the behavior of the elastic constant
C,, as a function of the cross-sectional size of the free-standing wires. The quantum molecular dynamics,
performed at both 0 and 300 K, provides information concerning the stability of these atomic wires. For the
most stable wire, relaxationt ® K causes a change of approximately 2-4 % in atomic positions, and room
temperature contributes another 4—6 %. We obtain the quantum conductance of these wires by combining
density functional theory and a three-dimensional evaluation of the scattering matrix. The structures obtained
from the quantum molecular-dynamics simulations are examined and transport properties compared.
[S0163-182698)01444-1

I. INTRODUCTION The purpose of this work is to investigate, using first-
principles theoretical methods, the mechanic and quantum
Free-standing atomic wires, with cross sections as smairansport properties of atomic wires schematically shown in
as a few square nanometers, can now be fabricated usifgg- 1. The wires consist of an atomic section connecting to
several recently developed experimental technidugs. two long leads. In this work we shall examine aluminum
Among the many exciting discoveries on these atomic-scal@tomic wires. Charge carriers enter the wire from a lead,
objects is the observed conductance quantization at elevat§gatter by the atomic junction, and exit to the second lead or
temperatures including room temperature. These atomic-
sized nanostructures promise to have a useful impact on elec-
tronic applications. In principle, nanostructure devices can
have high operation speeds, low power dissipation, and high
packing density. These attributes make them attractive from
a technological point of view; however, there are still many
obstacles that need to be resolved. In particular, fabricability
of atomic-scale nanostructures can be a difficult task due the
lack of control over individual atoms. So far many groups
have reported successful fabrication of nanowires with vari-
ous sizes, using a variety of different methods, including
nanolithography;® scanning tunneling microscop§STM)
and atomic force microscogymolecular-beam epitaxy, and
porous material templatésNanowires exhibiting unusual
optoelectronic and electronic properties have been reported,
including a direct band gap for porous Si nanowires and
conductance quantization. These properties are very useful
technologically, but some of them are sensitive to structural
imperfections due to both atomic relaxation and temperature-
induced vibrations. Hence it is important to know the amount
of disorder introduced by relaxation and temperature, and
their influence on the conductance quantization of nanow- F|G. 1. Schematic plot of a long quantum wire where there is an
ires. It is also very interesting to understand the crossover adtomic section and two 3D jellium leads. The whole system is in-
various mechanical properties from nanoscale to macrdscaleluded into a supercell foab initio total-energy calculations. The
sizes. atomic positions are determined by quantum molecular dynamics.
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reflect back. For cases with a single Xe atom sandwiched ir LayeﬂL .
between two planar jellium electrodes, Ref. 8 reported quan- Layer 1 " Layer0
titative agreement between the first-principles prediction and Layer 0

experimental measurements. For the large wires studied her L .
the theoretical calculation becomes much more extended. / . = . i
complete investigation thus involves two related aspéds: d e ® .
the determination of atomic positions and the study of me- . 14 o
chanic properties2) the prediction of quantum conductance ° o o ‘
of the wires. This is a very difficult task because any first- . ¢ o °
principles study must include the atomic degrees of freedom: ® e o :
the usual continuum approach using the effective mass ap ] e
proximation familiar in mesoscopic physics cannot give the o |° e i o iy
desired quantitative answer to the quantum conductance ¢ o

these atomic wires. Our investigation combines the first-( (b) ©
principle quantum molecular dynamics with the solution of a . _ )
three-dimensiona3D) quantum scattering problem, thus we  FIG. 2. Al nanowires studieda) Al chain (5 atoms, (b) 1x1
are able to make quantitative predictions to these two ag¢C Wire without comer atome39 atoms, (c) 1x1 fec wire (41
pects atoms, (d) 2% 2 fcc wire (113 atomg

On the mechanical properties of the atomic wires, we in- , — .
vestigate the structural stability and certain elastic propertie§<2 fcc wire, as shovyn in Fig. 2. W.e also performed static
on theatomicscale. We emphasis the small size of the wire total-energy calculations to determine the elastic constant
and we answer a number of very relevant questions from &1 8long the length of the wire for theX1, 2Xx2, and 3
first-principles calculation: what is the crossover behavior of<3 nanowires. For these static calculations, the wires con-
the elastic constan,; as the cross section of the atomic sidered were infinite, and 'Fhe supercell length qlong the wire
wire is increased? How large are the changes of atomic po¥aS chosen to be the lattice constant;k38ampling points

sitions due to relaxation and finite temperature? Can we raeré used along the length of the wire.

tionalize our results, which are based on microscopic calcu- 10 conduct the first-principles calculations we used an
lations, using an effective continuum model? These are vergPProach similar to that of Sankey and NiklewskiThe

general questions concerning important properties of atomid€chnique uses the Harris approximatf6rihe local-density

wire fabrication. The microscopic information can only be apg)roxim.ation,_ the p;eudopotent[al of Ref. ,25' a minimal
reliably calculated usingb initio methods and this will be SP- atomic orbital basis set, and diagonalization to solve the
our approach. Kohn-Sham equations. In addition, the atomic orbitals are
On the quantum transport properties of the atomic wiresConfined within a radius of¢, so that they vanish precisely
we investigate the property and quality of conductance qua,peyond this distance. This redug:es Fhe numgrlcal effort since
tization. There are a number of investigations on transpof?@ny of the overlap and Hamiltonian matrix elements for
through atomic scale objects, especially on the atomic aidistant atoms are exactly zero. The other nonzero matrix el-

rangement of a tip near a substrate such as that of the scafients are evaluated using pretabulated integral tables,
ning tunneling microscop®®~1" Transport calculations have which only need to be calculated once. Although the method

also been performed for organic molecdfé€ and carbon 1S ot as accurate as plane-wave techniques, it makes up for
nanotubeg® A first-principles quantum scattering approach th|s in speed and flexibility. Thls_techn'lque has been exten-
including the atomic degree of freedom has been applied to &Vely teSGt_e% on many systems including clusters, surfaces,
chain of atoms sandwiched in between planar electrddes, and bulk®™*" and is quite suitable for our purposes. After
connected to three-dimension@D) leads?*?? Since fabri- eyaluatmg the f_orces on the atoms from thls initio tech- _
cation of free-standing atomic wires becomes increasinglj/idué, we obtain the structural energy minima by numeri-
routine, there is a clear need to theoretically predict the quara!ly w;tegr:;\tmg the damped classical equations of motion
tum transport properties of atomic scale wires and system§=mdr/dt“+mydr/dt, where y is the damping coeffi-
beyond the few-atom systems studied so far. Our transpof€nt- Emne-temp_ere}tqre simulations were performed using
calculations to be reported below examine wires consistingr@ngevin dynam|c§, in which a temperature-dependent
39 and 41 atoms in their atomic section with the structurd!0ise term is added to the classical equations of motion.
determined at various temperatures. F]nally, in a_lll our nanowire calculations, the Al atom|_c or-
The rest of the paper is organized as follows. In the nexPital confining radius was.=6 a.u., and the QMD time
section we present mechanical properties of the atomic wire3ep was 3 fs. _ , ,
as determined by quantum molecular dynamics. Section 11l Our results can be grouped into static and dynamic cat-
presents the quantum conductance of these wires. Section KEOMES.
gives the summary.

-
&

A. Static

On the static calculations, we conducted total energy scal-
ing evaluations of the elastic const&y; along the length of

The atomic wires considered in our quantum molecularthe nanowires. In particular, we calculated the total energy
dynamics (QMD) simulations were a simple aluminum per unit volumeE/V as a function of the straim,;;=(a
chain, a X1 fcc wire without corner atoms, aXl1 and 2  —a,)/a,, wherea is the lattice constant along the wire, and

II. STRUCTURAL PROPERTIES
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a, is the equilibrium value. Sincg&/V=3C,.e7, by defini- 400 4.05
tion, we were able to fit our numerical results about the mini- . bk 2 ommmeo ] 400
mum to determineéC,; anda, for each wire. We foundC,; 350 | ° '
=173,202,358 GPa, and,=3.84,3.79,3.71 A for the 3 3.95
X3, 2X2, and 1X1 wires, respectively. These results 300
should be compared with our bulk elastic constant calculatec 390 &
to be C4;=102 GPa, and bulk lattice constar, © 250 0
=4.00 A. Our numerical data clearly show that the smaller& 385 G
wires have a larger elastic constant, and a smaller equilib< 200 %
rium lattice constant along their length. This conclusion 380 =
should be general and is not restricted to Al wires. 150 3.75
We can understand and organize these results using a vel
simple continuum model. Although quite approximate, this 100 3.70
model turns out to work extremely well and it involves only
two adjustable constants that we can fix using our first prin- 50 3.65

ciples data. In fact there exists literature that demonstratec
the usefulness of various harmonic methods for analyzing
structural datd?23*Here we construct a model that is specifi- ~ FIG. 3. Plots ofC4; anda, (along the wire lengthfor a W
cally useful for analyzing the nanowire results obtained from*W nanowire, where the solid lines are tfg; anda, given by

the QMD simulations. Let us represent the surface bonds dtU" mogel, and the dots are the results from our first-principles
the wires by effective springs with a force constagtand calculation. The bulk ela_stlc constant and bulk lattice constant are
equilibrium bond lengttd, . Similarly, we represent all bulk denoted by the dashed lines.

bonds approximately by springs with a force constqnand )

equilibrium lengthd,, . With this model, the nanowire is then 900d estimate fok,, . For bulk, W— anda,=a, hence we
viewed as a continuous block of medium, and the total enconclude from Eq(4) thatC,,=8ky/ay, . Using our numeri-

ergy per lengtha, along the block due to the longitudinal cal data for bulkC1;=102 GPa andy,=4.00 A, we con-
bonds is clude thatk,=0.32 eV/&. Next we solve forkg using the

nanowireC,; data; the value oks can be found using just
ks ) Ky ) one wire, and it should be approximately independent of
E=Ns— (d—dg)“+ Nbf(d_db) ' (D which Cq, is used. For example, using the<x3 elastic con-
stant data we conclude thia{=0.89 eV/&, and using the
whereNs andN,, are the number of longitudinal surface and 2x 2 data we gek,=0.86 eV/&. By taking an average of
bulk bonds per lengtla, along the wire. Within this con- these results, we arrive at a final vakie=0.875 eV/& for
tinuum model the transverse bonds do not explicitly entebur continuum model, which implies that surface bonds are
into our calculation ofC,, along the wire length. After some about three times stiffer than bulk bonds. Note that we have
simple manipulation, the energy equation can be rewritten agot used the X 1 data in thek, average, because the interior
E=3(Nsks+Npky)(d—d,)? up to an additive constant, bonds of the &k 1 wire do not exhibit perfect bulk charac-
where teristics due to its small size. By calculating the bond charges
and comparing with the bulk, we found that the interior
_ Ngksds+ Npkpdy (2  bonds of the X1 wire are stronger than bulk bonds, hence
0 Ncks+ Npkp k, should actually be somewhat larger for this wire. Since
we do not include this fact in our continuum model, the
elastic constant of theX 1 wire will not be accurately rep-
resented by the model. Replacing tkeand ks determined
above into Eq.(4), the continuum model implies th&;

Now sinced=a/+/2 for our Al fcc nanowires, we can ex-
press the energy @&= 3 (Ngks+ Npky) (a—a,)?/2. Dividing
by the volumeV=(Wa,)?%a, for a WX W wire, we conclude

that =171,205,307 GPa for the>33, 2x2, and 1x1 wires.
The model underestimates the elastic constant of tkd 1
E/V= Ea Nsks+Nokp o2 3 wire by about 14%, as should be expected from our above
2°° 2a2W? 1 discussion. The results of the continuum model are summa-

rized graphically in Fig.(3), where the first-principles data
and by now comparing this expression with the definition Of(dOtS are compared to the model curve ©f; given by Eq.
Ci1, we deduce that (4). The solid curve thus gives the prediction of the elastic
constantC,; for Al atomic wires of various cross-sectional
sizes.C,, approaches the bulk value asM,/which simply
' 4 reflects the contribution of surface energy to this mechanical
property, as has been understood from continuum theory.
where for a WK W nanowire, it can easily be shown that Next, we evaluate the equilibrium bond lengttis and
Ng=16W andNp,=8W(2W-1). ds, using ourC,; data. We know from our bulk calculation
The only unknowns in Eq(4) are the force constants  thatd,=a,/\2=2.83 A. We use this in conjunction with
andky, which we can easily solve for using our total energyEq. (2) and the nanowire data to solve fi¢. To be precise,
numerical data. In particular, the bulk data should give ave average thés found using the X3 and 2<2 nanowire

3, | Ngks+ Npkp

11 W2

2a?
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TABLE I. Average displacement due to relaxation, where the  TABLE II. Average displacement of each layer at 300 K, where

percentage is with respect to the bulk fcc bond length. the percentage is with respect to the bulk fcc bond length.
Layer O Layer 1 Layer 2 Layer O Layer 1 Layer 2
Chain 011 A Chain 0.47 A
3.8% 16.6%
1x1 Wire 0.08 A 0.16 A 1x1 Wire 0.40 A 0.39 A
No Corners 2.9% 5.9% No Corners 14.1% 13.7%
1X1 Wire 0.07 A 0.10 A 1x1 Wire 0.14 A 022 A
2.4% 3.6% 4.9% 7.8%
2X2 Wire 0.07 A 0.06 A 0.10 A 2X2 Wire 0.12 A 0.12 A 0.17 A
2.5% 2.2% 3.7% 4.4% 4.4% 6.1%

data, from which we obtained,=2.60 A. To summarize relaxed atomic coordinates. We then calculated the time av-
these findings, we use the above results in conjunction witierage of the average displacement for atoms in each layer,
Eq. (2) and plot the continuum model prediction for the ef- which is defined as

fective equilibrium “lattice” constanta, (along the wire

length in Fig. 3. Finally, note that sincd;<d,, the surface <M_>: 1

atoms of an Al100 surface must experience tensile stress. YN
We can actually use the results of our continuum model to . . . .
estimate the surface stress of al148l0) surface. In particu- where Nsieps i the number of time steps used in the time

> AR, (7)

steps

lar, the surface stress can be expressédl as average|AR(t)]; is the average displacement at tihef
atoms in layeri with respect to theneanpositions, and the
Npdp ks sum is over the time steps. Using this definition, the average
9= on 3(db—ds), (5  displacement of an atom in layeris found by starting the

time average at the 25th time step, which insures that the
whereN,, is the number of nearest neighbors in the plane ofystem has had enough time to attain the desired tempera-
a surface atom, and is the area per surface atom. In the ture. The results of our calculations are summarized in Table
case of A{100) N,=4, and using our results faf, andds, Il. As in the case of pure relaxatiom &0), the outer atoms
we find thatg,,=0.07 eV/&, which is comparable to the show more displacement, whereas the inner atoms displace

surface stress of Al found directly using a plane-wave firstby approximately 4-5% in the case of th&1 and 2<2
principles calculatiori* wires. On the other hand, the smaller wires exhibit much

more atomic displacement; for example, the 1 wire with

no corner atoms has an average displacement of 14%, which

] ] _ is due to the fact that many of the bonds break, and the
We conducted numerous QMD simulations to determinestrycture becomes unstable at the room temperature.

the Stablllty of the wires. In all the dynamical SimulationS, We can actua”y estimate the rms disp'acement of a bulk

the end atoms of the wires were fixed so as to mimic pinnin%tom at room temperature using our continuum model. To

due tOlleadS that attaCh to the wires in.a device app|icati01&cc0mp|i5h this’ we S|mp|y app'y the equipartition theorem
(see Fig. 1 For the chain, we started with a bond length oftg 3 bulk atom and we get

of an infinite Al chain, 2.41 A. For the thicker wires we
started with the bulk atomic positions. At a temperatilire 3kgT

. 2\
=0 K, QMD relaxes the wire structure to a local energy VAR =\ e 8
minimum. A summary of the average atomic displacement is ntb
presented in Table I. The average displacement for atoms iwherekg is Boltzmann’s constanT, is the temperaturé\,, is
a given layer is defined as the number of nearest neighbors for a bulk atom, kpnis
the force constant of bulk bonds. Next, by evaluating a few
simple integrals, it can easily be shown th8AR|)
=0.92/(JAR[?). By using our result foik,, we conclude
from the above equation that at 300 K the average displace-
whereN; is the number of free atoms in layer R, are the  ment of a bulk atom is 0.13 A or 4.6%, which agrees quite
relaxed atomic positionsR, are the bulk initial positions, reasonably with the average displacement of the inner
and the sum is over the free atoms in layeOur results  nanowire atoms found with our QMD simulatioftse layers
show that the relaxation for the larger wires, namely, the 19 and 1 data for the 2 wire in Table ).

X1 and 2x2 fcc wires are very similar. In particular, the
outer layer atoms undergo a relaxation of about 3.5%, IIl. TRANSPORT PROPERTIES
whereas all the inner layers move by only 2.5%.

Next we studied the influence of room temperature on the With the atomic positions determined by QMD as dis-
atomic positions. We conducted a QMD simulation at 300 Kcussed above, we now present the results of quantum con-
for 400 time steps for each of the wires, starting with theductance of these atomic wires in the form schematically

B. Dynamic

— 1
|AR[i=172 [R—=Ryl, (6)
|
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shown in Fig. 1. In our calculation the long leads are mod-
eled using the jellium model where the electrons are de-
scribed by their wave functions while the ion charges are
uniformly distributed inside the leads’ volume. Using the
QMD positions of the atoms, the transport properties are
obtained in two steps: the evaluation of the self-consistent
effective potential and the calculation of the quantum con-
ductance. )
In the first step of the conductance calculation, fixing the
atomic positions as determined by the QMD, we have deter- o
mined the self-consistent electronic potenti®les(r)
= 46U/ 6p(r), which is seen by all the electrons including
those provided by the jellium leads. Held p] is the total
self-consistent potential energy whiteis the electron den-
sity. The particular reason for this procedure is to overcome
the approximations related to the nature of the H&tfisnc-
tional used in our QMD method, and to introduce the leads 764
to the atomic wire. Although there could be very slight dif-
ferences concerning mechanical structures using the QMD OJir
Sankey and Niklewsk? in comparison to the self-consistent
plane-wave-based methotfshese small differences are not

important for our purposes here, thus we used the atomic o
positions of our QMD to determin®,. In previous calcu- Stacks the thin wire has 39 atoms in the atomic section. The

lations involving only up to six atoms in the atomic QMD simulations of these systems were reported in the last
section?>?? we have determinel . by solving the Kohn- ~ section. For both the thick and thin wires at 0 K, the final
Sham self-consistent equation for the electronic wave funcconfiguration has reached the fully relaxed state, which is
tions using a plane-wave basis. For the large systems consigomewhat different from the bulk structure. On the other
ered here, this step is completed by applying the Thomashand, at 300 K the atomic positions in both cases are quite
Fermi—von Weizseker (TFVW) density expanded kinetic- disorderedsee last sectionThe distorted atomic configura-
energy functional, which is the subject of many recenttions of the wires provide a natural positional disorder to the
investigations®3° For small wires with up to four atoms, guantum conduction.
we have checked that the TFVW approach and the plane- We have used the bulk Al electron density=2.07 a.u.
wave approach give consistent results for the dc condudn the jellium leads. A lead has a cross-section of 10.52
tance, but for the large wires studied here TFVW makes the<10.52 (a.uj, and length 23.58 a.u., resulting in a total
investigations numerically less intensive. Since we conside®f 129 electrons in the leads. The whole system, leads plus
cases in which each leadasymptoticallya perfect wire, we the atomic section, is put into a superdeke Fig. 1 of size
made sure that the length of the leads is long enough t41.68x41.68<81.33 (a.u.j for the “thick” wire case, and
capture the infinite length limit. This way the eigenstates37.24x37.24x104.01 (a.uJ for the “thin” wire case, for
obtained from the equilibrium density-functional calculation standard density-functional analysis which produces a self-
can be brought into the form of scattering states of theconsistent effective potentidle¢(r) as seen by all the elec-
wire.*° trons. We have used an energy cutoff of 32 Ry. Figure 4
To directly obtain the scattering states, in the second stephowsV,¢; for a “thick” wire relaxed at 0 K. The potential
of the conductance calculation we solve a 3D quantum scales in the 3D leads is affected by the atoms near the lead-
tering problem of a particle traversing the atomic wire de-atom junction, but this effect is damped out away from the
fined by Vq¢;. For this purpose we have developed a 3Djunction indicating that the length of the leads is long enough
guantum scattering algorithm based on a transfer matrio give a good approximation of the infinite length limit. In
evaluation of the scattering mattk?! As a result we obtain calculating Vs the numerical convergence is guaranteed
transmission coefficient$ ,(E), where the subscript la-  within a fewueV. In the leadsy; is essentially a well with
bels the transmission subbands. Finally the conductance ef depth~—0.51 a.u. below the Fermi level in the cross-
the wire is obtained by integrating,(E) together with the section plane. The bonding between the Al atoms, and be-
Fermi-Dirac distribution function in the standard fashion. tween atoms and the jellium leads, is clearly obtained. In the
We concentrated on two atomic structures as the initialateral direction, far away from the atomic section, a higher
conditions of the QMD simulations, shown in FiggbRand  potential is seen that reflects the vacuum. In the atomic sec-
2(c). Figure 2c) is a “thick” wire, with alternating stacks of tion, Ve has rather high peaks due to the ionic core repul-
four and five atoms in a fc€100 arrangement ending with sion of the atoms, and surrounding the peaks there is the
the five-atom stack at the ends. With nine stacks a thick wireisual attractive part of atomic potential.
has 41 atoms in the atomic section. The second initial con- Figure 5 shows the conductan@E) as a function of
dition, Fig. Ab), is created by only keeping the atoms at theincoming electron energl for the “thick” wires. The three
faces of the fcc bulk structure, thus the stacks are alternatingurves are for wires relaxed at 0,300 K and no dynamic
with four and one atoms and the wires end with the four-relaxation. In all cases some degree of conductance “pla-
atom stack. We call this wire a “thin” one. With fifteen teau” is observed? However the quantization oB(E) is

FIG. 4. The ground-state effective potentigl;; along the(110)
ection obtained from thab initio total-energy calculation for a
wire with 41 atoms relaxed at O K. The scales are in a.u. units.
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FIG. 6. Conductanc&(E) for wires in the thin configuration
(39 atoms with fixed ends. The calculated Fermi energy is about

FIG. 5. Conductanc&(E) as a function of incoming electron Et=—0.108 a.u. There are two “gaps” iG(E).
energyE for wires in the thick configuratiofd1 atom$ with fixed
ends. The calculated Fermi levEk is about—0.106 a.u. Inset:
G(E) for a thick wire relaxed &80 K with free ends.

energy E (a.u.)

curves, rather than being quantiz&al,E) for the thin wires
seems to show a transport “band gap,” at energies around
—0.3 a.u. and a “plateau” at-0.16 a.u. below the Fermi

not perfect, reflecting the fact that the dynamically relaxedenergy. The width of these regions are slightly narrower for
atomic wires have some degree of positional disorder. Fothe wire without dynamic relaxation. This seemingly strange
the wire without relaxation, the quantization is better due to'esult can be confirmed by investigating the DOS of the
the crystalline structure of the atomic section. However theitomic section, which we obtained in our QMD simulations.
atom-lead junction still provides scattering to the electrondndeed, below the Fermi energy there is a band gap and a
which gives rise to quantum mode mixing, leading to theplateau in the DOS in the similar ranges of energies. This
imperfections of the quantization and the resonance behagonsistency is expected since linear response theory demands
ior. In addition there is a resonance behavior in betweerhat the conductance is proportional to DOS. In addition, we
energies—0.2 to —0.25 a.u. for all three cases &E) have verified that the behavior &f(E) for the thick wires is
shows two peaks there. This is also likely to be due to thealso consistent with that of the DOS where no band gaps
scattering at the atom-lead junction. Figure 5 also shows thwere obtained.
relative importance of the positional disorder as a result of
the dynamic relaxation: clearly the 300 K curve shows the
worst quantization. Our analysis included two effects of tem-
perature, one being the influence on the atomic positions, the This work focuses on two important aspects of atomic
other is the smearing effect of the transmission coefficienscale wires, the structural property and the related quantum
when we computé&s(E). We emphasize that the smearing conduction. Our calculations are from first principles by
effect has little influence ors because of the very large combining the quantum molecular dynamics, the evaluation
energy scales involved in the atomic wires in comparison tf the self-consistent effective potential, and the solution of a
the temperature. Precisely for this reason, a quantizedn 3D quantum scattering problem. This is a powerful approach
survive  elevated temperatures as  demonstratetb investigate systems where atomic degrees of freedom are
experimentall§*31* and shown here. For the large wires important.
studied here, the ideal quantization, namely, the quasi-1D On the structural simulations, we have conducted both
behavior, cannot be precisely established due to various scattatic and dynamic first principles calculations to determine
tering and mode mixing. This is quite different from casessome mechanic properties of aluminum nanowires of various
where only a chain of a few atoms are included in the atomic¢hickness. The elastic constant along the wire length was
section. In that case very good conductance quantization cgound to be larger for wires with a smaller thickness, which
be obtained. Indeed, the experimentally fabricated atomican be explained by the fact that surface bonds are much
wires rarely showed perfect quantizatidf® presumably  stronger than bulk bonds. In other words, at the atomic scale,
due in part to the same reason as we found here. The inset tife surface energy plays an important role. Our QMD simu-
Fig. 5 plotsG(E) for a thick wire, dynamically relaxed at O lations show that in the case of the most stable wire, relax-
K for 1.8 ps with the ends of the atomic section free to moveation causes about a 2—4% change in atomic position,
instead of being fixed. Our QMD simulation showed that inwhereas room temperature contributes another 4—6%. We
this wire the atomic positions are completely disorderedthus conclude that atomic disorder due to relaxation and
G(E) clearly reflects this fact and shows no quantization aroom temperature give rise to a net atomic displacement of
all. 6-10% for the atomic wires studied here, where the wire
The results for the thin configurations display quite inter-ends are pinned to mimic the existence of leads. Such a
esting features, as plotted in Fig. 6. This exercise clearlyositional disorder in turn alters the electrical transport prop-
shows that the structure of an atomic wire can have drastierties such as the conductance quantization. Clearly, for
influence on the transport properties. As shown by thdarger wires the average atomic displacement becomes

IV. DISCUSSION AND SUMMARY
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smaller. So far studies of structures usually assumed a claghe labst® In order to approach the experimental sizes, very-
sical dynamics for the ions. At low temperature the quantumarge-scale calculations are needed and there is a need to
zero-point motion and quantum dynamics of the ions carnefine the numerical procedure. Second, it will be useful to
play a role and even change the conclusion one might drawhore carefully correlate the structural information with con-
such as which structure gives the global energy minimumguctance behavior. To this purpose many temperature an-
These effects can be important to distinguish structures Witfﬁea”ngs of the structures are desired from the QMD simula-
energies very close to each other at low temperatures. Theons. Again, this requires very large computation effort.
above simulations were for free-standing wires, which can berhird, in this work we have not considered the explicit
fabricated and studied experimentally by extracting a STMjephasing effect on quantum waves in the scattering process.
tip from a surfacé. For wires microfabricated on top of This will be an important issue for further analysis. Fourth,
substrates, our results place upper limits on the displace-the details of our density-functional-theory analysis can be
ment of atoms. It is interesting to see that the very simplesxtended using generalized gradient approximation and other
continuum model, with only two parameters, can partiallykinetic energy functional$® These improvements can be
account for the simulation data. The model is quite intuitiveva|uab|e for more Comp”cated systems. Fina”y’ our ana|ysis
in giving us some general understanding of the structura¢an be extended to multilead systems and this will matxe

properties of atomic wires. Through the two constants, whichnitio simulations of atomic quantum functional devices pos-
we obtain from ourab initio data, the results can be orga- gjpje.

nized in a very clean fashion, which allows for much more

general predictions. We thus expect this and similar models
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