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We show that all proposed quantum bit commitment schemes are insecure because the sender,
can almost always cheat successfully by using an Einstein-Podolsky-Rosen–type of attack and de
her measurement until she opens her commitment. [S0031-9007(97)02967-0]

PACS numbers: 89.70.+c, 03.65.Bz, 89.80.+h
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Work on quantum cryptography was started by Wiesn
in a paper written in about 1970, but remained unpublish
until 1983 [1]. Recently, there have been lots of renew
activities on the subject. The most well-known applicatio
of quantum cryptography is the so-called quantum key d
tribution (QKD) [2–4], which is useful for making com-
munications between two users totally unintelligible to a
eavesdropper. QKD takes advantage of the uncertai
principle of quantum mechanics: Measuring a quantu
system in general disturbs it. Therefore, eavesdropping
a quantum communication channel will generally leave u
avoidable disturbance in the transmitted signal which c
be detected by the legitimate users. Besides QKD, oth
quantum cryptographic protocols [5] have also been pr
posed. In particular, it is generally believed [4] that qua
tum mechanics can protect private information while it
being used for public decision. Suppose Alice has a sec
x and Bob a secrety. In a “two-party secure computa-
tion” (TPSC), Alice and Bob compute a prescribed fun
tion fsx, yd in such a way that nothing about each party
input is disclosed to the other, except for what follow
logically from one’s private input and the function’s out
put. An example of the TPSC is the millionaires’ problem
Two persons would like to know who is richer, but neithe
wishes the other to know the exact amount of money h
she has.

In classical cryptography, TPSC can be achieved eith
through trusted intermediaries or by invoking some u
proven computational assumptions such as the hardn
of factoring large integers. The great expectation is th
quantum cryptography can get rid of those requiremen
and achieve the same goal using the laws of physics alo
At the heart of such optimism has been the widespre
belief that unconditionally secure quantum bit commit-
ment (QBC) schemes exist [6]. Here we put such op
mism into very serious doubt by showing thatall proposed
QBC schemes are insecure: A dishonest party can exp
the nonlocal Einstein-Podolsky-Rosen–type correlatio
[18] in quantum mechanics to cheat successfully. To
so, she generally needs to maintain the coherence of
share of a quantum system by using a quantum compu
We remark that all proposed QBC schemes contain
invalid implicit assumption that some measurements a
performed by the two participants. This is why this EPR
type of attack was missed in earlier analysis.
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Let us first introduce bit commitment. A bit commit
ment scheme generally involves two parties, a send
Alice, and a receiver, Bob. Suppose that Alice has a
sb  0 or 1d in mind, to which she would like to be com
mitted towards Bob. That is, she wishes to provide B
with a piece of evidence that she has already chosen
bit and that she cannot change it. Meanwhile, Bob sho
not be able to tell from that evidence whatb is. At a
later time, however, it must be possible for Alice toopen
the commitment. In other words, Alice must be able
show Bob which bit she has committed to and convin
him that this is indeed the genuine bit that she had in m
when she committed.

A concrete example of an implementation of bit com
mitment is for Alice to write down her bit on a piece o
paper, which is then put in a locked box and handed o
to Bob. While Alice cannot change the value of the b
that she has written down without the key to the box, B
cannot learn it himself. At a later time, Alice gives th
key to Bob, who opens the box and recovers the va
of the committed bit. This illustrative example of imple
mentation is, however, is inconvenient and insecure.
locked box may be very heavy and Bob may still try
open it by brute force (e.g., with a hammer).

What do we mean by cheating? As an example
cheating Alice may choose a particular value ofb during
the commitment phase and tell Bobanothervalue during
the opening phase. A bit commitment scheme is sec
against a cheating Alice only if such a fake commitme
can be discovered by Bob. For concreteness, it is instr
tive to consider a simple QBC protocol due to Bennett a
Brassard [2]. Its procedure goes as follows: Alice a
Bob first agree on a security parameter, a positive integes.
The sender, Alice, chooses the value of the committed
b. If b  0, she prepares and sends Bob a sequenc
s photons each of which is randomly chosen to be eith
horizontally or vertically polarized. Of course, the value
b is kept secret during the commitment phase. Moreov
the actual polarization of each photon chosen by Alice
not announced to Bob. Similarly, ifb  1, she prepares
and sends Bob a sequence ofs photons each of which is
randomly chosen to be either 45± or 135± polarized but
once again the actual polarization of each photon is k
secret by Alice. Bob chooses randomly between the re
linear (horizontal and vertical) and diagonal (45± or 135±)
© 1997 The American Physical Society
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bases to measure the polarization of each photon. T
completes the commitment phase. A simple calculatio
shows that the two density matrices describing thes pho-
tons corresponding tob  0 andb  1, respectively, are
exactly the same (and are proportional to the identity m
trix). Consequently, Bob cannot learn anything about th
value ofb.

At a later time, Alice mayopen her commitment by
announcing the value ofb and the actual polarization of
each of thes photons. Since Bob has chosen his bas
(rectilinear or diagonal) of measurement randomly fo
each photon in the commitment phase, on average, o
half of the s photons have been measured by him in th
correct basis. For those photons, Bob can verify th
Alice’s announced polarizations match his measureme
results. Baring EPR attacks, a cheating Alice may, f
example, send rectilinear photons in the commitme
phase (hence commits tob  0) but tell Bob that they are
diagonal photons in the opening phase (hence announ
b  1). This is cheating. Alice then has to make
random guess for the polarizations of the photons that B
has measured along the diagonal basis. Since Bob,
average, measuressy2 photons along the diagonal basis
Alice, with such a cheating strategy, has only a probabili
of s1y2dsy2 for success. See [7] for details.

A key weakness of Bennett and Brassard’s scheme
that Alice can always cheat successfully by using EP
pairs. Alice can prepares EPR-pairs of photons and send
a member of each pair to Bob during the commitme
phase. She skips her measurements and decides on
value of b only at the beginning of the opening phase
If she chooses the value ofb to be 0, she measures
the polarization of the photons in her share along th
rectilinear basis. It is a standard property (the EP
paradox) of an EPR pair that Alice’s measurement res
on a photon will always be perpendicular to Bob’s resu
on the other photon of the pair. Alice can, therefore
proudly announce those polarizations. Similarly, fo
b  1, she simply measures along the diagonal basis a
proceeds in a similar manner. There is no way for Bob
detect this attack.

Bennett and Brassard noted this weakness in t
same paper in which they proposed their scheme [
Nonetheless, new QBC schemes have been proposed
it has been generally accepted in the literature [4,7,
that they defeat an EPR-type of attack. Our goal here
to demonstrate that, contrary to popular belief, precise
the same type of EPR attack defeats all proposed QB
schemes.

All proposed schemes involve only one-way commu
nications from Alice to Bob. On the conceptual leve
they all involve Alice sending two quantum systems t
Bob, one during the commit phase and the other duri
the opening phase. (There is no loss of generality in o
analysis in considering quantum communications alo
since classical communications is just a special case
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quantum communications.) More precisely, the gener
procedure of any proposed QBC scheme can be rephra
in the following manner.

(1) Alice chooses the value of a bitb to which she
would like to be committed towards Bob. Ifb  0, she
prepares a state

j0l 
X

i

ai jeilA ≠ jfilB , (1)

where kei j ejlA  dij but the normalized statesjfilB’s
are not necessarily orthogonal to each other. Similarly,
b  1, she prepares a state

j1l 
X

j

bjje
0
jlA ≠ jf0

jlB , (2)

where ke0
i j e0

jlA  dij but jf
0
jlB’s are not necessarily

orthogonal to each other.
Both Alice and Bob are supposed to know the state

j0l and j1l. This implies, in particular, that both of them
know the statesjfilB andjf

0
jlB.

(2) An honest Alice is now supposed to make a
measurement on the first register and determine the va
of i if b  0 s j if b  1d.

(3) Alice sends the second register to Bob as a piece
evidence for her commitment.

(4) At a later time, Alice opens the commitment by
declaring the value ofb and ofi or j.

(5) Bob performs measurements on the second regis
to verify that Alice has indeed committed to the genuin
bit. More precisely, the data received from Alice (the
values of b and alsoi or j) should be correlated with
Bob’s experimental results on the second register.
such expected correlations do appear, Bob accepts t
Alice has executed the protocol honestly. Otherwise, Bo
suspects that Alice is cheating.

We emphasize that all proposed QBC schemes follo
the five-step procedure described above. For instan
Bennett and Brassard’s scheme described earlier falls in
this class if we give Bob the liberty to store up his photon
and measure them only after the opening (step 4) of t
commitment by Alice. But, if Alice can cheat agains
even such a powerful Bob, clearly she can cheat again
Bob who has no such storage capability.

Our proof of insecurity of QBC goes as follows: Firs
of all, in order that Bob cannot tell whatb is, the second
register (the quantum system that Bob receives duri
the commit phase) must contain very little information
about which bit Alice has committed to. As a start, le
us consider theideal case in which the second registe
contains absolutely no information about the value o
b. (Bennett and Brassard’s scheme [2] and Ardehali
scheme [9] are ideal whereas Brassard and Crépea
scheme [7] and the most well-known BCJL scheme [8
are nonideal. We sill come to the nonideal case near t
end of this Letter.) In the ideal case, to ensure that Bo
has no information about the committed bitb, the density
3411
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matrices describing the second register associated with
bits 0 and 1 are the same, i.e.,

TrAj0l k0j ; rB
0  rB

1 ; TrAj1l k1j . (3)

It then follows from the Schmidt decomposition [19
that

j0l 
X

k

p
lkjêklA ≠ jf̂klB , (4)

and

j1l 
X

k

p
lkjê0

klA ≠ jf̂klB , (5)

wherehjêklAj, hjê0
klAj, andhjf̂klBj are orthonormal bases

of the corresponding Hilbert spaces andlk ’s are the
eigenvalues of the reduced density operator, TrAj0l k0j 
TrAj1l k1j. Notice that thelk ’s and jf̂klB’s are the same
for the two states and the only difference lies in Alice’
system jêklA’s vs jê0

klA’s. Now consider the unitary
transformationUA which mapsjêklA to jê0

klA. It clearly
mapsj0l to j1l. Note that the transformationUA acts on
Alice’s systemalone and yet rotatesj0l to j1l. That is,
Alice can applyUA without Bob’s help. Therefore, Alice
can cheat by changingb  0 to b  1 in the opening
phase.

More concretely, consider the following cheatin
strategy: In the first step, Alice always preparesj0l
corresponding tob  0. She then skips the second
(measurement) step and sends the second register to
as prescribed in the third step. She decides on the va
of b to announce only in the beginning of the openin
phase (step 4). Should she now chooseb to be zero,
she executes the protocol honestly. On the other ha
if she now choosesb to be one, she applies the unitar
transformationUA to rotate j0l to j1l and executes the
protocol for b  1 instead. Consequently, Alice can
always cheat successfully. Notice that Alice is able
cheat primarily because she candelay her measurement
until step four. To do so, Alice generally needs a quantu
computer. While it is a challenging technological feat t
build a quantum computer, it is not forbidden by the law
of quantum physics. The possibility of a dishonest Alic
skipping the second step (i.e., delaying her measureme
was not considered in Ref. [8]. This was the chief reas
why earlier researchers came to the erroneous conclus
that the BCJL scheme is provably unbreakable.

In the above discussion, we have assumed the id
situation in which Bob has absolutely no informatio
about the value ofb during the commitment phase
and hence the density matrices describing the seco
register for the two casesb  0 and b  1 are the
same. [See Eq. (3)]. However, Brassard and Crépea
scheme [7] and the BCJL scheme [8] are nonideal
the sense that they violate Eq. (3) slightly and give Bo
some probability of distinguishing betweenrB

0 and r
B
1 .

Intuition seems to indicate that this is not going to chan
our conclusion: On the one hand, if Bob has a larg
3412
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probability of distinguishing between the two states, th
scheme will be unsafe against a cheating Bob. On th
other hand, if Bob has only a very small probability of
distinguishing between the two states, clearly the tw
density matricesrB

0 andr
B
1 must be close to each other in

some sense and essentially the same physics should ap
Following Mayers [20], we now consider the nonidea

case whenrB
0 fi r

B
1 . The closeness between two state

of B specified by the two density matricesr
B
0 and r

B
1

is commonly described by the conceptfidelity [21] which
can be defined in terms ofpurifications. Imagine a system
A attached to Bob’s systemB. There are many pure states
jc0l andjc1l on the composite system such that

TrAsjc0l kc0jd  rB
0 and TrAsjc1l kc1jd  rB

1 . (6)

The pure statesjc0l and jc1l are called the purifications
of the density matricesrB

0 and r
B
1 . The fidelity can be

defined as

FsrB
0 , rB

1 d  maxjkc0 j c0lj , (7)

where the maximization is over all possible purifications
0 # F # 1. F  1 if and only if r

B
0  r

B
1 . We remark

that for any fixed purification ofrB
1 , e.g., j1l in Eq. (2),

there exists a maximally parallel purification ofr
B
0 which

satisfies Eq. (7).
For nonideal QBC schemes, the fact that Bob has

small probability for distinguishing betweenrB
0 and r

B
1

means that [19]

FsrB
0 , rB

1 d  1 2 d (8)

for some smalld . 0. It then follows from Eqs. (7) and
(8) that, for the statej1l given in Eq. (2), there exists a
purificationjc0l of r

B
0 such that

jkc0 j 1lj  FsrB
0 , rB

1 d  1 2 d . (9)

The strategy of a cheating Alice for a nonideal bit
commitment scheme is the same as before. She prepa
the statej0l corresponding tob  0 in the first step, skips
the second (measurement) step, and sends the sec
register to Bob as prescribed in the third step. She decid
on the value ofb only in the beginning of the opening
phase (step 4). If she now choosesb  0, she simply
follows the rule. If she choosesb  1, she applies a
unitary transformation to the quantum system on her sha
to obtain the statejc0l which satisfies Eq. (9). Such a
unitary transformation exists because, as can be seen
the Schmidt decomposition [19], all purificationsjflAB

of a fixed density matrixrB are related to one another
by unitary transformations acting onA aloneandA is in
Alice’s hands. Notice that if Alice had been honest, sh
would have preparedj1l in the first step instead. [See
Eq. (2).] Nonetheless, sincejc0l and j1l are so similar
to each other [see Eq. (9)], Bob clearly has a hard tim
in detecting the dishonesty of Alice. Therefore, Alice can
cheat successfully with a very large probability.
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Note added.—The insecurity of the BCJL scheme [8
has also been investigated independently by Mayers [2
More recently, Mayers [22] has generalized the above
sult to prove that all quantum bit commitment scheme
including ones that involve two-way (quantum) commu
nications between Alice and Bob, are insecure. The sa
result and the impossibility ofideal quantum coin tossing
are discussed in our recent preprint [23]. The impos
bility of some other quantum protocols has recently be
demonstrated by Lo [24]. These surprising discoveri
constitute a major setback to quantum cryptography. T
exact boundary to the power of quantum cryptography r
mains an important subject for future investigations.
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