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The role of repulsive on-site and nearest-neighbor Coulomb interactions in disordered half-filled Aharanov-
Bohm rings is studied by world-line quantum Monte Carlo simulations. The diverse dependence of the equi-
librium persistent current on the couplings is found to relate systematically to the magnetic phase of the model:
the maximum charge stiffness~or the persistent current! coexists with the phase-transition line between the
dominant charge-density-wave state and the dominant spin-density-wave state. The stiffness vanishes with an
increasing departure from the transition line. Thus in the disordered rings the Coulomb interactions can
enhance the charge stiffness over the noninteracting limit in such a way as to drive the system toward the
phase-transition regime.@S0163-1829~96!01335-5#

I. INTRODUCTION

The role of Coulomb interactions between electrons in
disordered metallic mesoscopic rings has been attracting
much interest recently. The experiment performed on a bal-
listic ring1 showed an equilibrium persistent current driven
by an Aharonov-Bohm~AB! magnetic fluxF5rA•dl with
a magnitude of the current in agreement with the prediction
of Büttiker, Imry, and Landauer.2 However, two other
experiments,3,4 believed to be in the diffusive regime, gave a
magnitude of the current one to two orders larger than what
would be expected from a simple theory of free electrons in
disordered rings. It is natural to take Coulomb interactions
into account in order to resolve such a discrepancy. In a
weakly disordered one-dimensional~1D! spinless fermion
model, it was found from the Hartree-Fock approximation
that the Coulomb interaction always suppresses the persistent
current.5 In the localized regime of the same model, how-
ever, the exact diagonalization calculations of Abraham and
Berkovits show some enhancement of the current.6 More in-
terestingly, a recent exact diagonalization study by Berkovits
and Avishi revealed a strong enhancement of the current in
the diffusive regime for 2D spinless systems.7 A similar ef-
fect was also found by the Hartree-Fock approximation for
2D ~Ref. 8! and 3D~Ref. 9! spinless systems. The spinless
model is relevant when the separation of the spin and charge
degrees of freedom is fairly complete. Otherwise, one needs
to consider the original disordered Hubbard model to study
the interplay between the disorder and interactions.10–12Re-
cently, it was found from renormalization-group calculations
of the Luttinger-liquid model that, with the spin degree of
freedom included, the repulsive on-site interaction also en-
hances the current beyond a critical disorder strength over
the noninteracting limit.10,11Giamarchi and Shastry also dis-
cussed the extended Hubbard model with on-site and the
nearest-neighbor interactions, respectively.11 They conjec-
tured that the current~represented by their stiffness; see also
below! would be enhanced by interactions whenever the

charge-density fluctuation could be smeared.
It should be pointed out that all of the above theoretical

and numerical studies gave a current magnitude in the diffu-
sive regime that is still significantly lower than the clean
limit for free electrons, even if the current could be enhanced
by interactions over the noninteracting limit. On the other
hand, the nearest-neighbor interaction was often ignored in
renormalization-group studies. Since the latter is not at the
disposal of experimentalists, and the interplay between vari-
ous couplings is nontrivial on the theoretical side, we per-
form quantum Monte Carlo simulations for the extended dis-
ordered half-filled band Hubbard model, in which the
reduction of the current by the disorder would be most se-
vere in the absence of Coulomb interactions.10 The charge
stiffness, as a measure of the magnitude of the persistent
current, is calculated as a function of the Coulomb interac-
tions at various disorder strengths. We find that at a fixed
disorder strength the charge stiffness is a well-defined func-
tion of the departure from the phase boundary in the param-
eter space separating the charge-density-wave~CDW! domi-
nant phase and the spin-density-wave~SDW! dominant
phase, being suppressed deeply in both phases. According to
this picture, Coulomb interactions enhance the current only if
they help drive the system toward the phase-transition re-
gion. ~The results in Ref. 11 turn out to be consistent with
this picture.! The distinctively different behaviors of interac-
tions in the weak and strong disorder limits are also dis-
cussed. The structure of this paper is as follows. After an
outline of the model and the simulation method in Sec. II, the
simulation results are presented and discussed in Sec. III.
Finally, Sec. IV contains a summary of this work.

II. MODEL AND SIMULATION METHOD

The extended repulsive Hubbard model on a ring of size
L threaded by an AB fluxF is described by the Hamiltonian
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wheres52s̄561 denotes spin-up and spin-down states;
ci ,s
† and ci ,s create and annihilate spin-s fermions on site
i ; ni ,s5ci ,s

† ci ,s is the density operator for spin-s fermions;
u52pF/LF0, with F05h/e being a flux quantum;
ni5ni ,↑1ni ,↓ is the total density operator at sitei , and fi-
nally, e i is the quenched random site energy which is as-
sumed to be uniformly distributed in the interval@2W,W#,
whereW is a measure of the disorder strength. In the absence
of disorder and in the half-filled band with zero magnetiza-
tion ~or with equal spin-up and -down fermions!, a mean-
field theory predicts a zero-temperature phase transition be-
tween the CDW and SDW phases atU52V. More elaborate
quantum Monte Carlo simulations13 showed that the transi-
tion line is slightly above the mean-field transition line in
favor of slightly largerV, and that the transition changes
from second order to first order beyond a critical coupling
Uc'3 ~henceforth we measure all energies in units oft). On
the other hand, it was shown in Ref. 10 that the suppression
of the current by the on-site energyU in the absence of the
nearest-neighbor energyV is the most severe when the sys-
tem is close to the half-filled band. Therefore it is interesting
to note what the behavior will be with finiteV and finite
disorderW.

Recently, based upon earlier world-line quantum Monte
Carlo methods,14–16 we have developed a scheme to calcu-
late the global phase dependence of the persistent current at a
fixed temperature forfermions in one-dimensional rings.17

The reliability of this scheme has been established by check-
ing it against rigorous known results for noninteracting spin-
less fermions. To be more precise, from a checkerboard de-
composition of the canonical partition functionZ5 Tre2bH

~the checkerboard having a topology of a torus!, the free
energyF can be expressed as a functional of the so-called
~normalized! winding number distributionP(w↑ ,w↓):

17
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whereZ̃ is an auxiliary partition function with elements be-
ing positive-definite and independent of the AB phase,18

w52pF/F0 is the reduced phase, andMs and ws

(50,61,62, . . . ) are theparticle number and the winding
number contributed by thes-spin fermions, respectively.
The winding number distribution is sampled according toZ̃
instead ofZ itself ~which might include complex weighting
terms in the checkerboard decomposition scheme in the pres-
ence of the AB phase!, also being independent of the mag-
netic field.15,17 The response of the free energy to a finite
Aharonov-Bohm flux is a measure of the equilibrium persis-
tent current given byJ52(e/\)(]/]w)F(w).

Equation~2! is a straightforward generalization of the for-
mula derived for the spin-less fermions in Ref. 17 and an
analogous formula for bosons in one-dimensional rings.15 It
also bears a close resemblance to the expression in the
framework of a one-dimensional Luttinger-liquid theory~cf.
Ref. 19!. It should be pointed out that while we always have
P(2w↑ ,2w↓)5P(w↑ ,w↓), the symmetry P(ws ,2ws̄)
5P(ws ,ws̄) is broken in the presence of Coulomb cou-
pling. This means thatP(w↑ ,w↓) can only be factorized as
P↑(w↑)P↓(w↓) for free fermions. In general, there will be
significant sign cancellation for arbitraryMs and w in the
summation of Eq.~2!, which imposes too stringent an accu-
racy requirement on the computation of the winding number
distribution. However, the situation is simplified in the zero-
magnetization sectorM ↑5M ↓ ~or in any other sector
whereM ↑ andM ↓ enjoy the same parity; however, following
convention10 we shall limit ourselves to the zero-
magnetization sector!. The free energy is minimal at
w5wc52np ~or 2np1p) whenM ↑ is odd ~or even!. At
wc we can define a charge stiffness as

Dc5
L

2

]2

]w2FU
w5wc

}^~w↑1w↓!
2&[^w2&, ~3!

where the second proportion follows from a Taylor expan-
sion of Eq. ~2! nearwc . The charge stiffness provides an
operational definition for the persistent current for small val-
ues of flux changedw (udwu,p) with respect towc , given
asJ52Dcdw ~in units of I 0[et/L\). Although knowledge
of the winding number distribution provides the global phase
dependence of the persistent current17 as well as the charge
stiffness, the computation is too expensive to change the to-
pological winding number of the checkerboard configuration
if the size of the lattice is not small. Instead, to determine
Dc we borrow a page from Ref. 15, so that we only need to
work in the zero winding number sector (ws50). Consider
the pseudocurrent

J~t!5(
i ,s

Ri@ni ,s~t1Dt!2ni ,s~t!#, ~4!

whereRi is the space coordinate of thei th site, t is the
imaginary time along the Trotter direction of the checker-
board, and a periodic condition in the space direction is im-
plied. Equation~4! measures the clockwise displacement of
the center-of-mass of the fermions during one imaginary-
time step. Then the averagêw2& is proportional to the
extrapolated zero-frequency limit of the Fourier trans-
form of the ‘‘current-current’’ correlation function
C(t)5^J(0)J(t)&.20

To check the above simplified algorithm for the stiffness,
one should in principle compare the results with those of the
exact diagonalization. Since the latter results are presently
not available to us for extended Hubbard systems, we would
rather compare the Monte Carlo results with rigorous results
for clean and small systems with free electrons. This should
be sufficient to show whether the simplified algorithm works.
We note that the same algorithm has long been used to
evaluate the superfluid density in bose systems~see, e.g.,
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Ref. 15!. Table I shows the stiffness versus inverse tempera-
ture in a four-site half-filled ring with free electrons, where
Dc andDc

MC are the rigorous stiffness and the Monte Carlo
stiffness from the correlation functionC(t) limited to the
zero-winding-number sector, respectively. Clearly, the
Monte Carlo results methods agree with the rigorous results.
The statistical error is lower than the errors given in the
table, which represent the uncertainties of the zero-frequency
extrapolation. We used imaginary time stepsDt5 1

8 and
Dt5 1

4 in the Monte Carlo simulations, respectively, but
found no discrepancy larger than the extrapolation uncer-
tainty.

To obtain a rough idea of the magnetic phase of the sys-
tem, we shall also need the CDW structure factor

S~q!5
1

L(i , j exp@ iq~Ri2Rj !#^ninj&, ~5!

and the zero-frequency SDW susceptibility

x~q!5
1

LE0
b

dt(
i , j

exp@ iq~Ri2Rj !#^@ni ,↑~t!2ni ,↓~t!#

3@nj ,↑~0!2nj ,↓~0!#&. ~6!

If we scale the spatial sizeL and the inverse temperatureb
by the same factor,S(q5p) will diverge linearly withL if
we are in the CDW phase characterized by the predominant
double occupation of fermions at every other site, and
x(q5p) will diverge linearly in the SDW phase character-
ized by the predominant single occupation of the fermions at
each site. By comparingS(p) andx(p) as functions of the
parameters, we can determine the transition line qualita-
tively. Of course, to determine the transition line more accu-
rately, one should study the scaling behavior of the correla-
tion functions versus different lattice sizes. However, we
shall see that, combining with the correlation functions, one
can readily determine the transition line in finite systems by
investigating the distinctive behavior ofDc , without going
into scaling analysis, which is too expensive for us.

The quantum Monte Carlo simulations give the finite-
temperature charge stiffness. In order to probe the ground-
state property we have to go into inverse temperatures, scal-
ing linearly with the sizeL of the ring. We useb5L in the
following simulations. That the results represent the zero-
temperature limit is checked by halving and doubling the
inverse temperature. Our experience showed thatb5L gives
an already reliable ground-state limit at least for the present
purposes~cf. Ref. 13!.

III. SIMULATION RESULTS AND DISCUSSIONS

In this section we present the charge stiffness (Dc) versus
the Coulomb interactions (U and V) and the disorder
strength (W) in rings of sizeL58 in the half-filled band and
zero-magnetization sector. While the results for larger rings
are briefly discussed at the end of this section. Up to 20
realizations of the quenched disorders have been used to per-
form the disorder averages. The errors of the data in the
following, obtained by dividing the 20 disorder ensembles
into four groups, are within the corresponding symbol size.
The systematic error of the zero-frequency extrapolation for
Dc is fairly less than 0.1, and is not explicitly shown in the
following figures.

Figure 1 shows theU dependence ofDc at variousW in
the absence of the nearest-neighbor interaction, (V50).
There is an evident monotonic reduction ofDc with increas-
ing U in the clean ring, in contrast to the irrelevance of the
interaction, as one would expect in an infinite system due to
the Galilean invariance. This is understandable from the fact
that even in the clean lattice model, the center-of-mass mo-
mentum is conserved only up to the reciprocal-lattice vector.
With the inclusion of impurities, there exists a critical on-site
couplingUc(V50,W) beyond which the charge stiffness is
enhanced by the disorder over the clean limit. Furthermore,
at a fixed disorder strength we see thatDc develops a maxi-
mum with increasingU from zero, and the maximum be-
comes broader for stronger disorders. In Ref. 10, from
renormalization-group calculations the authors were able to
identify a critical disorder strengthWc(V50) beyond which
the on-site interaction always enhances the charge stiffness
over the noninteracting stiffness~cf. Ref. 11!. ~Note that in
their work the increase of the effective disorder is reflected
by enlargement of the system size at fixed bare disorder
strength, which is not plausible for us in the Monte Carlo
simulations due to limit computation resource.! The curve at
W54 in Fig. 1 clearly shows such a tendency, as it increases
monotonically in the parameter range we considered. How-
ever, we are unable to go into stronger disorders since the

TABLE I. Charge stiffness vs the inverse temperature in a four-
site ring with four electrons.Dc andDc

MC are the rigorous stiffness
and the Monte Carlo stiffness, respectively.

b 2 3 4 8

Dc 0.6345 0.7010 0.7066 0.7071
Dc
MC 0.6366.04 0.67060.03 0.69960.03 0.70160.03

FIG. 1. The charge stiffness vs the on-siteU in the absence of
the nearest-neighborV at various levels of disorders,W50
~circles!,W51 ~squares!,W52 ~triangles!,W53 ~diamonds!, and
W54 ~stars!. Lines are drawn for a guide to the eye.
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charge stiffness would be lower than our numerical resolu-
tion ~in the zero-frequency extrapolation!.

Figure 2~a! shows the charge stiffness versus the nearest-
neighbor interactionV at fixed U in clean rings (W50).
Obviously Dc develops a peak at someV5Vc(W50,U),
beyond whichDc is suppressed byV. Figure 2~b! shows the
corresponding CDW structure factorS(p) ~dashed line con-
nected! and the zero-frequency SDW susceptibilityx(p)
~solid line connected!. We observe thatVc(W50,U);U/2
consistently follows the on-set value ofV at which S(p)
@x(p)# begins to increase~decrease! sharply with increasing
V from V,U/2. This strongly signals that the maximum
charge stiffness coexists with the phase transition line. Ac-
cording to this picture, the transition point ofV at largeU
can be estimated from Fig. 2~a! to be larger than the mean-
field valueV5U/2 ~e.g., 2,V,2.5 atU54), in accordance
with the elaborate results of Hirsch.13 Thus our simplified
determinations of the transition line is justified for qualitative
purposes.

In the presence of disorders, there will be no long-range-
ordered magnetic phases, as the CDW can be pinned by the
disorders to form a pinned CDW phase. However, the dis-
tinct behavior of the stiffness and the correlation functions
can still be used to quantify the dominant correlation in the
disordered systems. Figures 3–5 are the same plots as Fig. 2
except that the disorders are included asW51, 2, and 3,
respectively. We see the same qualitative behavior of the
charge stiffness versusV, except that at the same level of
U, Vc(W,U) shifts to smaller values with increasing disor-
der, and there is a significant reduction of the maximum
value ofDc at elevated disorders.~With increasingW the
peaks at lowerU disappear.! The nearest-neighbor interac-

tion is seen to enhance~suppress! the CDW~SDW! correla-
tions in all cases. On the other hand, the CDW correlations at
V50 increases steadily with increasing disorders, butU ren-
ders theS(p) smaller at each level of disorders. Therefore it
is likely that the CDW correlation may be dominant at finite
but smallU even atV50 in the presence of strong disorders.
Switching on V would drive the system deeper into the
pinned CDW phase. This explains why there are no peaks at
smallU in the left panels of Figs. 3–5.

From the body of data in the above figures and the peaks
for Dc , we are able to draw a schematic phase-transition line
~due to the limited numerical resolution available! in theV-
U parameter space at each level of disorders in Fig. 6. Below
~above! the transition line, the system is in the SDW~CDW!
dominant phase. The transition line shifts towards the right-
bottom side of theV-U parameter space and intersects with
theV50 axis at elevatedUc(W,V50) with increasing dis-
order. This is understandable from the fact that while the
repulsive on-site coupling competes with the disorder, the
nearest-neighbor coupling helps the fermions to form a
pinned CDW state. AtV50, the competition between the
disorder and the on-site coupling should come into balance at
roughlyUc(W,V50);^e i

2&1/25W/A3.
Collecting the above results, we conclude that at a fixed

disorder strength, the charge stiffness will be enhanced by
the Coulomb interactions which help drive the system to-
ward the phase-transition regime. Therefore, at largeU and
moderateW, the charge stiffness will be lifted essentially by
a small nearest-neighbor couplingV ~e.g.,V,U/2), without
which the system would be deep inside the SDW phase with
a vanishing stiffness. The above picture is also consistent
with the results in Fig. 1: at a finite disorder~and with
V50), increasingU from zero drives the system from the
pinned CDW phase to the SDW phase~see Fig. 6!, and one
obtains a maximum stiffness in the transition regime.

FIG. 3. The same plot as Fig. 2, except thatW51.

FIG. 4. The same plot as Fig. 2, except thatW52.

FIG. 5. The same plot as Fig. 2, except thatW53.

FIG. 2. ~a! The charge stiffness vsV at various values of the
on-site repulsion,U50 ~circles!, U51 ~squares!, U52 ~triangles!,
U53 ~diamonds!, andU54 ~stars!. The disorder strength is fixed
at W50. ~b! The corresponding CDW structure factorS(p)
~dashed line connected! and the zero-frequency SDW susceptibility
x(p) ~solid line connected!.
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We can qualitatively understand the suppression of the
charge stiffness at both sides of the transition line by em-
ploying a droplet argument envisioned by Hirsch.13 In the
clean limit, right at the transition line, the CDW phase can
tunnel freely to the SDW phase by the formation of droplets
of SDW state, and vice versa. The droplet size is arbitrary at
U,Uc'3, where the transition is of second order, and has
to be larger than a critical sizencrit at stronger coupling
where the transition is of first order. Recalling the checker-
board decomposition,13 we note that the strong spontaneous
quantum fluctuations on the transition line between the two
phases corresponds to the ability to give rise to a large aver-
age squared winding number^w2& and thus a large stiffness
@see Eq.~3!#. The first-order transition beyondU53 in the
clean limit also explains the decreasing peak values ofDc
beyondU53 in Fig. 2~a!. This effect is more prominent in
Fig. 7~a!, where the stiffness versus the Coulomb interac-
tions is shown for a ring withL532 and atb5L/2516.
With increasing departure from the transition line, tunneling
to the other phase becomes more and more energetically
costly,21 i.e., a larger and larger gap ensues for the low-lying
excitations, so that we see a decreasing stiffness on both
sides of the transition line. From a scaling point of view, we
thus expect thatDc vanishes beyondU53 in an infinite and
clean ring, irrespectively of the nearest-neighbor coupling.
This seems to be a pseudoeffect of the Hubbard model, and
needs further study. With the help of disorders, it is believ-
able that the droplet size can also be arbitrary in the vicinity
of U53, depending on the local realization of the disorders.
In other words, the critical pointUc would be larger in the
presence of disorders. The above scenario is consistent with
Figs. 4~a! and 5~a!, where the peak value~if it exists! of
Dc does not decrease withU in the range we considered. To
further support the above viewpoint, in Fig. 7~b! we present
the stiffness for the same parameters as in Fig. 7~a! except
that W51. We see in Fig. 7~b! that the peak value for
U53 is compatible with that ofU,3, in contrast to the
situation in Fig. 7~a!.

The global amplitude of the stiffness in Fig. 7~b! is close
to that in Fig. 4~a!. This might suggest that, even in the

presence of interactions, the disorder effect enters the stiff-
ness asL/j0}LW

2, wherej0'105/W2 ~whenW!2p) is
the so-called localization length.5 Indeed, from Figs. 2–5, the
global maximum ofDc at fixedW agrees approximately with
the noninteracting value in disordered systems, i.e.,Dc,max
}e2L/j0. This indicates that inclusion of Coulomb interac-
tions is still not enough to compensate for the disorder effect,
and thus cannot explain the anomalously large current ob-
served in dirty rings.3 However, since the reduction of the
persistent current by the disorders is most severe for nonin-
teracting fermions, the possibility of the enhancement by the
Coulomb interactions discussed in this work is promising,
and we expect that the stiffness could be lifted higher by the
interactions over the noninteracting limit in disordered rings
with lower filling fractions~i.e., ,0.5). Work in this direc-
tion has been undertaken.

In closing this section, we would like to point out that our
results are limited to the zero-magnetization sector, although
the algorithm applies equally well in other sectors as long as
the numbers of spin-up and -down electrons have the same
parity. Our choice is conventional. It is in fact plausible for
noninteracting systems where one would have particle-hole
symmetry, but is only approximate for interacting systems.
The stiffness may be sensitive to the magnetization.10 Unfor-
tunately, the present world-line Monte Carlo method is un-
able to deal with variable magnetization self-consistently.
This may be a drawback of the world-line Monte Carlo
method itself. Nevertheless, we expect intuitively that the
ground state of an even number of fermions in the ring
should be well approximated to lie in the zero-magnetization
sector, as long as the Zeeman energy could be ignored, as
has been done in this work.

IV. SUMMARY

We have studied the charge stiffness in disordered half-
filled Hubbard rings with electrons interacting via both on-
site and nearest-neighbor Coulomb interactions. We have
showed that there is an intrinsic relation between the charge
stiffness and the magnetic phase of the system: The charge
stiffness peaks at the transition line.
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FIG. 6. A schematic plot of the phase-transition lines for the
rings at fixed values of disorder strengths. The dashed line is the
mean field transition line in clean rings.

FIG. 7. The stiffness vsV in a 32-site ring and atb516 and at
various values of on-site repulsion,U50 ~circles!, U51 ~squares!,
U52 ~triangles!, andU53 ~diamonds!. ~a! W50. ~b! W51.
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