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We report a first-principles calculation of structural properties and quantum conductance of aluminum
atomic wires. Our data together with a simple model allows us to predict the behavior of the elastic constant
C11 as a function of the cross-sectional size of the free-standing wires. The quantum molecular dynamics,
performed at both 0 and 300 K, provides information concerning the stability of these atomic wires. For the
most stable wire, relaxation at 0 K causes a change of approximately 2-4 % in atomic positions, and room
temperature contributes another 4–6 %. We obtain the quantum conductance of these wires by combining
density functional theory and a three-dimensional evaluation of the scattering matrix. The structures obtained
from the quantum molecular-dynamics simulations are examined and transport properties compared.
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I. INTRODUCTION

Free-standing atomic wires, with cross sections as sm
as a few square nanometers, can now be fabricated u
several recently developed experimental techniques1–6

Among the many exciting discoveries on these atomic-sc
objects is the observed conductance quantization at elev
temperatures including room temperature. These atom
sized nanostructures promise to have a useful impact on e
tronic applications. In principle, nanostructure devices c
have high operation speeds, low power dissipation, and h
packing density. These attributes make them attractive f
a technological point of view; however, there are still ma
obstacles that need to be resolved. In particular, fabricab
of atomic-scale nanostructures can be a difficult task due
lack of control over individual atoms. So far many grou
have reported successful fabrication of nanowires with v
ous sizes, using a variety of different methods, includ
nanolithography,1,3 scanning tunneling microscopy~STM!
and atomic force microscopy,6 molecular-beam epitaxy, an
porous material templates.2 Nanowires exhibiting unusua
optoelectronic and electronic properties have been repo
including a direct band gap for porous Si nanowires a
conductance quantization. These properties are very us
technologically, but some of them are sensitive to structu
imperfections due to both atomic relaxation and temperat
induced vibrations. Hence it is important to know the amo
of disorder introduced by relaxation and temperature,
their influence on the conductance quantization of nan
ires. It is also very interesting to understand the crossove
various mechanical properties from nanoscale to macrosc7

sizes.
PRB 580163-1829/98/58~19!/13138~8!/$15.00
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The purpose of this work is to investigate, using firs
principles theoretical methods, the mechanic and quan
transport properties of atomic wires schematically shown
Fig. 1. The wires consist of an atomic section connecting
two long leads. In this work we shall examine aluminu
atomic wires. Charge carriers enter the wire from a le
scatter by the atomic junction, and exit to the second lead

FIG. 1. Schematic plot of a long quantum wire where there is
atomic section and two 3D jellium leads. The whole system is
cluded into a supercell forab initio total-energy calculations. The
atomic positions are determined by quantum molecular dynam
13 138 ©1998 The American Physical Society
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reflect back. For cases with a single Xe atom sandwiche
between two planar jellium electrodes, Ref. 8 reported qu
titative agreement between the first-principles prediction
experimental measurements. For the large wires studied
the theoretical calculation becomes much more extende
complete investigation thus involves two related aspects:~1!
the determination of atomic positions and the study of m
chanic properties;~2! the prediction of quantum conductanc
of the wires. This is a very difficult task because any fir
principles study must include the atomic degrees of freed
the usual continuum approach using the effective mass
proximation familiar in mesoscopic physics cannot give
desired quantitative answer to the quantum conductanc
these atomic wires. Our investigation combines the fi
principle quantum molecular dynamics with the solution o
three-dimensional~3D! quantum scattering problem, thus w
are able to make quantitative predictions to these two
pects.

On the mechanical properties of the atomic wires, we
vestigate the structural stability and certain elastic proper
on theatomicscale. We emphasis the small size of the wi
and we answer a number of very relevant questions fro
first-principles calculation: what is the crossover behavior
the elastic constantC11 as the cross section of the atom
wire is increased? How large are the changes of atomic
sitions due to relaxation and finite temperature? Can we
tionalize our results, which are based on microscopic ca
lations, using an effective continuum model? These are v
general questions concerning important properties of atom
wire fabrication. The microscopic information can only b
reliably calculated usingab initio methods and this will be
our approach.

On the quantum transport properties of the atomic wir
we investigate the property and quality of conductance qu
tization. There are a number of investigations on transp
through atomic scale objects, especially on the atomic
rangement of a tip near a substrate such as that of the s
ning tunneling microscope.6,8–17Transport calculations hav
also been performed for organic molecules18,19 and carbon
nanotubes.20 A first-principles quantum scattering approa
including the atomic degree of freedom has been applied
chain of atoms sandwiched in between planar electrodes8 or
connected to three-dimensional~3D! leads.21,22 Since fabri-
cation of free-standing atomic wires becomes increasin
routine, there is a clear need to theoretically predict the qu
tum transport properties of atomic scale wires and syst
beyond the few-atom systems studied so far. Our trans
calculations to be reported below examine wires consis
39 and 41 atoms in their atomic section with the struct
determined at various temperatures.

The rest of the paper is organized as follows. In the n
section we present mechanical properties of the atomic w
as determined by quantum molecular dynamics. Section
presents the quantum conductance of these wires. Sectio
gives the summary.

II. STRUCTURAL PROPERTIES

The atomic wires considered in our quantum molecu
dynamics ~QMD! simulations were a simple aluminum
chain, a 131 fcc wire without corner atoms, a 131 and 2
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32 fcc wire, as shown in Fig. 2. We also performed sta
total-energy calculations to determine the elastic cons
C11 along the length of the wire for the 131, 232, and 3
33 nanowires. For these static calculations, the wires c
sidered were infinite, and the supercell length along the w
was chosen to be the lattice constant; 39k-sampling points
were used along the length of the wire.

To conduct the first-principles calculations we used
approach similar to that of Sankey and Niklewski.23 The
technique uses the Harris approximation,24 the local-density
approximation, the pseudopotential of Ref. 25, a minim
sp3 atomic orbital basis set, and diagonalization to solve
Kohn-Sham equations. In addition, the atomic orbitals
confined within a radius ofr c , so that they vanish precisel
beyond this distance. This reduces the numerical effort si
many of the overlap and Hamiltonian matrix elements
distant atoms are exactly zero. The other nonzero matrix
ements are evaluated using pretabulated integral tab
which only need to be calculated once. Although the meth
is not as accurate as plane-wave techniques, it makes u
this in speed and flexibility. This technique has been ext
sively tested on many systems including clusters, surfa
and bulk26–30 and is quite suitable for our purposes. Aft
evaluating the forces on the atoms from thisab initio tech-
nique, we obtain the structural energy minima by nume
cally integrating the damped classical equations of mot
F5md2r /dt21mgdr /dt, where g is the damping coeffi-
cient. Finite-temperature simulations were performed us
Langevin dynamics,31 in which a temperature-depende
noise term is added to the classical equations of mot
Finally, in all our nanowire calculations, the Al atomic o
bital confining radius wasr c56 a.u., and the QMD time
step was 3 fs.

Our results can be grouped into static and dynamic c
egories.

A. Static

On the static calculations, we conducted total energy s
ing evaluations of the elastic constantC11 along the length of
the nanowires. In particular, we calculated the total ene
per unit volumeE/V as a function of the straine115(a
2ao)/ao , wherea is the lattice constant along the wire, an

FIG. 2. Al nanowires studied:~a! Al chain ~5 atoms!, ~b! 131
fcc wire without corner atoms~39 atoms!, ~c! 131 fcc wire ~41
atoms!, ~d! 232 fcc wire ~113 atoms!.
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ao is the equilibrium value. SinceE/V5 1
2 C11e11

2 by defini-
tion, we were able to fit our numerical results about the m
mum to determineC11 andao for each wire. We foundC11
5173,202,358 GPa, andao53.84,3.79,3.71 Å for the 3
33, 232, and 131 wires, respectively. These resul
should be compared with our bulk elastic constant calcula
to be C115102 GPa, and bulk lattice constantao
54.00 Å. Our numerical data clearly show that the sma
wires have a larger elastic constant, and a smaller equ
rium lattice constant along their length. This conclusi
should be general and is not restricted to Al wires.

We can understand and organize these results using a
simple continuum model. Although quite approximate, t
model turns out to work extremely well and it involves on
two adjustable constants that we can fix using our first p
ciples data. In fact there exists literature that demonstra
the usefulness of various harmonic methods for analyz
structural data.32,33Here we construct a model that is speci
cally useful for analyzing the nanowire results obtained fr
the QMD simulations. Let us represent the surface bond
the wires by effective springs with a force constantks and
equilibrium bond lengthds . Similarly, we represent all bulk
bonds approximately by springs with a force constantkb and
equilibrium lengthdb . With this model, the nanowire is the
viewed as a continuous block of medium, and the total
ergy per lengthao along the block due to the longitudina
bonds is

E5Ns

ks

2
~d2ds!

21Nb

kb

2
~d2db!2, ~1!

whereNs andNb are the number of longitudinal surface an
bulk bonds per lengthao along the wire. Within this con-
tinuum model the transverse bonds do not explicitly en
into our calculation ofC11 along the wire length. After some
simple manipulation, the energy equation can be rewritten
E5 1

2 (Nsks1Nbkb)(d2do)2 up to an additive constant
where

do5
Nsksds1Nbkbdb

Nsks1Nbkb
. ~2!

Now sinced5a/A2 for our Al fcc nanowires, we can ex
press the energy asE5 1

2 (Nsks1Nbkb)(a2ao)2/2. Dividing
by the volumeV5(Wab)2ao for a W3 W wire, we conclude
that

E/V5
1

2
aoFNsks1Nbkb

2ab
2W2 Ge11

2 , ~3!

and by now comparing this expression with the definition
C11, we deduce that

C115
ao

2ab
2FNsks1Nbkb

W2 G , ~4!

where for a W3 W nanowire, it can easily be shown th
Ns516W andNb58W(2W21).

The only unknowns in Eq.~4! are the force constantsks
andkb , which we can easily solve for using our total ener
numerical data. In particular, the bulk data should give
i-

d
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f

a

good estimate forkb . For bulk,W→` andao5ab hence we
conclude from Eq.~4! thatC1158kb /ab . Using our numeri-
cal data for bulk,C115102 GPa andab54.00 Å, we con-
clude thatkb50.32 eV/Å2. Next we solve forks using the
nanowireC11 data; the value ofks can be found using jus
one wire, and it should be approximately independent
which C11 is used. For example, using the 333 elastic con-
stant data we conclude thatks50.89 eV/Å2, and using the
232 data we getks50.86 eV/Å2. By taking an average o
these results, we arrive at a final valueks50.875 eV/Å2 for
our continuum model, which implies that surface bonds
about three times stiffer than bulk bonds. Note that we h
not used the 131 data in theks average, because the interio
bonds of the 131 wire do not exhibit perfect bulk charac
teristics due to its small size. By calculating the bond char
and comparing with the bulk, we found that the interi
bonds of the 131 wire are stronger than bulk bonds, hen
kb should actually be somewhat larger for this wire. Sin
we do not include this fact in our continuum model, th
elastic constant of the 131 wire will not be accurately rep-
resented by the model. Replacing thekb and ks determined
above into Eq.~4!, the continuum model implies thatC11
5171,205,307 GPa for the 333, 232, and 131 wires.
The model underestimates the elastic constant of the 131
wire by about 14%, as should be expected from our ab
discussion. The results of the continuum model are sum
rized graphically in Fig.~3!, where the first-principles data
~dots! are compared to the model curve ofC11 given by Eq.
~4!. The solid curve thus gives the prediction of the elas
constantC11 for Al atomic wires of various cross-sectiona
sizes.C11 approaches the bulk value as 1/W, which simply
reflects the contribution of surface energy to this mechan
property, as has been understood from continuum theory7

Next, we evaluate the equilibrium bond lengthsdb and
ds , using ourC11 data. We know from our bulk calculation
that db5ab /A252.83 Å. We use this in conjunction with
Eq. ~2! and the nanowire data to solve fords . To be precise,
we average theds found using the 333 and 232 nanowire

FIG. 3. Plots ofC11 and ao ~along the wire length! for a W
3W nanowire, where the solid lines are theC11 and ao given by
our model, and the dots are the results from our first-princip
calculation. The bulk elastic constant and bulk lattice constant
denoted by the dashed lines.
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data, from which we obtainedds52.60 Å. To summarize
these findings, we use the above results in conjunction w
Eq. ~2! and plot the continuum model prediction for the e
fective equilibrium ‘‘lattice’’ constantao ~along the wire
length! in Fig. 3. Finally, note that sinceds,db , the surface
atoms of an Al~100! surface must experience tensile stre
We can actually use the results of our continuum mode
estimate the surface stress of an Al~100! surface. In particu-
lar, the surface stress can be expressed as34

gxx5
Npdb

2A

ks

2
~db2ds!, ~5!

whereNp is the number of nearest neighbors in the plane
a surface atom, andA is the area per surface atom. In th
case of Al~100! Np54, and using our results fordb andds ,
we find thatgxx50.07 eV/Å2, which is comparable to the
surface stress of Al found directly using a plane-wave fir
principles calculation.34

B. Dynamic

We conducted numerous QMD simulations to determ
the stability of the wires. In all the dynamical simulation
the end atoms of the wires were fixed so as to mimic pinn
due to leads that attach to the wires in a device applica
~see Fig. 1!. For the chain, we started with a bond length
of an infinite Al chain, 2.41 Å. For the thicker wires w
started with the bulk atomic positions. At a temperatureT
50 K, QMD relaxes the wire structure to a local ener
minimum. A summary of the average atomic displacemen
presented in Table I. The average displacement for atom
a given layeri is defined as

uDRu i5
1

Ni
( uRr2Rbu, ~6!

whereNi is the number of free atoms in layeri , Rr are the
relaxed atomic positions,Rb are the bulk initial positions,
and the sum is over the free atoms in layeri. Our results
show that the relaxation for the larger wires, namely, the
31 and 232 fcc wires are very similar. In particular, th
outer layer atoms undergo a relaxation of about 3.5
whereas all the inner layers move by only 2.5%.

Next we studied the influence of room temperature on
atomic positions. We conducted a QMD simulation at 300
for 400 time steps for each of the wires, starting with t

TABLE I. Average displacement due to relaxation, where
percentage is with respect to the bulk fcc bond length.

Layer 0 Layer 1 Layer 2

Chain 0.11 Å
3.8%

131 Wire 0.08 Å 0.16 Å
No Corners 2.9% 5.9%
131 Wire 0.07 Å 0.10 Å

2.4% 3.6%
232 Wire 0.07 Å 0.06 Å 0.10 Å

2.5% 2.2% 3.7%
th

.
o

f

-

e

g
n

f

is
in

1

,

e

relaxed atomic coordinates. We then calculated the time
erage of the average displacement for atoms in each la
which is defined as

^uDRu i&5
1

Nsteps
( uDR~ t !u i , ~7!

whereNsteps is the number of time steps used in the tim
average,uDR(t)u i is the average displacement at timet of
atoms in layeri with respect to themeanpositions, and the
sum is over the time steps. Using this definition, the aver
displacement of an atom in layeri is found by starting the
time average at the 25th time step, which insures that
system has had enough time to attain the desired temp
ture. The results of our calculations are summarized in Ta
II. As in the case of pure relaxation (T50), the outer atoms
show more displacement, whereas the inner atoms disp
by approximately 4–5 % in the case of the 131 and 232
wires. On the other hand, the smaller wires exhibit mu
more atomic displacement; for example, the 131 wire with
no corner atoms has an average displacement of 14%, w
is due to the fact that many of the bonds break, and
structure becomes unstable at the room temperature.

We can actually estimate the rms displacement of a b
atom at room temperature using our continuum model.
accomplish this, we simply apply the equipartition theore
to a bulk atom and we get

A^uDRu2&5A3kBT

Nnkb
, ~8!

wherekB is Boltzmann’s constant,T is the temperature,Nn is
the number of nearest neighbors for a bulk atom, andkb is
the force constant of bulk bonds. Next, by evaluating a f
simple integrals, it can easily be shown that^uDRu&
50.92A^uDRu2&. By using our result forkb , we conclude
from the above equation that at 300 K the average displa
ment of a bulk atom is 0.13 Å or 4.6%, which agrees qu
reasonably with the average displacement of the in
nanowire atoms found with our QMD simulations~the layers
0 and 1 data for the 232 wire in Table II!.

III. TRANSPORT PROPERTIES

With the atomic positions determined by QMD as d
cussed above, we now present the results of quantum
ductance of these atomic wires in the form schematica

TABLE II. Average displacement of each layer at 300 K, whe
the percentage is with respect to the bulk fcc bond length.

Layer 0 Layer 1 Layer 2

Chain 0.47 Å
16.6%

131 Wire 0.40 Å 0.39 Å
No Corners 14.1% 13.7%
131 Wire 0.14 Å 0.22 Å

4.9% 7.8%
232 Wire 0.12 Å 0.12 Å 0.17 Å

4.4% 4.4% 6.1%
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shown in Fig. 1. In our calculation the long leads are mo
eled using the jellium model where the electrons are
scribed by their wave functions while the ion charges
uniformly distributed inside the leads’ volume. Using th
QMD positions of the atoms, the transport properties
obtained in two steps: the evaluation of the self-consis
effective potential and the calculation of the quantum c
ductance.

In the first step of the conductance calculation, fixing t
atomic positions as determined by the QMD, we have de
mined the self-consistent electronic potentialVe f f(r )
[dU/dr(r ), which is seen by all the electrons includin
those provided by the jellium leads. HereU@r# is the total
self-consistent potential energy whiler is the electron den-
sity. The particular reason for this procedure is to overco
the approximations related to the nature of the Harris24 func-
tional used in our QMD method, and to introduce the lea
to the atomic wire. Although there could be very slight d
ferences concerning mechanical structures using the QM
Sankey and Niklewski23 in comparison to the self-consiste
plane-wave-based methods,35 these small differences are n
important for our purposes here, thus we used the ato
positions of our QMD to determineVe f f . In previous calcu-
lations involving only up to six atoms in the atom
section,21,22 we have determinedVe f f by solving the Kohn-
Sham self-consistent equation for the electronic wave fu
tions using a plane-wave basis. For the large systems con
ered here, this step is completed by applying the Thom
Fermi–von Weizsa¨cker ~TFvW! density expanded kinetic
energy functional, which is the subject of many rece
investigations.36–39 For small wires with up to four atoms
we have checked that the TFvW approach and the pla
wave approach give consistent results for the dc cond
tance, but for the large wires studied here TFvW makes
investigations numerically less intensive. Since we cons
cases in which each lead isasymptoticallya perfect wire, we
made sure that the length of the leads is long enough
capture the infinite length limit. This way the eigensta
obtained from the equilibrium density-functional calculati
can be brought into the form of scattering states of
wire.40

To directly obtain the scattering states, in the second s
of the conductance calculation we solve a 3D quantum s
tering problem of a particle traversing the atomic wire d
fined by Ve f f . For this purpose we have developed a 3
quantum scattering algorithm based on a transfer ma
evaluation of the scattering matrix.41,21As a result we obtain
transmission coefficientsTa(E), where the subscripta la-
bels the transmission subbands. Finally the conductanc
the wire is obtained by integratingTa(E) together with the
Fermi-Dirac distribution function in the standard fashion.

We concentrated on two atomic structures as the in
conditions of the QMD simulations, shown in Figs. 2~b! and
2~c!. Figure 2~c! is a ‘‘thick’’ wire, with alternating stacks of
four and five atoms in a fcc~100! arrangement ending with
the five-atom stack at the ends. With nine stacks a thick w
has 41 atoms in the atomic section. The second initial c
dition, Fig. 2~b!, is created by only keeping the atoms at t
faces of the fcc bulk structure, thus the stacks are alterna
with four and one atoms and the wires end with the fo
atom stack. We call this wire a ‘‘thin’’ one. With fifteen
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stacks the thin wire has 39 atoms in the atomic section.
QMD simulations of these systems were reported in the
section. For both the thick and thin wires at 0 K, the fin
configuration has reached the fully relaxed state, which
somewhat different from the bulk structure. On the oth
hand, at 300 K the atomic positions in both cases are q
disordered~see last section!. The distorted atomic configura
tions of the wires provide a natural positional disorder to
quantum conduction.

We have used the bulk Al electron densityr s52.07 a.u.
in the jellium leads. A lead has a cross-section of 10
310.52 (a.u.)2, and length 23.58 a.u., resulting in a tot
of 129 electrons in the leads. The whole system, leads
the atomic section, is put into a supercell~see Fig. 1! of size
41.68341.68381.33 (a.u.)3 for the ‘‘thick’’ wire case, and
37.24337.243104.01 (a.u.)3 for the ‘‘thin’’ wire case, for
standard density-functional analysis which produces a s
consistent effective potentialVe f f(r ) as seen by all the elec
trons. We have used an energy cutoff of 32 Ry. Figure
showsVe f f for a ‘‘thick’’ wire relaxed at 0 K. The potential
Ve f f in the 3D leads is affected by the atoms near the le
atom junction, but this effect is damped out away from t
junction indicating that the length of the leads is long enou
to give a good approximation of the infinite length limit. I
calculating Ve f f the numerical convergence is guarante
within a fewmeV. In the leads,Ve f f is essentially a well with
a depth;20.51 a.u. below the Fermi level in the cros
section plane. The bonding between the Al atoms, and
tween atoms and the jellium leads, is clearly obtained. In
lateral direction, far away from the atomic section, a high
potential is seen that reflects the vacuum. In the atomic s
tion, Ve f f has rather high peaks due to the ionic core rep
sion of the atoms, and surrounding the peaks there is
usual attractive part of atomic potential.

Figure 5 shows the conductanceG(E) as a function of
incoming electron energyE for the ‘‘thick’’ wires. The three
curves are for wires relaxed at 0,300 K and no dynam
relaxation. In all cases some degree of conductance ‘‘p
teau’’ is observed.42 However the quantization ofG(E) is

FIG. 4. The ground-state effective potentialVe f f along the~110!
direction obtained from theab initio total-energy calculation for a
wire with 41 atoms relaxed at 0 K. The scales are in a.u. units.
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not perfect, reflecting the fact that the dynamically relax
atomic wires have some degree of positional disorder.
the wire without relaxation, the quantization is better due
the crystalline structure of the atomic section. However
atom-lead junction still provides scattering to the electro
which gives rise to quantum mode mixing, leading to t
imperfections of the quantization and the resonance be
ior. In addition there is a resonance behavior in betwe
energies20.2 to 20.25 a.u. for all three cases asG(E)
shows two peaks there. This is also likely to be due to
scattering at the atom-lead junction. Figure 5 also shows
relative importance of the positional disorder as a resul
the dynamic relaxation: clearly the 300 K curve shows
worst quantization. Our analysis included two effects of te
perature, one being the influence on the atomic positions
other is the smearing effect of the transmission coeffici
when we computeG(E). We emphasize that the smearin
effect has little influence onG because of the very larg
energy scales involved in the atomic wires in comparison
the temperature. Precisely for this reason, a quantizedG can
survive elevated temperatures as demonstra
experimentally6,13,14 and shown here. For the large wire
studied here, the ideal quantization, namely, the quasi
behavior, cannot be precisely established due to various s
tering and mode mixing. This is quite different from cas
where only a chain of a few atoms are included in the ato
section. In that case very good conductance quantization
be obtained. Indeed, the experimentally fabricated ato
wires rarely showed perfect quantization1,15,6 presumably
due in part to the same reason as we found here. The ins
Fig. 5 plotsG(E) for a thick wire, dynamically relaxed at 0
K for 1.8 ps with the ends of the atomic section free to mo
instead of being fixed. Our QMD simulation showed that
this wire the atomic positions are completely disorder
G(E) clearly reflects this fact and shows no quantization
all.

The results for the thin configurations display quite int
esting features, as plotted in Fig. 6. This exercise clea
shows that the structure of an atomic wire can have dra
influence on the transport properties. As shown by

FIG. 5. ConductanceG(E) as a function of incoming electron
energyE for wires in the thick configuration~41 atoms! with fixed
ends. The calculated Fermi levelEf is about20.106 a.u. Inset:
G(E) for a thick wire relaxed at 0 K with free ends.
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curves, rather than being quantized,G(E) for the thin wires
seems to show a transport ‘‘band gap,’’ at energies arou
20.3 a.u. and a ‘‘plateau’’ at20.16 a.u. below the Ferm
energy. The width of these regions are slightly narrower
the wire without dynamic relaxation. This seemingly stran
result can be confirmed by investigating the DOS of t
atomic section, which we obtained in our QMD simulation
Indeed, below the Fermi energy there is a band gap an
plateau in the DOS in the similar ranges of energies. T
consistency is expected since linear response theory dem
that the conductance is proportional to DOS. In addition,
have verified that the behavior ofG(E) for the thick wires is
also consistent with that of the DOS where no band g
were obtained.

IV. DISCUSSION AND SUMMARY

This work focuses on two important aspects of atom
scale wires, the structural property and the related quan
conduction. Our calculations are from first principles
combining the quantum molecular dynamics, the evaluat
of the self-consistent effective potential, and the solution o
3D quantum scattering problem. This is a powerful approa
to investigate systems where atomic degrees of freedom
important.

On the structural simulations, we have conducted b
static and dynamic first principles calculations to determ
some mechanic properties of aluminum nanowires of vari
thickness. The elastic constant along the wire length w
found to be larger for wires with a smaller thickness, whi
can be explained by the fact that surface bonds are m
stronger than bulk bonds. In other words, at the atomic sc
the surface energy plays an important role. Our QMD sim
lations show that in the case of the most stable wire, rel
ation causes about a 2–4 % change in atomic posit
whereas room temperature contributes another 4–6 %.
thus conclude that atomic disorder due to relaxation a
room temperature give rise to a net atomic displacemen
6–10 % for the atomic wires studied here, where the w
ends are pinned to mimic the existence of leads. Suc
positional disorder in turn alters the electrical transport pr
erties such as the conductance quantization. Clearly,
larger wires the average atomic displacement beco

FIG. 6. ConductanceG(E) for wires in the thin configuration
~39 atoms! with fixed ends. The calculated Fermi energy is abo
Ef520.108 a.u. There are two ‘‘gaps’’ inG(E).



la
um
a
ra
m
i

T
b

TM
f
e
pl
lly
ive
r
ic
a-
re
e

ge
e

pl
h
n

r e
tu
ire
d

ry-
d to
to

n-
an-
la-
rt.
it
ess.
th,
be
ther
e
sis

s-

of
er-
We
nd
R
P,
nell

of

13 144 PRB 58TARASCHI, MOZOS, WAN, GUO, AND WANG
smaller. So far studies of structures usually assumed a c
sical dynamics for the ions. At low temperature the quant
zero-point motion and quantum dynamics of the ions c
play a role and even change the conclusion one might d
such as which structure gives the global energy minimu
These effects can be important to distinguish structures w
energies very close to each other at low temperatures.
above simulations were for free-standing wires, which can
fabricated and studied experimentally by extracting a S
tip from a surface.6 For wires microfabricated on top o
substrates,1 our results place upper limits on the displac
ment of atoms. It is interesting to see that the very sim
continuum model, with only two parameters, can partia
account for the simulation data. The model is quite intuit
in giving us some general understanding of the structu
properties of atomic wires. Through the two constants, wh
we obtain from ourab initio data, the results can be org
nized in a very clean fashion, which allows for much mo
general predictions. We thus expect this and similar mod
to be useful in conjunction withab initio modeling for fur-
ther investigations of various nanosystems.

We found that positional disorder and atomic arran
ments can have a very important effect on the conductanc
this atomic level, hence for potential quantum device ap
cations of the atomic wires, one must carefully control t
quality of the atomic structure in order to obtain good co
ductance quantization. There are several possible furthe
tensions of the present work in the investigations of quan
transport through atomic systems. First, the atomic w
studied here is several times smaller than those fabricate
a

s.
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the labs.1,5 In order to approach the experimental sizes, ve
large-scale calculations are needed and there is a nee
refine the numerical procedure. Second, it will be useful
more carefully correlate the structural information with co
ductance behavior. To this purpose many temperature
nealings of the structures are desired from the QMD simu
tions. Again, this requires very large computation effo
Third, in this work we have not considered the explic
dephasing effect on quantum waves in the scattering proc
This will be an important issue for further analysis. Four
the details of our density-functional-theory analysis can
extended using generalized gradient approximation and o
kinetic energy functionals.43 These improvements can b
valuable for more complicated systems. Finally, our analy
can be extended to multilead systems and this will makeab
initio simulations of atomic quantum functional devices po
sible.
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