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PHYSICAL REVIEW E FEBRUARY 1998VOLUME 57, NUMBER 2
Classifying rational densities using two one-dimensional cellular automata

H. F. Chau,* K. K. Yan, K. Y. Wan, and L. W. Siu
Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong

~Received 9 September 1997!

Given a~finite but arbitrarily long! string of zeros and ones, we report a way to determine if the number of
ones is less than, greater than, or equal to a prescribed number by applying two sets of cellular automaton rules
in succession. Thus, we solve the general one-dimensional density classification problem using two cellular
automata.@S1063-651X~98!07402-9#

PACS number~s!: 05.50.1q, 05.70.Fh, 89.80.1h
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I. INTRODUCTION

Cellular automaton~CA! is an extremely simple local in
teraction model of natural systems@1,2#. In this paper, we
restrict ourselves to considering a conventional definition
CA, namely, that both the number of possible states at e
site and the number of CA rules in the rule table arefinite.
That is to say, the state of each site in the next time s
depends only on a finite number of neighboring sites in
system. Although the rules of CA are simple and local, co
plicated spatial patterns can be formed. Moreover, from
computer science point of view, CA can be regarded a
very special kind of Turing machine with no intern
memory. In fact, tailor-made CA can be used to simul
certain logical operations@3#. Therefore, it is instructive to
know the power and limitations of CA in computation.

Since CA is essentially a special Turing machine with
internal memory, it is natural to ask if CA can be used
perform certain tasks that require global counters. An
ample is the so-called density classification problem. C
sider a one-dimensional~finite but arbitrarily long! chain of
sites with periodic boundary condition. Each site is either
state zero or state one. The problem is to change the sta
every site to zero if the number of zeros is more than
number of ones in the chain. Otherwise, every site is se
state one. Clearly, the density classification problem is triv
if one can invoke an internal memory to count the numbe
zeros in the chain. Alternatively, one can solve this probl
if the rule table scales with the system sizeN so that the CA
model becomes nonlocal. However, Land and Belew sho
that density classification cannot be done perfectly usin
single one-dimensional CA@4#.

Later on, Fuks´ pointed out that the density classificatio
problem in fact can be solved if we applytwo CA rules in
succession@5#. For a one-dimensional lattice ofN sites, he
first applies the Wolfram elementary CA rule 184~the so-
called traffic rule@6#! b(N22)/2c times. Then, he applies th
Wolfram elementary CA rule 232~the so-called majority
rule! b(N21)/2c times. The combined automaton solves t
density classification problem succinctly@5#.

With slight modifications, Fuks´ is able to classify density
in the form 1/n for some integern>2 @5#. Then, Fuks´ went
on to ask if it is possible to use combined CA to classify
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arbitrary densityrc . Here, we report a simple solution to h
problem using a combination of two CAs provided thatrc is
a rational number. But before stating our CA rules, let
restate the density classification problem in the most gen
context.

First, let us define the problem in a more precise way.
are given a critical densityrc between zero and one. The
we consider a one-dimensional lattice made up ofN sites
with periodic boundary condition.~We can always assum
thatN is sufficiently large to avoid trivial cases.! The state of
each site can be either zero or one. And the initial density
ones in the system is denoted byr. ~That is, there areNr
sites in the system with states equal to one.! Our goal is to
find a combination of two CA rules~with finite rule tables!
such that after going through the CA, the final states of
sites on the lattice all become zeros~and all ones! if r,rc
~and r.rc , respectively!. And in the case ofr5rc , the
final state consists of exactlyNrc sites with states equal to
one. ~From the nonlinear-dynamics point of view, all th
zeros and all the ones are the two stable fixed points of
CA dynamics, whereas thea density equals torc is an un-
stable fix point of the CA dynamics.! In addition, the two CA
rules are independent of the lattice sizeN for sufficiently
largeN. ~Thus, our two CA rules are truly local.!

Since the number of sitesN is finite, it suffices for us to
consider the case whererc is a rational number written in the
form p/q for some relatively prime integersp and q. Fur-
thermore, we can also assume thatpÞ0 and pÞq, since
classifyingrc50 and 1 are trivial using CA. Now we repor
the two CA rules we use to solve the density classificat
problem for rational critical density.

II. MODIFIED TRAFFIC RULE

Our generalized traffic rule goes as follows. First, we
gard a site with state one as being occupied by a car. Ot
wise, that site is empty. Then a car can move in the next t
step to the right by one site if and only if~a! its immediate
right-neighboring site is unoccupied and~b! the q21 con-
secutive right-neighboring sites are occupied by at mosp
21 cars. Otherwise, the car stays in its original position. F
example, if rc52/5, then the first cars in the sequenc
10000 and 10100 can move one step forward in the next t
step, while the first cars in the sequences 11000 and 10
cannot. Readers can readily verify that the total number
cars in the system is conserved under the above set of r
1367 © 1998 The American Physical Society
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Moreover, one can easily convert the above set of tra
rules into afinite CA rule table consisting of 2q11 rules. In
addition, whenrc51/2, the modified traffic rule is reduce
to Wolfram’s elementary CA rule 184.

We define the local car density at each site to be the t
number of cars contained in that site and in itsq21 imme-
diate right-neighboring sites divided byq. Thus, the local car
density of a site changes when and only when a car en
that site or a car leaves the (q21)th site to its right. For
simplicity, a collection of sites is said to be in a low-dens
region if the local car density of each site in the collection
less than or equal torc . And a high-density region is define
as a collection of sites with local car densities greater t
rc . Now, we prove two theorems concerning the distribut
of high- and low-density regions under the repeated acti
of the modified traffic rules.

Lemma 1. If the initial densityr of the system is less tha
or equal torc , then after at mostdN(max(q,2p)21)/qe1q
22 time steps, the local car density for every site is less t
or equal torc .

Proof. Consider a collection of sites with local car dens
greater thanrc in the initial system configuration. Using th
modified traffic rule, in the co-moving frame of a car, no s
will have a car density exceeding (p11)/q if that car is
originally located at a site with a local car density less th
or equal torc . In addition, such an aggregation of ca
above the density thresholdrc will be achieved within the
first q21 time steps. Since the overall car density of t
system is less than or equal torc , upon repeated application
of the modified traffic rules, cars will gradually move out
local regions with a car density exceedingrc ~if any!. Note
that the local car densities of those cars moving out of th
‘‘high-density regions’’ are less than or equal torc . More-
over, once these cars are ‘‘dissolved’’ from a local hig
density region, the local car density of the sites contain
these cars will never exceedrc unless these cars merge in
a high-car-density region in front.

Suppose none of the cars moving out of a high-c
density region will be stopped by another high-car-dens
region in front. Then, once all the high-car-density regio
dissolve completely, no further high-density region will b
formed thereafter. Thus, our assertion that all sites will h
a local car density not exceedingrc asymptotically is true in
this case. So, it remains to consider the case in which s
of the cars moving out of a high-car-density region mo
into ~and hence are temporarily stopped by! a high-car-
density region in front. Since the overall car density of t
entire system does not exceedrc , at least one of the high
car-density regions will start to dissolve. Note thatN is fi-
nite, and those cars merging into a high-density region w
readily redissolve once they are allowed to move. Afte
finite number of time steps, all the high-density regions w
disappear. After that, no more high-density regions can fo
Thus, our assertion that all sites will have local car dens
not exceedingrc is also true is this case.

Finally, we estimate the number of time steps required
reach this state. Since the updating is taken in parallel,
worst case occurs when some of the local high-density
gions are formed during the firstq22 time steps. Then al
the cars merge into a single high-car-density region be
they finally dissolve. According to the modified traffic rule
c
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if p<q/2, then all cars dissolved from a high-density regi
will not be blocked. In this case, it takes at mostq21 time
steps to dissolvep cars from a high-density region. On th
other hand, ifp.q/2, then some of the dissolved cars w
still be blocked occasionally. And it takesq211(2p2q)
52p21 time steps to dissolvep cars from a high-density
region. Therefore, in any case, it requires at m
dNr(max(q,2p)21)/pe<dN(max(q,2p)21)/qe time steps to
completely dissolve a high-density region made up ofNr
cars. Hence, our assertion is proved.

Lemma 2. If the initial densityr of the system is greate
than rc , then after at mostdN(q2p)(max(q,2p)21)/pqe
time steps, the local car density for every site is greater t
or equal torc .

Proof. We may assume that the local car density at e
site initially is less than or equal torc . Otherwise, no car can
move to the right at the beginning and our assertion is tr
ally true. Since the overall car densityr is greater thanrc ,
all the low-car-density regions~sites with local car density
less thanrc) are surrounded by high-car-density ones~sites
with car density greater than or equal torc). Thus, cars can
gradually move from the high-density to the low-density r
gions. And using similar arguments as in Lemma 1, afte
finite number of time steps, the entire system is containe
a single high-density region. And from that time on, no car
the system can move.

We move on to estimate the number of time steps
quired to reach this ‘‘frozen’’ state. Similar to the argume
in Lemma 1, the worst case occurs when there is only
low-density region initially. And it is easy to verify that th
number of time steps required to reach a frozen state for s
an initial system configuration equalsdN(12r)(max(q,2p)
21)/pe<dN(q2p)(max(q,2p)21)/pqe.

Combining Lemmas 1 and 2, we conclude the followin
Theorem 1. By applying the modified traffic rules fo

dN(max(q,2p)21)max(q2p,p)/pqe1q22 times, an initial
system configuration will be segregated into one of the f
lowing three cases.

~a! If r,rc , then the local car density at every site is le
than or equal torc . In addition, at least one of the sites wi
have local car density strictly less thanrc .

~b! If r5rc , then the local car density at every site equ
rc .

~c! If r.rc , then the local car density at every site
greater than or equal torc . In addition, at least one of the
sites will have a local car density strictly greater thanrc .

III. MODIFIED MAJORITY RULE

After segregating the system configuration according
its initial density r, the density classification problem be
comes straightforward. We consider the following modifi
majority rule for a given critical densityrc[p/q. The state
of a site in the next time step is one if there are at leastp
11 ones in the 2q11 sites consisting of itself and theq
consecutive left- and right-neighboring sites. Otherwise,
state of this site in the next time step is zero. For example
rc51/2, then the states of the middle sites in the next ti
step for 10101 and 01010 are one and zero, respectiv
Clearly, the modified majority rule is local.

Now, we present the results of applying the modified m
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57 1369CLASSIFYING RATIONAL DENSITIES USING TWO . . .
jority rule to certain system configurations which are of
terest.

Lemma 3. Any system configuration where the local c
density at every site equalsrc is a fixed point of the modified
majority rule dynamics.

Proof. Consider an arbitrary sitea in the system. Since
the local car density at every site equalsrc , there are pre-
cisely 2p sites in state one among the 2q neighboring sites
of a. Thus, the majority rule implies that the state of sitea
in the next time step is equal to its present state. Con
quently, this system configuration is a fixed point of t
modified majority rule.

Lemma 4. Suppose the local car density at every site
greater than or equal torc and also that the total density o
the system is strictly greater thanrc . After applying the
modified traffic ruledN/2(q21)e times, the state of every
site in the system will become one. Similarly, if the local c
density at every site is less than or equal torc and also if the
total density of the system is strictly less thanrc , then after
applying the modified traffic ruledN/2(q21)e times, the
state of every site in the system will become zero.

Proof. For simplicity, we only consider the case in whic
r.rc . The proof for the case in whichr,rc is similar.
From Lemma 3, we know that the local car density at ev
site must be greater than or equal torc after repeated appli
cations of the modified majority rule. Moreover, if the loc
car density of a sitea exceedsrc , then the states ofa and
its q21 left- and right-neighboring sites must be one in t
next~and hence all subsequent! time step. In other words, th
propagation speed for state one isq21 sites per time step
both leftward and rightward. Therefore, afterdN/2(q21)e
time steps, all sites in the system will be in state one. Hen
our assertion is proved.

Combining Theorem 1, Lemma 3, and Lemma 4 with t
fact that the size of the rule tables for both the modifi
traffic and the modified majority rules are independent ofN,
e-

s

r

y

e,

we obtain the following CA density classification theorem
Theorem 2 (Density Classification By CA). Let rc5p/q

be a rational number between zero and one, withp and q
being relatively prime positive integers. Then the dens
classification problem can be solved using the following t
CA rules: apply the modified traffic rulesdN(max(q,2p)
21)max(q2p,p)/pqe1q22 times and then the modified ma
jority rule dN/2(q21)e times.

IV. DISCUSSION

In summary, we report a way to classify the density
ones using two one-dimensional binary CAs provided t
the density thresholdrc is a rational number. Our resul
therefore, generalizes that of Fuks´ @5#. Besides, our construc
tion also takes into account the case where the densityr is
equal to its critical valuerc—something Fuks´ does not con-
sider seriously. Because of the local nature of CA rules,
believe that the time complexity of a general density clas
fication problem using any combination of CA rules is
least O(N). Thus, apart from a constant speedup, our se
density classification CA rules is probably the least tim
consuming.

As we have discussed in Sec. I, if the number of sites
the systemN is finite, it suffices to restrict ourselves to con
sidering rational density classification. Any irrational dens
can be well approximated by a corresponding rational d
sity. Actually, by approximating an irrational density by be
ter and better rational numbers, the size of the CA rule ta
grows. Thus, we believe that combinations of CA rules
unlikely to be powerful enough to classify irrational dens
in an infinite one-dimensional system.
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