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Classifying rational densities using two one-dimensional cellular automata

H. F. Chau K. K. Yan, K. Y. Wan, and L. W. Siu
Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong
(Received 9 September 1997

Given a(finite but arbitrarily long string of zeros and ones, we report a way to determine if the number of
ones is less than, greater than, or equal to a prescribed number by applying two sets of cellular automaton rules
in succession. Thus, we solve the general one-dimensional density classification problem using two cellular
automata[S1063-651X98)07402-9

PACS numbegps): 05.50+q, 05.70.Fh, 89.86:h

[. INTRODUCTION arbitrary densityp... Here, we report a simple solution to his
problem using a combination of two CAs provided tpatis
Cellular automatorfCA) is an extremely simple local in- a rational number. But before stating our CA rules, let us
teraction model of natural systems,2]. In this paper, we restate the density classification problem in the most general
restrict ourselves to considering a conventional definition ofcontext.
CA, namely, that both the number of possible states at each First, let us define the problem in a more precise way. We
site and the number of CA rules in the rule table finite. are given a critical densitp. between zero and one. Then
That is to say, the state of each site in the next time stegve consider a one-dimensional lattice made upNosites
depends only on a finite number of neighboring sites in thevith periodic boundary conditionWe can always assume
system. Although the rules of CA are simple and local, comthatN is sufficiently large to avoid trivial casgslhe state of
plicated spatial patterns can be formed. Moreover, from theach site can be either zero or one. And the initial density of
computer science point of view, CA can be regarded as anes in the system is denoted py (That is, there aréNp
very special kind of Turing machine with no internal sites in the system with states equal to @r@@ur goal is to
memory. In fact, tailor-made CA can be used to simulatefind a combination of two CA ruleéwith finite rule tabley
certain logical operationg3]. Therefore, it is instructive to such that after going through the CA, the final states of the
know the power and limitations of CA in computation. sites on the lattice all become zer@d all onesif p<p.
Since CA is essentially a special Turing machine with no(and p>p., respectively. And in the case op=p., the
internal memory, it is natural to ask if CA can be used tofinal state consists of exactlp, sites with states equal to
perform certain tasks that require global counters. An exene. (From the nonlinear-dynamics point of view, all the
ample is the so-called density classification problem. Conzeros and all the ones are the two stable fixed points of the
sider a one-dimensionafinite but arbitrarily long chain of  CA dynamics, whereas the density equals t@. is an un-
sites with periodic boundary condition. Each site is either instable fix point of the CA dynamigsin addition, the two CA
state zero or state one. The problem is to change the state nfles are independent of the lattice siXefor sufficiently
every site to zero if the number of zeros is more than thdargeN. (Thus, our two CA rules are truly local.
number of ones in the chain. Otherwise, every site is set to Since the number of sites is finite, it suffices for us to
state one. Clearly, the density classification problem is triviakonsider the case whepe is a rational number written in the
if one can invoke an internal memory to count the number oform p/q for some relatively prime integers and q. Fur-
zeros in the chain. Alternatively, one can solve this problemhermore, we can also assume tipat 0 and p#q, since

if the rule table scales with the system siteso that the CA  classifyingp.=0 and 1 are trivial using CA. Now we report
model becomes nonlocal. However, Land and Belew showeghe two CA rules we use to solve the density classification

that density classification cannot be done perfectly using @roblem for rational critical density.
single one-dimensional CM].

Later on, Fukspointed out that the density classification
problem in fact can be solved if we apptyo CA rules in
succession5]. For a one-dimensional lattice &f sites, he Our generalized traffic rule goes as follows. First, we re-
first applies the Wolfram elementary CA rule 18#he so- gard a site with state one as being occupied by a car. Other-
called traffic rulg6]) | (N—2)/2] times. Then, he applies the wise, that site is empty. Then a car can move in the next time
Wolfram elementary CA rule 232the so-called majority step to the right by one site if and only (@) its immediate
rule) |(N—1)/2| times. The combined automaton solves theright-neighboring site is unoccupied aifio) the g—1 con-
density classification problem succincf§]. secutive right-neighboring sites are occupied by at npost

With slight modifications, Fukss able to classify density —1 cars. Otherwise, the car stays in its original position. For
in the form 1h for some integen=2 [5]. Then, Fuksvent  example, if p,=2/5, then the first cars in the sequences
on to ask if it is possible to use combined CA to classify an10000 and 10100 can move one step forward in the next time

step, while the first cars in the sequences 11000 and 10011
cannot. Readers can readily verify that the total number of
*Electronic address: hfchau@hkusua.hku.hk cars in the system is conserved under the above set of rules.

II. MODIFIED TRAFFIC RULE
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Moreover, one can easily convert the above set of traffiaf p<q/2, then all cars dissolved from a high-density region
rules into afinite CA rule table consisting of ! rules. In  will not be blocked. In this case, it takes at magst 1 time
addition, whenp.=1/2, the modified traffic rule is reduced steps to dissolvg cars from a high-density region. On the

to Wolfram’s elementary CA rule 184. other hand, ifp>q/2, then some of the dissolved cars will
We define the local car density at each site to be the totadtill be blocked occasionally. And it takep—1+(2p—q)
number of cars contained in that site and ingts1 imme-  =2p—1 time steps to dissolvp cars from a high-density

diate right-neighboring sites divided loy Thus, the local car region. Therefore, in any case, it requires at most

density of a site changes when and only when a car entef&lp(max@,2p)—1)/pl<[N(max@,2p)—1)/q] time steps to

that site or a car leaves the{ 1)th site to its right. For completely dissolve a high-density region made upNef

simplicity, a collection of sites is said to be in a low-density cars. Hence, our assertion is proved.

region if the local car density of each site in the collection is Lemma 2 If the initial densityp of the system is greater

less than or equal tp. . And a high-density region is defined than p., then after at mosiN(g— p)(max@,2p)—1)/pq]

as a collection of sites with local car densities greater thatime steps, the local car density for every site is greater than

pc. Now, we prove two theorems concerning the distributionor equal top,. .

of high- and low-density regions under the repeated actions Proof. We may assume that the local car density at each

of the modified traffic rules. site initially is less than or equal {.. Otherwise, no car can
Lemma 1If the initial densityp of the system is less than move to the right at the beginning and our assertion is trivi-

or equal top., then after at mostN(max@,2p)—1)/q]+q  ally true. Since the overall car densipyis greater thamp,,

—2 time steps, the local car density for every site is less thaall the low-car-density regionésites with local car density

or equal top,. less thanp.) are surrounded by high-car-density orisges
Proof. Consider a collection of sites with local car density with car density greater than or equaldg). Thus, cars can

greater tharmp, in the initial system configuration. Using the gradually move from the high-density to the low-density re-

modified traffic rule, in the co-moving frame of a car, no sitegions. And using similar arguments as in Lemma 1, after a

will have a car density exceedingp¢1)/q if that car is finite number of time steps, the entire system is contained in

originally located at a site with a local car density less thama single high-density region. And from that time on, no car in

or equal top.. In addition, such an aggregation of carsthe system can move.

above the density threshojel. will be achieved within the We move on to estimate the number of time steps re-

first g—1 time steps. Since the overall car density of thequired to reach this “frozen” state. Similar to the argument

system is less than or equalgg, upon repeated applications in Lemma 1, the worst case occurs when there is only one

of the modified traffic rules, cars will gradually move out of low-density region initially. And it is easy to verify that the

local regions with a car density exceedipg (if any). Note  number of time steps required to reach a frozen state for such

that the local car densities of those cars moving out of thesan initial system configuration equdlsl(1— p)(max(@,2p)

“high-density regions” are less than or equalgg. More-  —1)/pl<[N(q—p)(max@,2p)—1)/pd].

over, once these cars are “dissolved” from a local high- Combining Lemmas 1 and 2, we conclude the following.

density region, the local car density of the sites containing Theorem 1 By applying the modified traffic rules for

these cars will never excegq unless these cars merge into [N(max@,2p) — 1) max@—p,p)/pdl+g—2 times, an initial

a high-car-density region in front. system configuration will be segregated into one of the fol-
Suppose none of the cars moving out of a high-carlowing three cases.

density region will be stopped by another high-car-density (a) If p<<p., then the local car density at every site is less

region in front. Then, once all the high-car-density regionsthan or equal tg, . In addition, at least one of the sites will

dissolve completely, no further high-density region will be have local car density strictly less thap.

formed thereafter. Thus, our assertion that all sites will have (b) If p=p., then the local car density at every site equals

a local car density not exceedipg asymptotically is true in  p..

this case. So, it remains to consider the case in which some (c) If p>p., then the local car density at every site is

of the cars moving out of a high-car-density region movegreater than or equal tp.. In addition, at least one of the

into (and hence are temporarily stopped) kg high-car-  sites will have a local car density strictly greater than

density region in front. Since the overall car density of the

entire system does not excepg, at least one of the high- IIl. MODIEIED MAJORITY RULE

car-density regions will start to dissolve. Note tintis fi-

nite, and those cars merging into a high-density region will After segregating the system configuration according to

readily redissolve once they are allowed to move. After ats initial density p, the density classification problem be-

finite number of time steps, all the high-density regions willcomes straightforward. We consider the following modified

disappear. After that, no more high-density regions can formmajority rule for a given critical density.=p/q. The state

Thus, our assertion that all sites will have local car densityof a site in the next time step is one if there are at legst 2

not exceeding, is also true is this case. +1 ones in the 3+1 sites consisting of itself and the
Finally, we estimate the number of time steps required taconsecutive left- and right-neighboring sites. Otherwise, the

reach this state. Since the updating is taken in parallel, thetate of this site in the next time step is zero. For example, if

worst case occurs when some of the local high-density rep.=1/2, then the states of the middle sites in the next time

gions are formed during the first—2 time steps. Then all step for 10101 and 01010 are one and zero, respectively.

the cars merge into a single high-car-density region befor€learly, the modified majority rule is local.

they finally dissolve. According to the modified traffic rules, Now, we present the results of applying the modified ma-
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jority rule to certain system configurations which are of in-we obtain the following CA density classification theorem:
terest. Theorem 2 (Density Classification By CAkt p.=p/q
Lemma 3 Any system configuration where the local car be a rational number between zero and one, \pitand q
density at every site equals is a fixed point of the modified being relatively prime positive integers. Then the density

majority rule dynamics. classification problem can be solved using the following two
Proof. Consider an arbitrary site in the system. Since CA rules: apply the modified traffic rulefN(max@,2p)
the local car density at every site equals, there are pre- —1)max@—p,p)/pq+g—2 times and then the modified ma-

cisely 2p sites in state one among the Zeighboring sites jority rule [N/2(q—1)] times.
of a. Thus, the majority rule implies that the state of site
in the next time step is equal to its present state. Conse- IV. DISCUSSION

ntly, thi m configuration i fix int of th . .
quently, this system configuration is a fixed point of the In summary, we report a way to classify the density of

modified majority rule. : ) . . ;
Lemma 4]Sugpose the local car density at every site icones using two one-dimensional binary CAs provided that

greater than or equal to, and also that the total density of the density thresr_lold)c Is a ratianal ngmber. Our result,
the system is strictly greater than,. After applying the therefore, gener_allzes that of FUlE. Besides, our construc-
modified traffic rule[N/2(g—1)] times, the state of every tion allltso.;cakei.mtlo alccount the Cta.se V;h?('g the de;psuy
site in the system will become one. Similarly, if the local car €gual to 1ts critical valug—something FUKSIoes not con-
density at every site is less than or equaptaand also if the S|der seriously. Because of th'e local nature of CA.ruIes, we
total density of the system is strictly less tha, then after believe that the time complexity of a general density classi-

. o ! . fication problem using any combination of CA rules is at
applying the modified traffic rul¢N/2(q—1)] times, the
state of every site in the system will become zero. least O(N). Thus, apart from a constant speedup, our set of

Proof. For simplicity, we only consider the case in which density classification CA rules is probably the least time-

) . A consuming.
p>p.. The proof for the case in which<<p is similar. . . . L
From Lemma 3, we know that the local car density at every, As we have discussed in Sec. |, if the number of sites in

ste must e reater tan o cauaate epeated apl- e e 12 nte t sffce o et oursees b cor
cations of the modified majority rule. Moreover, if the local 9 y - ANy y

car density of a sitex exceeds,, then the states at and can be well approxmat_ed b_y a co_rrespondmg “%“0”6" den
) . ) i : . sity. Actually, by approximating an irrational density by bet-
its q—1 left- and right-neighboring sites must be one in the ; .
; ter and better rational numbers, the size of the CA rule table
next(and hence all subsequétime step. In other words, the . e
. ; . . grows. Thus, we believe that combinations of CA rules are
propagation speed for state onegis-1 sites per time step

both leftward and rightward. Therefore, aff@d/2(q— 1)] unlikely to be powerful enough to classify irrational density

. o . . in an infinite one-dimensional system.
time steps, all sites in the system will be in state one. Hence, y

our assertion is proved.

Combining Theorem 1, Lemma 3, and Lemma 4 with the
fact that the size of the rule tables for both the modified This work was supported by the University of Hong Kong
traffic and the modified majority rules are independeniNof CRCG grant under Contract No. 335/025/0040.
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