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Conductance oscillation of a mesoscopic normal metal spanning unconventional
and conventional superconductors
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Z. D. Wang
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(Received 2 July 1997

We present a theory for the conductance of a mesoscopic normal metal spanning two superconductors, in
which an analytical expression of the conductance is formulated. It is found that the conductance oscillates
with the phase difference of two superconductors periodically. When one of the superconductodsviragea
symmetry, the Z~period component of the conductance oscillation decays with the misorientationcaaigie
vanishes atv= /4 in contradiction to thes-wave case, from which a method is proposed to identify unam-
biguously the pairing symmetry of the high-superconductor§dS0163-18207)04745-0

Since the discovery of higifi; superconductors, much ef- pairing symmetry of the higf~ superconductors, current
fort has been devoted to make clear the pairing mechanistieoretical work¥'~®pay much attention to determining the
and pairing symmetry of these superconductors. Althougiphase anisotropy. Notice that mixing effects of both magni-
the experiment of NMR relaxation rate restricts the pairingtude and phase anisotropies existed in these theoretical
states to be o&-wave ord-wave symmetry, the issue re- works and most experiments make the determination of the
mains controversial. Based on various pairing models, th®hase symmetry and phase distribution much more compli-
d,2_,2 symmetry;® the anisotropics-wave staté,and other cated. o N
pairing states mixingl-wave ands-wave symmetry”’ have In this paper, we propose a method to |dgnt|fy the pairing
been suggested. So it is crucial now to determine the pairin ymmetry of the.h|gh'FC supgrconductors, Wh'Ch IS sensitive
symmetry of the highF,, superconductors unambiguously for to the different kinds of pairing sta'tes. More importantly, it is
understanding their underlying microscopic mechanism. independent of the magnitude anisotropy and relates only to

The common feature of the unconventional pairin statethe phase anisotropy. Using this method, we can in principle
P 9 Yetermine the phase distribution of the order parameter. The

is their anisotropic order parameters. Generally, there are tw%iea originates from a recent experiment made by de Vegvar

kinds of anisotropies: magnitude and phase. The magnltudlé:t al” in a superconductor—normal-metal—superconductor

anisotropy exists in all proposed unconventional pairing(SNs structure composed of one normal met Au metal
states, and is shown in the excess quasiparticle excitatioqﬁire) spanning two conventional superconductaiisb)
caused by reduced gap in some directions, Wh'_Ch strongl¥hown in Fig. 1. They studied the conductance oscillation of
affects the low-temperature transport and tunnelling spectrghe normal metal by adjusting the phase differercée-
Nevertheless, most experiments of the magnitudgween two superconductors, and found that the conductance
anisotrop§~'® could not be used to distinguish, e.g., the an-oscillates periodically withy by a period 2. The conduc-
isotropics-wave state from thel-wave one, and sometimes tance oscillation of a cross structure in contact with two con-

even reach contradictory conclusions. On the other hand, thgntional superconductors was also repotfethe phenom-
phase anisotropy exists in the extende@ave state, the

d,2_,2 state, as well as some mixture states, but is absent in

both isotropic and anisotropis-wave states. In the,2_,2 s, N Sp
state with order parametér(k) = A4(k2—k2), wherek, and a wds

k, are the unit wave vectors along theaxis andb axis in

the CuQ plane, respectively, those quasiparticles with L

|ka|<|kp| will experience a negative order parameter and so

obtain an additionalr phase shift relative to those with B axis
|ka|>|ky|. However, for the pairing states withwave sym- d wave
metry, including the anisotropis-wave state, the order pa-

rameters are always positive, and there is no any additionas

phase shift. Am phase shift observed in a corner supercon- |G, 1. The structure of the system. A normal mesoscopic metal
ducting quantum interference devi€8QUID) is a clear in-  spanning between two superconductors in the regige
dication of the phase anisotropy favoring tliewave g <dy~L,. The conductance is measured between lead 1 and 2.
symmetry*12 which is supported by some experimehts, (A) and(B) represent two kinds of paths, both contributing to the
but not by other&?® In order to find a way to identify the transmission coefficient between the lead 1 and 2.

5 wave
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enon can be understood by the Andreev reflectidl. and the sum is taken over all states in the normal metal.
According to the Landauer-Biiker's formula??the nor-  Here,I' g)a(€) is the energy level broadening of the system
mal metal conductance is given byg2h) T,, whereT, is  due to the coupling with the leftight) measuring electrodes,
the transmission coefficient from lead 1 to lead 2. Two dif-and for simplicity, we consider them constant approximately,
ferent Feynman paths shown in Fig. 1 interfere with each-€., I'i(ryn(€) =T (r); G' is the retarded Green’s function
other, both making contributions ,. The path(A) indi-  ©Of the system.

cates a direct propagation of electron from lead 1 to lead 2. First, for simplicity, we consider an ideal case in which
For path(B), an electron propagates to the left SN interfaceth® NS boundary is sharp and clean. Following the previous

first, undergoing an Andreev reflection into a hole and acineory by Demers and Griffiff, which gave a systematic

quiring a phase shif, . Then the hole diffuses to the right discussion of the anomalous scattering of Bogoliubov exci-

SN interface, undergoing again an Andreev reflection into aﬁatlon ata NS boundgry, the energy spectrum of the bound
3 . states near the Fermi surface of the SNS structure can be
electron and acquiring another phase shifpg. After the

electron arrives at lead 2 finally, its additional phase shiftaploroxlmately written as

should begp= ¢, — pr. Owing to the interference effects of
two paths, the conductance will oscillate wigh which can .
Ei:(0,¢)~=
be controlled externally.
Now, if one of the conventional superconductor in the

SNS structure is replaced by a phase-anisotropic one, the k~ JkZ— K2~k

. : ; ’ ~ VK — Kk “=~kg c0s 6, 2
relative phase shift of the unconventional superconductor PO TR @
makes a contribution to the total phase shift of the g&th

- . : : where, 1=0,1,23..., and (6,¢9)=¢+ ¢ (6,¢)
which will lead to an observable difference in the phase de-" Ur(6,).k, i the wave vector component parallel to the

endence of the conductance oscillation for different pairin . ; .
gymmetries P qnterface, and the zero point of energy is taken on the Fermi

In the following, we will first derive the conductance for- energyE. Here, also for smphmty, we have assumed that
%{:e structure of bound states is almost not affected by the fact

mula of a mesoscopic normal metal in a SNS structure. As . . . . : .
test for the formula, we will compare our result with the . at the pair potentials may be anisotropic. This assumption

.y _ 2
experiment done on the conventional superconductors. TheR _reasonable und.er_ th? cond|t|cm,>§_c—h ke/2m| Ay,
the effects of the unconventional paifing states will bewhlch could be satisfied in most cases in the present system.

treated. Finally the nonideal effects will be considered. Correspondingly, the retarded Green’s function is given

5
In the structure, the lengttiy of the normal wire should by?
satisfy the conditioné,éy<dy<L,, where & is the
Cooper-pair coherence lengthy is the characteristic dis- ; _ 1
tance of the proximity effect, and, is the phase-relaxation Gl x(e)=— E L +i(T, 1TgiT’
length of the normal metal. In this case, Josephson current .

could be neglected. _ where we have taken into account the energy level broaden-
. In our system, the electrons are confined between two S'?\Hg T, and a phenomenological paramelas has been
interfaces. At very low temperatures, only the electrons neajiroduced to represent the energy level broadening caused
the Fermi surface have contributions to the conductivity ofyy the impurities scattering of the electrons in the metal.

the normal metal, which is mainly detgrmlned by the prop- Substituting Eq(2) into Eq. (1), we get the conductance
erty of the bound states near the Fermi surface, and the effect

due to the scattering states is negligible. As usual, if we

consider the SN interfaces to be ideal, the pair potenijal :J dk.a( 6 4

in the normal metal region should be zero. The pair poten- g 19(6,4), 43

tials of the left and right superconductors are expressed as

f2k

2mdy

[(2+1D)7+y(6,9)],

()

|AL(6,¢)|exdivi(6,¢)+ig] and [Ag(6,d)|exdivr(6,¢) e2 (= of(e) T T

+igg], respectively. Here, the axis is taken along the nor- 9(8,)=—— f €

mal of the interface and ¢ are the polar angle and azi- h ) de I''+I'g

muthal angle, respectivelyp, and ¢r are the external [ 4+TotT

phases of the left and right superconductors, respectively, XE L . RS 5,

P (0,9), vr(0,0) are the relative phase shifts in the = [e-E=(0,9)]"+(I' +Trt 1Ty
unconventional pairing states, which satisfy (4b)

exli wLKR)(0,¢)]=.A,_(R)(G,.¢)/|A|_(R)(9,¢)|, and are zero in the

isotropic and anisotropis-wave cases. where the sum over the energy states has been done by the

The conductallé;ce is calculated using a Landauer-type Coftegration ovek, and the sum ovelr=, and the integration
ductance formu overk, can be converted to the integration ovkand ¢.
One can define the coherence length of the system corre-
sponding to the energy level broadening &s s
e? = 9f(e) T () ry€) _ _ '
s f . i€l R | 6rie) =hvel2l (rg and L=rve/2(T +Tr+Ts). For the sys-
h e de T n(€)+Try€) m e tem under consideration, sincgy>L> &.=%2ke/2m|A],
(1) the sum in Eq(4b) can be extended to=<, yielding

g:

n
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f(e) yLyr 2.0
Je YL t+Yr

e? (=
9(6,¢)=—+ fﬁxde

y

X
o (o+ iy elEy cosh)?+y?’

)

where o=(2l+1)m, Y rg=dn/Lirs COSO, Y=Y
+Yr+Vs, andEg=Eg/kedy. Completing the sum ovep,
in Eqg. (5), we obtain the conductance as

Ag/g,

af(e) yLyr
de y tyRr

y sinhy . 10,
coshy+cog ¢+ e/Ey cos ) ©) ¢

g2 (=
9(6.d)=— 4 f_ocdf

2n

a

At zero temperature, it is trivial to finish the integration in
Eqg. (6) and we obtain

FIG. 2. The phase dependence of the conductance fluctuation
normalized to the average conductance forsheave with different
2€? Y yr sinhy

9(9,¢):TyL+yR coshy+cos(6,¢)" @

Here, we have considered only that the junction is formed in
thea-b plane of thed-wave superconductor as shown in Fig.
For finite temperatures, using a Fourier series expansion., From the previous definition af, , we obtain

sinhy

a a
R T ———a<ls—-—a,
coshy+cosx

01
b (0)= 4 4
a, otherwise.

+ o0
=1+2> (—1)"e " cosnx,
n=1

we can complete the integral overin Eq. (6) and finally
obtain an expression of the{ 6, ¢) as a Fourier series af:  Completing the integral ovek; in Eq. (4a), it is easy to find
that the amplitude of the conductance oscillation depends
strongly on the misorientation angte as shown in Fig. 3.
When « varies from 0 tow/4, the 27 period component
decays to zero while ther period component remains un-
changed. Notice that, Eq2) may not be expected when
®) 9+ o~ /4 since the conditiody> £€.=%2kg2m|A | is vio-
lated; but the error of the integral EGla) due to this effect

with kgTo=Eq/ . is too small to be considered.

Using Eqgs.(7) and(8), we are able to investigate a num-  More importantly, whenx= 7/4, the electrons injecting
ber of practical systems. Let us first consider that both suto the left SN interface should be divided into two groups,

YLYR
YLt YR

1422, (-1)"e™™
n=1

2e?
9(0,¢)= w

y NnT/Ty cosé
sinh(nT/Ty cos 6) cosny,

perconductors of the SNS structure have isotrapigave
symmetries. In this case,

P (6,¢)=yr(6,¢)=0.

Completing the integral ovef and ¢ in Eg. (4a), one can
find that the dominant period component is the 1 term, so
that the period of the conductance oscillation withs 27,
which is consistent with the experimefitThe calculation
result is shown in Fig. 2.

Secondly, we study the anisotropsewave state. In this
case, the order potential can be writtefi™ds

A(K)=Ap+ A (K3—kp)*,

which is real and positive, and ne phase shift exists. So its
conductance oscillation will be the same as that in the iso-
tropic s-wave case, and does not depend on the misorienta-

tion anglea.
Thirdly, we investigate the influence af,>_,2 pairing

among which an extrar phase shift is obtained for those
electrons with B #<#/2. Thus, it can be demonstrated that

0.20
—— dwave
———- s+id wave
0.15 F==~o —-—- extended s wave 1
(=] \\
o
2 0.10 .
) .
\\
\\\
0.05 r ~—
000 Lo Timrmrmemen e ]
o T /4
o

state. When the left superconductor of the structure has the FiG. 3. The 2r-period component of the normalized conduc-

d,2_,2 symmetry, the order potential can be writteri*as

AL(0)=Ag(k3—kZ)=A4 cOS 20+ ).

tance fluctuation varies with the misorientation angler different
paring symmetriesgd wave,s+id wave, and extended wave at
T=0 andy=2, for the extended wave y=0.5.
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those terms in Eq8) with oddn vanish after performing the In order to obtain a nice and analytical formula for the
integral overé. It means the dominant period component of conductance of the present system, we have assumed the
the conductance oscillation comes from thre 2 term, and interfaces to be ideal. Notice that nonideal interfaces are al-
the oscillation period becomes instead of 2r in the con-  ways present in the practical systems. We therefore now ad-
ventional case. At the same time, the amplitude of oscillatiordress the effects of nonideal interfaces. One may define the
is strongly suppressed. The similar conclusion can bénterfaces scattering Hamiltonian®as
reached for the case &f+id pairing as it has been found
that Ag<A4.%8

As shown in Fig. 2, the manner of conductance oscillation H’ :IER Vv 5(Z—Z|)+|2LR Vifi(rp)o(z=z), (9
in thed,2_y2 state is also different distinctly from that in the o o
s-wave case. The most striking difference is that the amplis

tude of th duct ilation d ds st | thwhererH is the vector in thex-y plane and is the positions
ude of the conductance oscriation depends strongly on g y,q interfaces(z, =0 and zg=dy). Here the first term
misorientation anglex of the junction in thed,._,» state,

L 9 ) . .. describes the scattering by the oxide layer in the interfaces,
while it is isotropic in thes-wave state. Using this feature, it

. : istinauish th . . ¢ h which has been studied extensively in Ref. 15. Unlike the
is easier to distinguish the anisotropiavave state from the  c,q6 of the ideal interfaces, the normal reflecting coefficients
d,2_,2 state or other phase anisotropic states.

” ) do not vanish and the injected electrons will be partly re-
In addition, the extendes-wave state is also treated. FOr fiocteq to electrons instead of the holes. Those electrons do
this state, its order parameter is usually writteh"as not acquire the additional phase and thus have no contribu-
_ 2\ (L2 122 2 tion to the conductance oscillation. The second term of Eq.
Ak =Ao(1H+y)l(ka=kp)"= 7. (9) stands for the scattering due to the rough surfaces and
For y=0.5, its conductance oscillation is calculated and thef(r;) represents the random surface roughness with
result obtained is shown in Fig. 3, from which we can seef(r;)<dy. It has been shown in Ref. 27 that this effect
that the oscillation amplitude of its72period component could be entirely included in the total reflecting coefficient
varies also with the angle, but has a different behavior with R=[(1—kQ)/(1+kQ)]2< 12" which implies that a part of
smaller amplitude. Its amplitude approaches minimum valughe injected electrons are reflected into the incoherent states
at a= /8. Therefore, if we make measurements of the conand have no effect on the interference between the electrons.
ductance at both angles af=0 andw/4, it is not difficult to ~ Taking into account these two effects, we can define the

distinguish the extendeslwave from thed wave. reflecting matrix on each interface as
» by (r ia(r) eXplieyr) i (r) 10
LR ™| . ; )
R ia) ) XN —ie R~ ¥LrR) LR

wherea, (g is the Andreev reflecting coefficient of the left It is obvious from Eq(11) that there are two effects coming
(right) interface andb, (g, is the corresponding normal re- from the nonideal interfacesi) due to the nonvanished nor-
flecting coefficient. The phase factqr )+ ¢ (r) for the — mal reflecting probability the phase difference between two
Andreev reflecting coefficients implies the phase acquired isuperconductors becomes now an effective phase difference
the abnormal reflecting proceéfal_(R)|2+|bL(R)|2:RL(R)- Yesrs (i) the nonconservation of the reflecting probability
Matching the boundary conditions on the two interfacescaused by the interface roughness leads to an extra broaden-
one can rederive the quasibound states in the system, aig of the energy level, which can be absorbed into the gen-

find that eral energy level broadening. Therefore, the conductance for-
, mulas Eqs(7) and(8) are still valid in general, but with the
hKg cos 6 , renormalized parameteygy andye=Y, +Yrt+Ysty,, Where
Ei-(0,¢)~= 2mady [(21+ 1)+ ] =i T, y, represents the level broadening due to the interface rough-
ness.
COSYeft At zero temperature, substituting E41) into Eq.(7), we
have
|a_ag|cog ¢+ @a) — b br|cod 2kg cos Ady+ @) 2
= RR ) g(0¢)=2i YLYR Ki
LR ' h y +yr Kotcod i+ on)’
pa=argaag, RRr
Ki= sinh e,
en=argb by, |aL||aR|
VRLRR |b.|[bgl
1 = - = =R
T,=In (11) K, a|[ag coshy allag] cog 2kg cos 6dy+ @)

VRLRg’ (12
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pressed in a Fourier series of the g . Obviously, it can

be expanded to a Fourier series of the ogsand thus the
conductance can still be expressed in the series ohgos
with the renormalized coefficients. Therefore, we are able to
conclude that the existence of the nonideal interfaces has
merely a little effect on the conductance and does not change
the conclusions reached in the ideal case.

It is well known that as-wave component will be induced
near the interface, but the originddwave component is still
dominant and can be detected if it indeed exists. In this case,
our calculation demonstrates that even for mixedid
wave, there is still the conductance oscillation with the mis-
orientation angley, which is clearly different from the pure
s-wave case. This is because thedependence of the con-
ductance oscillation is due to an additional intrinsic phase
shift existing in the Andreev reflections, which is obviously

FIG. 4. The 2r-period component of the normalized conduc- independent of the amplitude of the superconducting order
tance fluctuation varies with the misorientation angldor a d parameteré‘.‘
wave superconductor with nonideal interfacBs: 2mV/# 2k . To conclude, we have investigated the conductance oscil-
lations of a mesoscopic normal metal spanning between two
superconductors. For the conventiosalvave case, results
. ! obtained coincide well with the experiment. When one side
the renormalized parameters. As a result, the main conclyss g herconductors is replaced by a phase-anisotropic one, a
sions reached in the case of the ideal interfaces can still ase-dependent conductance oscillation has been found,

qualitatively e_xpected in t_he present case. _The results calcyghich could be used to probe the pairing symmetry of high-
lated for the interfaces witl#-functional barriers are shown T. superconductors.

in Fig. 4. It is clearly seen that there is naerperiod com-

ponent either for the-wave case whea= 7/4 and the only This work was supported by the Climing Project of China
observable effect is the suppression of the oscillation ampliunder Grant No. 85-6 NMS. Z. D. Wang acknowledges the
tudes. For higher temperature, similar behaviors can be olsupport from the RGC grant of Hong Kong under Grant No.
served from Eq(8), in which the conductance is now ex- HKU262/95P.

This form of the conductance is similar to E@) except for
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