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Conductance oscillation of a mesoscopic normal metal spanning unconventional
and conventional superconductors

Junren Shi, Jinming Dong, and D. Y. Xing
Department of Physics and Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210008,

People’s Republic of China

Z. D. Wang
Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China

~Received 2 July 1997!

We present a theory for the conductance of a mesoscopic normal metal spanning two superconductors, in
which an analytical expression of the conductance is formulated. It is found that the conductance oscillates
with the phase difference of two superconductors periodically. When one of the superconductors has ad-wave
symmetry, the 2p-period component of the conductance oscillation decays with the misorientation anglea and
vanishes ata5p/4 in contradiction to thes-wave case, from which a method is proposed to identify unam-
biguously the pairing symmetry of the high-Tc superconductors.@S0163-1829~97!04745-0#
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Since the discovery of high-Tc superconductors, much e
fort has been devoted to make clear the pairing mechan
and pairing symmetry of these superconductors. Althou
the experiment of NMR relaxation rate restricts the pair
states to be ofs-wave ord-wave symmetry,1 the issue re-
mains controversial. Based on various pairing models,
dx22y2 symmetry,2,3 the anisotropics-wave state,4 and other
pairing states mixingd-wave ands-wave symmetry5–7 have
been suggested. So it is crucial now to determine the pai
symmetry of the high-Tc superconductors unambiguously f
understanding their underlying microscopic mechanism.

The common feature of the unconventional pairing sta
is their anisotropic order parameters. Generally, there are
kinds of anisotropies: magnitude and phase. The magni
anisotropy exists in all proposed unconventional pair
states, and is shown in the excess quasiparticle excitat
caused by reduced gap in some directions, which stron
affects the low-temperature transport and tunnelling spec
Nevertheless, most experiments of the magnitu
anisotropy8–10 could not be used to distinguish, e.g., the a
isotropics-wave state from thed-wave one, and sometime
even reach contradictory conclusions. On the other hand
phase anisotropy exists in the extendeds-wave state, the
dx22y2 state, as well as some mixture states, but is absen
both isotropic and anisotropics-wave states. In thedx22y2

state with order parameterD(k)5Dd(ka
22kb

2), whereka and
kb are the unit wave vectors along thea axis andb axis in
the CuO2 plane, respectively, those quasiparticles w
ukau,ukbu will experience a negative order parameter and
obtain an additionalp phase shift relative to those wit
ukau.ukbu. However, for the pairing states withs-wave sym-
metry, including the anisotropics-wave state, the order pa
rameters are always positive, and there is no any additio
phase shift. Ap phase shift observed in a corner superco
ducting quantum interference device~SQUID! is a clear in-
dication of the phase anisotropy favoring thed-wave
symmetry,11,12 which is supported by some experiments13

but not by others.8,9 In order to find a way to identify the
560163-1829/97/56~22!/14822~5!/$10.00
m
h

e

g

s
o

de
g
ns
ly
a.
e
-

he

in

o

al
-

pairing symmetry of the high-Tc superconductors, curren
theoretical works14–16pay much attention to determining th
phase anisotropy. Notice that mixing effects of both mag
tude and phase anisotropies existed in these theore
works and most experiments make the determination of
phase symmetry and phase distribution much more com
cated.

In this paper, we propose a method to identify the pair
symmetry of the high-Tc superconductors, which is sensitiv
to the different kinds of pairing states. More importantly, it
independent of the magnitude anisotropy and relates onl
the phase anisotropy. Using this method, we can in princ
determine the phase distribution of the order parameter.
idea originates from a recent experiment made by de Veg
et al.17 in a superconductor–normal-metal–superconduc
~SNS! structure composed of one normal metal~an Au metal
wire! spanning two conventional superconductors~Nb!
shown in Fig. 1. They studied the conductance oscillation
the normal metal by adjusting the phase differencew be-
tween two superconductors, and found that the conducta
oscillates periodically withw by a period 2p. The conduc-
tance oscillation of a cross structure in contact with two co
ventional superconductors was also reported.18 The phenom-

FIG. 1. The structure of the system. A normal mesoscopic m
spanning between two superconductors in the regimejc ,
jN!dN;Lw . The conductance is measured between lead 1 an
~A! and ~B! represent two kinds of paths, both contributing to t
transmission coefficient between the lead 1 and 2.
14 822 © 1997 The American Physical Society
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56 14 823CONDUCTANCE OSCILLATION OF A MESOSCOPIC . . .
enon can be understood by the Andreev reflection.19,20

According to the Landauer-Bu¨ttiker’s formula,21,22 the nor-
mal metal conductance is given by (2e2/h) Tt , whereTt is
the transmission coefficient from lead 1 to lead 2. Two d
ferent Feynman paths shown in Fig. 1 interfere with ea
other, both making contributions toTt . The path~A! indi-
cates a direct propagation of electron from lead 1 to lead
For path~B!, an electron propagates to the left SN interfa
first, undergoing an Andreev reflection into a hole and
quiring a phase shiftwL . Then the hole diffuses to the righ
SN interface, undergoing again an Andreev reflection into
electron and acquiring another phase shift2wR . After the
electron arrives at lead 2 finally, its additional phase s
should bew5wL2wR . Owing to the interference effects o
two paths, the conductance will oscillate withw, which can
be controlled externally.

Now, if one of the conventional superconductor in t
SNS structure is replaced by a phase-anisotropic one,
relative phase shift of the unconventional supercondu
makes a contribution to the total phase shift of the path~B!,
which will lead to an observable difference in the phase
pendence of the conductance oscillation for different pair
symmetries.

In the following, we will first derive the conductance fo
mula of a mesoscopic normal metal in a SNS structure. A
test for the formula, we will compare our result with th
experiment done on the conventional superconductors. T
the effects of the unconventional pairing states will
treated. Finally the nonideal effects will be considered.

In the structure, the lengthdN of the normal wire should
satisfy the conditionjc ,jN!dN,Lw , where jc is the
Cooper-pair coherence length,jN is the characteristic dis
tance of the proximity effect, andLw is the phase-relaxation
length of the normal metal. In this case, Josephson cur
could be neglected.

In our system, the electrons are confined between two
interfaces. At very low temperatures, only the electrons n
the Fermi surface have contributions to the conductivity
the normal metal, which is mainly determined by the pro
erty of the bound states near the Fermi surface, and the e
due to the scattering states is negligible. As usual, if
consider the SN interfaces to be ideal, the pair potentialDN
in the normal metal region should be zero. The pair pot
tials of the left and right superconductors are expresse
uDL(u,f)uexp@icL(u,f)1iwL# and uDR(u,f)uexp@icR(u,f)
1 iwR], respectively. Here, thez axis is taken along the nor
mal of the interface,u and f are the polar angle and az
muthal angle, respectively,wL and wR are the externa
phases of the left and right superconductors, respectiv
cL(u,f), cR(u,f) are the relative phase shifts in th
unconventional pairing states, which satis
exp@icL(R)(u,f)#5DL(R)(u,f)/uDL(R)(u,f)u, and are zero in the
isotropic and anisotropics-wave cases.

The conductance is calculated using a Landauer-type
ductance formula23
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and the sum is taken over all states in the normal me
Here,GL(R)n(e) is the energy level broadening of the syste
due to the coupling with the left~right! measuring electrodes
and for simplicity, we consider them constant approximate
i.e., GL(R)n(e)5GL(R) ; Gr is the retarded Green’s functio
of the system.

First, for simplicity, we consider an ideal case in whic
the NS boundary is sharp and clean. Following the previ
theory by Demers and Griffin,24 which gave a systematic
discussion of the anomalous scattering of Bogoliubov ex
tation at a NS boundary, the energy spectrum of the bo
states near the Fermi surface of the SNS structure can
approximately written as

El 6~u,f!'6
\2k

2mdN
@~2l 11!p1c~u,f!#,

k'AkF
22ki

2'kF cosu, ~2!

where, l 50,1,2,3, . . . , and c(u,f)5w1cL(u,f)
2cR(u,f),ki is the wave vector component parallel to th
interface, and the zero point of energy is taken on the Fe
energyEF . Here, also for simplicity, we have assumed th
the structure of bound states is almost not affected by the
that the pair potentials may be anisotropic. This assump
is reasonable under the conditiondN@jc5\2kF/2muDNu,
which could be satisfied in most cases in the present sys

Correspondingly, the retarded Green’s function is giv
by25

Gr
l ,6~e!5

1

e2El ,61 i ~GL1GR1GS!
, ~3!

where we have taken into account the energy level broad
ing GL(R) , and a phenomenological parameterGS has been
introduced to represent the energy level broadening cau
by the impurities scattering of the electrons in the metal.

Substituting Eq.~2! into Eq. ~1!, we get the conductance

g5E dkig~u,f!, ~4a!

g~u,f!52
e2

h E
2`

`

de
] f ~e!

]e

GLGR

GL1GR

3(
l 6

GL1GR1GS

@e2El 6~u,f!#21~GL1GR1GS!2 ,

~4b!

where the sum over the energy states has been done b
integration overki and the sum overl 6, and the integration
over ki can be converted to the integration overu andf.

One can define the coherence length of the system co
sponding to the energy level broadening asLL(R,S)
5\vF/2GL(R,S) and L5\vF/2(GL1GR1GS). For the sys-
tem under consideration, sincedN.L@jc5\2kF/2muDu,
the sum in Eq.~4b! can be extended tol 5`, yielding
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g~u,f!52
e2

h E
2`

`

de
] f ~e!

]e

yLyR

yL1yR

3 (
v l ,6

y

~v l1c6e/E0 cosu!21y2 , ~5!

where v l5(2l 11)p, yL(R,S)5dN /LL(R,S) cosu, y5yL
1yR1yS , andE05EF /kFdN . Completing the sum overv l
in Eq. ~5!, we obtain the conductance as

g~u,f!52
e2

h E
2`

`

de
] f ~e!

]e

yLyR

yL1yR

3
sinh y

coshy1cos~c6e/E0 cosu!
. ~6!

At zero temperature, it is trivial to finish the integration
Eq. ~6! and we obtain

g~u,f!5
2e2

h

yLyR

yL1yR

sinh y

coshy1cosc~u,f!
. ~7!

For finite temperatures, using a Fourier series expans

sinh y

coshy1cosx
5112(

n51

1`

~21!ne2ny cosnx,

we can complete the integral overe in Eq. ~6! and finally
obtain an expression of theg(u,f) as a Fourier series ofc:

g~u,f!5
2e2

h

yLyR

yL1yR
F112(

n51

`

~21!ne2ny

3
nT/T0 cosu

sinh~nT/T0 cosu!
cosncG , ~8!

with kBT05E0 /p.
Using Eqs.~7! and~8!, we are able to investigate a num

ber of practical systems. Let us first consider that both
perconductors of the SNS structure have isotropics-wave
symmetries. In this case,

cL~u,f!5cR~u,f!50.

Completing the integral overu and f in Eq. ~4a!, one can
find that the dominant period component is then51 term, so
that the period of the conductance oscillation withw is 2p,
which is consistent with the experiment.17 The calculation
result is shown in Fig. 2.

Secondly, we study the anisotropics-wave state. In this
case, the order potential can be written as4,11

D~k!5D01D1~ka
22kb

2!4,

which is real and positive, and nop phase shift exists. So it
conductance oscillation will be the same as that in the
tropic s-wave case, and does not depend on the misorie
tion anglea.

Thirdly, we investigate the influence ofdx22y2 pairing
state. When the left superconductor of the structure has
dx22y2 symmetry, the order potential can be written as14

DL~u!5Dd~ka
22kb

2!5Dd cos 2~u1a!.
n,

-

-
a-

he

Here, we have considered only that the junction is formed
thea-b plane of thed-wave superconductor as shown in Fi
1. From the previous definition ofcL , we obtain

cL~u!5H 0, 2
p

4
2a,u<

p

4
2a,

p, otherwise.

Completing the integral overki in Eq. ~4a!, it is easy to find
that the amplitude of the conductance oscillation depe
strongly on the misorientation anglea, as shown in Fig. 3.
When a varies from 0 top/4, the 2p period component
decays to zero while thep period component remains un
changed. Notice that, Eq.~2! may not be expected whe
u1a'p/4 since the conditiondN@jc5\2kF2muDLu is vio-
lated; but the error of the integral Eq.~4a! due to this effect
is too small to be considered.

More importantly, whena5p/4, the electrons injecting
to the left SN interface should be divided into two group
among which an extrap phase shift is obtained for thos
electrons with 0<u,p/2. Thus, it can be demonstrated th

FIG. 2. The phase dependence of the conductance fluctua
normalized to the average conductance for thes wave with different
y05dN /L at T50.

FIG. 3. The 2p-period component of the normalized condu
tance fluctuation varies with the misorientation anglea for different
paring symmetries,d wave, s1 id wave, and extendeds wave at
T50 andy52, for the extendeds waveg50.5.
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56 14 825CONDUCTANCE OSCILLATION OF A MESOSCOPIC . . .
those terms in Eq.~8! with oddn vanish after performing the
integral overu. It means the dominant period component
the conductance oscillation comes from then52 term, and
the oscillation period becomesp instead of 2p in the con-
ventional case. At the same time, the amplitude of oscillat
is strongly suppressed. The similar conclusion can
reached for the case ofs1 id pairing as it has been foun
that Ds!Dd .26

As shown in Fig. 2, the manner of conductance oscillat
in thedx22y2 state is also different distinctly from that in th
s-wave case. The most striking difference is that the am
tude of the conductance oscillation depends strongly on
misorientation anglea of the junction in thedx22y2 state,
while it is isotropic in thes-wave state. Using this feature,
is easier to distinguish the anisotropics-wave state from the
dx22y2 state or other phase anisotropic states.

In addition, the extendeds-wave state is also treated. Fo
this state, its order parameter is usually written as11

D~k!5D0~11g2!@~ka
22kb

2!22g2#.

For g50.5, its conductance oscillation is calculated and
result obtained is shown in Fig. 3, from which we can s
that the oscillation amplitude of its 2p-period component
varies also with the anglea, but has a different behavior with
smaller amplitude. Its amplitude approaches minimum va
at a5p/8. Therefore, if we make measurements of the c
ductance at both angles ofa50 andp/4, it is not difficult to
distinguish the extendeds wave from thed wave.
ft
-

es
a

f

n
e

n

i-
e

e
e

e
-

In order to obtain a nice and analytical formula for th
conductance of the present system, we have assumed
interfaces to be ideal. Notice that nonideal interfaces are
ways present in the practical systems. We therefore now
dress the effects of nonideal interfaces. One may define
interfaces scattering Hamiltonian as27

H85 (
l 5L,R

Vld~z2zl !1 (
l 5L,R

Vr f l~r i!d~z2zl !, ~9!

wherer i is the vector in thex-y plane andzl is the positions
of the interfaces~zL50 and zR5dN!. Here the first term
describes the scattering by the oxide layer in the interfac
which has been studied extensively in Ref. 15. Unlike
case of the ideal interfaces, the normal reflecting coefficie
do not vanish and the injected electrons will be partly
flected to electrons instead of the holes. Those electron
not acquire the additional phase and thus have no contr
tion to the conductance oscillation. The second term of
~9! stands for the scattering due to the rough surfaces
f (r i) represents the random surface roughness w
f (r i)!dN . It has been shown in Ref. 27 that this effe
could be entirely included in the total reflecting coefficie
R5@(12kQ)/(11kQ)#2,1,27 which implies that a part of
the injected electrons are reflected into the incoherent st
and have no effect on the interference between the electr
Taking into account these two effects, we can define
reflecting matrix on each interface as
RL~R!5F bL~R! iaL~R! exp~ iwL~R!1 icL~R!!

iaL~R!
* exp~2 iwL~R!2 icL~R!! bL~R!

* G , ~10!
g
-
wo
nce

ty
den-
en-
for-

gh-
whereaL(R) is the Andreev reflecting coefficient of the le
~right! interface andbL(R) is the corresponding normal re
flecting coefficient. The phase factorwL(R)1cL(R) for the
Andreev reflecting coefficients implies the phase acquired
the abnormal reflecting process.uaL(R)u21ubL(R)u25RL(R) .

Matching the boundary conditions on the two interfac
one can rederive the quasibound states in the system,
find that

El 6~u,f!'6
\2kF cosu

2mdN
@~2l 11!p1ceff#2 iG I ,

cosceff

5
uaLaRucos~c1wA!2ubLbRucos~2kF cosudN1wN!

ARLRR

,

wA5arg aLaR* ,

wN5arg bLbR ,

G I5 ln
1

ARLRR

. ~11!
in

,
nd

It is obvious from Eq.~11! that there are two effects comin
from the nonideal interfaces:~i! due to the nonvanished nor
mal reflecting probability the phase difference between t
superconductors becomes now an effective phase differe
ceff ; ~ii ! the nonconservation of the reflecting probabili
caused by the interface roughness leads to an extra broa
ing of the energy level, which can be absorbed into the g
eral energy level broadening. Therefore, the conductance
mulas Eqs.~7! and~8! are still valid in general, but with the
renormalized parametersceff andyeff5yL1yR1yS1yI , where
yI represents the level broadening due to the interface rou
ness.

At zero temperature, substituting Eq.~11! into Eq.~7!, we
have

g~u,f!5
2e2

h

yLyR

yL1yR

K1

K21cos~c1wA!
,

K15
ARLRR

uaLuuaRu
sinh yeff ,

K25
ARLRR

uaLuuaRu
coshyeff2

ubLuubRu
uaLuuaRu

cos~2kF cosudN1wN!.

~12!
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This form of the conductance is similar to Eq.~7! except for
the renormalized parameters. As a result, the main con
sions reached in the case of the ideal interfaces can sti
qualitatively expected in the present case. The results ca
lated for the interfaces withd-functional barriers are show
in Fig. 4. It is clearly seen that there is no 2p-period com-
ponent either for thed-wave case whena5p/4 and the only
observable effect is the suppression of the oscillation am
tudes. For higher temperature, similar behaviors can be
served from Eq.~8!, in which the conductance is now ex

FIG. 4. The 2p-period component of the normalized condu
tance fluctuation varies with the misorientation anglea for a d
wave superconductor with nonideal interfaces.Z52mV/\2kF .
on
rg

et
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rk
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u-
be
u-

li-
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pressed in a Fourier series of the cosnceff . Obviously, it can
be expanded to a Fourier series of the cosnc and thus the
conductance can still be expressed in the series of conc
with the renormalized coefficients. Therefore, we are able
conclude that the existence of the nonideal interfaces
merely a little effect on the conductance and does not cha
the conclusions reached in the ideal case.

It is well known that as-wave component will be induced
near the interface, but the originald-wave component is still
dominant and can be detected if it indeed exists. In this c
our calculation demonstrates that even for mixeds1 id
wave, there is still the conductance oscillation with the m
orientation anglea, which is clearly different from the pure
s-wave case. This is because thea dependence of the con
ductance oscillation is due to an additional intrinsic pha
shift existing in the Andreev reflections, which is obvious
independent of the amplitude of the superconducting or
parameters.24

To conclude, we have investigated the conductance os
lations of a mesoscopic normal metal spanning between
superconductors. For the conventionals-wave case, results
obtained coincide well with the experiment. When one s
of superconductors is replaced by a phase-anisotropic on
phase-dependent conductance oscillation has been fo
which could be used to probe the pairing symmetry of hig
Tc superconductors.
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