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The flux motion in a superconductor with a periodic logarithmiclike bare pinning potential is
investigated. The effective barrier U;(J) is derived and is shown to bear close resemblance with the
related experimental results. The details of the pinning potential profile turn out to have significant
influences on the functional form of the effective barrier. The linear response of the superconductor
under a small current is analyzed and a slightly new formula is derived for resistivity in the thermally
activated flux flow regimes. The distinct regimes for flux creep and flux flow and the crossover in
between are treated simultaneously, and the familiar power-law behavior is demonstrated and is
further confirmed by examining the dln E/dJ versus J relation. Satisfactory agreement is found

between our results and related experimental observations.

The experimentally observed field-

dependent resistance broadening effect is also reproduced in this model.

I. INTRODUCTION

The resistive behavior of a high temperature supercon-
ductor in connection with flux motion has attracted much
attention in the literature. Most aspects of the experi-
ments and interpretations remain highly controversial.
As for the flux creep, the basic theory first introduced
by Anderson and Kim! assumes thermal activation of
uncorrelated vortices or vortex bundles over a net poten-
tial barrier which depends linearly on the applied current
density J;

Uy =Uo(1—-J/Jeo), (1)

where Uy is the barrier for J = 0, and Jo is the critical
current density in the absence of thermal activation. The
important predictions of this theory are that the magne-
tization should follow a logarithmic decay, and that there
should be a thermally activated flux flow (TAFF) regime
when the applied current is essentially small. While it
is a good model for conventional superconductors, the
Anderson-Kim model is unable to explain many experi-
mental aspects for high-T,. superconductors, the nonlog-
arithmic magnetization relaxation is but one example.?
A possible explanation for these experimental results
emerges from recent theories involving collective vortex
pinning. One particular version of collective pinning in-
troduced by Fisher® hypothesizes a phase transition line
in the field-temperature plane and is usually referred to
as the vortex-glass theory. Another version was intro-
duced by Fiegel’'man et al.* These two theories lead to
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a common prediction for a form of the flux creep at a
temperature well below T,, with an effective barrier de-
pending on current density in a highly nonlinear way,

Us = (Uo/1)[(Jeo/ )" — 1], (2)

where g is an exponent of order 1. The importance of
nonlinearity in the barrier current-density dependence
had originally been recognized by Beasley et al., and
recently there have been a number of articles investi-
gating possible forms for U;. Equation (2) predicts a
divergence in U as J goes to zero, which arises from co-
operative interactions between vortices since larger and
larger flux line volumes V have to jump if the flux
line lattice (FLL) is elastic, and therefore the resistiv-
ity p o exp[—(J2/J)#]. Several experiments reported
possible vortex-glass behavior in YBCO films,® single
crystals,” and ceramics.® But as yet one does not see
convincing evidence that there is a finite “glass tempera-
ture” Ty below which the pinned FLL “freezes” as J — 0.
One example beyond the vortex-glass description is the
TAFF regime observed by Palstra et al® A competing
form for the power-law J-dependent potential barrier Uy
is a logarithmic one:!°

UJ = UO ln(Jc()/J)9 (3)

which in a similar way leads to vanishing resistance at fi-
nite temperatures in a power-law fashion in J for J — 0.
Evidence for this kind of barrier first emerged from stud-
ies of the transport I-V characteristics of YBCO films

13 756 ©1994 The American Physical Society



50 RESISTIVE BEHAVIOR OF HIGH-T, SUPERCONDUCTORS . ..

near T..1° More recently studies made for flux creep in
aligned grains of YBCO and in LaSrCuO crystals showed
their favor of this logarithmic dependence.!! Further ev-
idence for the logarithmic barrier comes from the widely
reported quasiexponential dependence of the measured
critical current density dependence on temperature.’? Al-
ternatively, we note that Griessen!® suggested a model
to explain the reported power-law behavior in resis-
tivity versus current-density curves and the continuous
crossover from the creep to the flow regime. In his model,
complexity is introduced by the assumed activation en-
ergy distribution in a parallel summation of channels
within the sample.

While there exist controversial viewpoints on the low
temperature and vanishing current behaviors of high-T,
superconductors, it is a common recognition that there
exists a continuous crossover from the flux creep regime
(where the pinning force dominates) to the flux flow
regime (where the Lorentz force dominates). However,
a satisfactory theory that would interpolate these two
regimes awaits, since the existing creep model is valid
for U; > kpT only, a condition which is violated at
J > Jo. Furthermore, the creep model frequently cited
in the literature assumes a priori that the attempt fre-
quency and hopping probability of a vortex depends on
the barrier height only, irrespective of the concrete profile
of the potential. To these ends and from a first-principles
consideration, it is pertinent to start with the dynam-
ics of a flux line, or an overdamped flux diffusion in a
real space, as is to be discussed in detail in this paper
for a specific model in which the bare pinning potential
attains a logarithmiclike function of space. It will be
demonstrated that this model reproduces many experi-
mental observations and theoretical predictions in their
justified parameter regimes and reveals interesting pre-
dictions. The remainder of this paper is structured as
follows. Section II is attributed to the description of the
model and related discussions. In Sec. III, the linear
resistivity in the TAFF regime in this model is analyt-
ically described, and the isothermal I-V characteristics
and field-dependent resistive transition of this model are
explored. Finally, a summary is presented in Sec IV.

II. MODEL DESCRIPTION AND THE
EFFECTIVE BARRIER U;

The equation describing the thermally assisted vor-
tex motion in a pinning potential along the longitudi-
nal direction can be written as an overdamped Langevin
equation,4

. 0
ant = —5;U(J, z) + L(t)

7] 1
where z describes the location of the flux, & denotes the
differential of = with respect to time ¢, a is the longitudi-
nal length of the flux line and 7 is the damping coefficient.
In Eq. (4) L(t) is the thermal noise force and is assumed
to be Gaussian white,
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(L)) =0,
(L()L(t)) = 2anksTs(t —t'). (5)

Up(J, z) is the pinning potential which might be cur-
rent dependent (the apparent field and temperature de-
pendences are not explicitly written in the arguments,
and will be specified in the following discussion). The
second term on the rhs of Eq. (4) is the Lorentz force
due to the applied current (@ is a flux quantum). It
is straightforward to argue from this phenomenological
model that so long as U, does not diverge in the limit
J — 0, the pinning force f,(J) = —0U,/dz should lin-
early depend on J at low J (with probably a nonzero
interception at J = 0), a fact overlooked in Egs. (2) and
(3). For a more comprehensive understanding of the vor-
tex behavior, we simplify this model by taking U, to be
independent of J and periodic in space. The flux length
a can be approximated as being of the same order as
the average impurity spacing limp at low temperatures
where the impurity energy dominates the elastic stiff-
ness of the flux line; and is better estimated (for YBCO
superconductors especially) by the correlation length ¢
at still higher temperatures.!® On the other hand, the
correlation between vortices is so weak in the low field
regime [(®o/B)'/? > )] that the vortex lattice is soft
enough to justify an independent particle treatment of
the vortices in the lowest-order approximation.!® The
functional U,(x) has so far been frequently postulated
rather arbitrarily as being sinusoidal.}” The same model
as Eq. (4) (with a sinusoidal bare potential) in the con-
text of Josephson junction was originally worked out
by Ambegaokar and Halperin,'® and was exploited by
Tinkham who successfully explained the resistance
broadening effect!® (although the sinusoidal feature of
the bare potential is not essential there). However, al-
ternative trial functional forms of U,(z) also deserve at-
tention. A specific profile of U,(z) is depicted in Fig. 1.

Up(x)

FIG. 1. A schematic plot (solid line) of the profile of a
logarithmiclike pinning potential (see the text for details).
The inset (solid line) is a local blowing-up of the profile at
one of the local minima.
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The “wave-length” of the periodic potential is 2R. The
bare potential within one spatial period is written as

U. = { UO|:E|/7‘, Izi <, (6)

P71 Uo[l + In(|z|/r)], R=>|z|>r.
Here x = R/r is assumed to be constant for a sample,
typically of order 102 (see, e.g., Ref. 20). This logarith-
miclike bare potential deserves attention since it appro-
priately describes the interaction between pinning cen-
ters and vortices in a sample where twin boundary or
kink formation is operating, as has been pointed out by
Manuel et al.?2! Furthermore, along the line of the usual
creep model, the current dependence of the effective bar-
rier U; embodied in this potential is interesting. From
Egs. (4) and (6) the effective barrier Uy between adja-
cent local minima and maxima in the washboard poten-
tial Up(z) — (1/c)®oJax reads

S U(1+1nk—kJ/Jw), J < Jeo/K,
u(J) = { Uoln(Jeo/J), Juo/r < J < Jeo, (7)
where
Jeo = cUy/Ppar (8)

is the critical current density in the absence of thermal
fluctuations. Note that both the linear and logarithmic
current dependences emerge in this model with respect
to different current regimes. However, the linear regime
in Eq. (7) is relatively narrow for £ ~ 400, an estima-
tion reported in Ref. 20. In this connection, it might
be suggested that the model under consideration repro-
duce well the experimentally extracted U; behavior in
Refs. 10 and 11. On the other hand, the correspondence
between the logarithmiclike potential profile and the log-
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be recovered by the assumption of a modified power-law
bare potential profile:

_ [ Uolz|/r, || <, ‘
U= { (l(}o/l/r")(lirl" —r)+Uo, r<fa| <R 7

where v = p/(1 + p) < 1, p is a constant of order 1.
Indeed, the resulting effective barrier U; reads exactly
as Eq. (2) when J.o/k'/(1+#) < J < J.o (here k = R/7).
From these two examples, one can see that such an exper-
imentally extracted Uj; behavior as ascribed by Eq. (1)
or Eq. (2) for not vanishingly small currents might have
other physical origin except the existence of a vortex-
glass phase. For this reason, a detailed study of the vor-
tex dynamics in various trial pinning potential is still of
importance. Since the above-mentioned power-law-like
model receives relatively less experimental and theoreti-
cal justification, we shall limit our attention hereafter on
the vortex dynamics in the logarithmiclike bare pinning
potential [see Egs. (4) and (6)].

Equation (4) is associated with the Smoluchowski dif-
fusion equation satisfied by the density distribution func-
tion o(z,t):

—=—— | — + kT — =——, 10
ot  andz thB 7 ' (10)

do 1 0 (dU 7] oS
( dz Bx) ox

where S is the density current and U (x) is the washboard
potential in Eq. (4). In the stationary state (0o /8t = 0)
the solution of Eq. (10) is standard. In this case the
density distribution o must be periodic in space, o(z +
2R) = o(z). Consequently the average velocity of the
flux motion from Egs. (4) and (10) is found to be

_ 2RkpT1-— exp|—2k(J/Je0)(Uo/kpT))

arithmic behavior in Uy is suggestive. For example, it () an T(J,Uo, T) (1)
is readily clear that an inverse power-law behavior in U
(originally predicted in the vortex-glass model) can also ~ with
R R
['(J,Uo, T) :/ exp|U(z)/kpT)| dcc/ exp|—U(z)/kpT)dz
—-R -
R T
—{1 — exp[—2k(J/Jc0)(Uo/kBT)]} / exp|—U(z)/ksT] da:/ exp[U(z')/kpT)dz’, (12)
—R —-R

where we have used the identity Eq. (8). Due to the
motion of flux lines, an induction electric field E can be
produced:

. 2¢kpTR
E = B(t)/c = po—a—
a<I>0

o 1 = exp[~2x(J/Je0) (Uo/kBT)]
I'(J,Us,T) ’

(13)

where po = B®¢/nc® = poH/H. (Ref. 22) is the
pinning-free flux flow resistivity with p, being the
normal-state resistivity. In the following, based upon

f

Eq. (13), we will discuss the transport behavior in the
present model.

III. RESULTS AND DISCUSSION

In the temperature regime where Uy/kgT > 1 and
J <« Jg, the flux flow exhibits a thermally activated
behavior. The response E with respect to J is linear,
since I in Eq. (13) can be well approximated by I'(J = 0)
at low J. The linear resistivity p = E/J can then be
analytically obtained from Egs. (12) and(13):
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p = [k(Uo/kBT)? exp(~Um/k8T))po, (14)

where U,, = (1 + Ink)Ug (see Fig. 1) is the maximum
height of the effective barrier (i.e., the pinning strength).
In the derivation of Eq. (14), an approximation has also
been made with k ~ 400 > 1. The exponential term in
the prefactor before po on the rhs of Eq. (14) represents
the usual Arrhenius behavior. Interesting is the square
term (Up/kpT)? in the same prefactor, compared to the
linear counterpart Uy /kpT in the sinusoidal model.l” We
have tried another model in which the potential profile
is triangular, and the square term appears as well. It
is not clear so far whether this result is only a direct
consequence of the slope discontinuity in the potential
profile, or it might appear in other model even if the
profile is smooth. Of course, it does not strongly affect
the low temperature behavior of the resistivity p.

The linear response emerges again when the current
density J > J. in the flux flow regime. However, in the
regime J ~ Jgo, or the flux creep regime, the response
is nonlinear. In the usual creep model, the crossover be-
tween these regimes is untractable. The chief merit of the
present model is that the response in the whole current
and temperature regimes can be treated in a unified man-
ner. Figures 2(a) and 2(b) are plots of the isothermal E
versus J and p versus J relations from a numerical calcu-
lation of Eq. (13), respectively. In this calculation, usual
formulas are chosen for the temperature T' and magnetic
induction B dependences of the parameters Up (and con-
sequently of J.) from a rather general scaling method
near T = T,.:

Uo = Uoo(l - t)a/z/b,

where Upy is a constant, t the reduced tempera-
ture T/T.(0), and b the reduced magnetic induction
B/B.2(0). The same dependence of U was suggested
by Yeshurun and Malozemoff?®> and was adopted by
Tinkham in Ref. 19. This dependence is expected to
be accurate to better than +4% all the way from ¢t = 1/2
up to t = 1 and for B in the intermediate regime.!®
From Figs. 2 we see the distinct temperature and cur-
rent regimes for flux creep (FC) and flux flow (FF) and
crossover in between. In the transition region just below
T, the Lorentz force is dominant, and p is governed by
flux flow and thermal fluctuations with p being current
independent. At still lower temperatures, the flux creep
enters as the dominant dissipation mechanism. The pre-
dicted linear response in Eq. (14) as J — 0 in the TAFF
regime is evident in Figs. 2. With increase in J, a non-
linear p-J characteristics is obtained in the FC regimes.
It is noticed that the FC regime is rather narrow, and
the maximum reduced current J/Jco(t, b) in this regime
is approximately 10~2, with a slight temperature depen-
dence. Therefore, caution must be taken if the usual
Anderson-Kim creep model or its derivative is to be used.
In Figs. 2 the power-law behavior in the FC regimes is
obvious particularly at low temperatures around t = 0.81
in Figs. 2, in agreement with usual experimental observa-
tions (see, e.g., Ref. 10). Notice that the same behavior
was claimed in Ref. 17, however the results of this paper
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are apparently better defined, as is evident from Fig. 3
where the 8 (= dln E/dJ) versus J relation is presented.
The power-law behavior E &< J" in the FC regime (e.g.,
at t = 0.81 in our case) is confirmed by the linearity of
the In 3 versus In J curve with a slope of exactly —1 (see
the dashed line in Fig. 3). In addition, this curve bends
downward and goes along another parallel line at lower
and higher currents, respectively, where the E versus J
relation becomes essentially linear. The 3 versus J rela-
tion at higher temperatures are also shown in Fig. 3 for
comparison.

Of particular interest is the slope of the In3 versus
InJ curve. In the context of the vortex-glass theory,®*
E « exp[—(Jo/J)*] at a temperature below the “glass
temperature” Ty (Jo being a constant), and this would

or (2)

0.89

10 T+ T
-4 -3 4 -2
10 10 10

J/Jeo(t.b)

FIG. 2. (a) The calculated isothermal E-J characteris-
tics; (b) the corresponding p-J characteristics. The mag-
netic induction is B = 0.05B.2(0). Here x = 400 and
Umo = (1+1n k)Ugo = kpTc(0) are chosen, and J.o(t, b) is the
critical current density as defined in the text [see Eq.(8)] with
t = T /Tc(0) being the reduced temperature and b = B/B.2(0)
the reduced magnetic induction.
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B(arb: unit)

10 T T

1 10 7?
J/Jco(tvb)

FIG. 3. The plot of the J dependence of 3 = dInE/dJ
at three temperatures (solid lines). Other conditions are the
same as those in Figs. 2. The dashed line is a guide for the
linearity of line A in the flux creep regime.

manifest itself in Fig. 3 a straight line of a steeper descent
for 4 > 0, and the same (dashed) line as in Fig. 3 for
1 = 0. The latter equivalence between the p = 0 vortex-
glass prediction and our results is best understood from
the comparison of Egs. (2) and (3) as 4 — 0. Techni-
cally the 3 versus J relation is used as a probe to deter-
mine the exponent p in the vortex-glass theory. As an
example, we point out the observation by Kiipfer et al.
in Ref. 24, where p = 0 was claimed for a YBCO bulk
sample, and further the downward bending of the Ing3
versus In J curve was observed for lower current which is
beyond the vortex-glass theory prediction, but in quali-
tative agreement with the results shown in Fig. 3 in this
paper. In fact, this downward bending is nothing but the
entrance into the TAFF regime or the FF regime from
the FC regime in our case. Nevertheless, the observed
sudden upward bending of the Ing versus InJ curve at
higher currents in Ref. 24 cannot be explained in the
model under present consideration, and it might be at-
tributed to the entering of self-heating effect arising from
large currents.

Finally, we present the field-dependent resistance
broadening effect built in this model in Fig. 4. For sim-
plicity, the superconductor is assumed to be in the normal
state (or p = p,,) if ever b > 1 —t is satisfied, irrespective
of the superconducting order parameter fluctuation itself
(and therefore pinning strength fluctuation) at the tran-
sition region (hence no rounding in the curves near T.),
and p, is assumed to follow a simple extrapolated linear
formula in T', p, = pp(Tc)T/T.. We observe in Fig. 4 the
same feature as from experiments (cf. Ref. 25), and from
another phenomenological model.’® As has been pointed
out by Tinkham,!® for a fixed level of small resistance,
the scaling relation 1 —t oc b%/3 is satisfied as long as the
relation Uy o< (1 —t)%/2/b is justified (the concrete pin-
ning potential profile is irrelevant), and this is also the
case in Fig. 4.
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FIG. 4. The low current resistivity p vs temperature 7" of
the superconductor (solid lines). Other conditions are the
same as those in Fig. 2.

IV. SUMMARY

The flux motion in a superconductor with a periodic
logarithmiclike bare pinning potential is investigated in
this paper. (i) The effective barrier U;(J) under an ap-
plied current is derived and is shown to bear close re-
semblance with the experimentally extracted results in
Refs. 10 and 11. It is shown that the details of the pin-
ning potential profile have significant influences on the
functional form of the effective barrier, which provides
alternative explanation of experimental results besides
that given by usual flux creep and flux flow model and
the vortex-glass theory. (ii) The model is studied in de-
tail by utilizing the Smoluchowski diffusion equation, the
linear response of the superconductor under a small cur-
rent is analyzed and a formula (slightly different from the
counterpart built in the sinusoidal model in Ref. 17), is
derived for the temperature-dependent linear resistivity
in the TAFF regimes. (iii) The E-J and p-J charac-
teristics in various temperature and current regimes are
discussed, the distinct regimes for flux creep and flux flow
and the crossover in between are treated simultaneously,
and the familiar power-law behavior is recovered and is
further confirmed by the d1n E /dJ versus J relation. Sat-
isfactory agreement is found between our results and the
experimental observation in Ref. 24. (iv) The experi-
mentally observed field-dependent resistance broadening
effect is reproduced in this model.
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