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A macroscopic theory of giant magnetoresistance in granular magnetic materials is developed to improve on
that of Rubinstein@Phys. Rev. B50, 3830~1994!#. By using a self-consistent method and introducing a useful
parametrization, we show the magnetotransport in granular systems to be between those for currents in the
plane of layers and currents perpendicular to the plane of the layers in multilayers. The theoretical result in the
local limit is found to be in agreement with the observed singular dependence of the giant magnetoresistance
on annealing temperature.

I. INTRODUCTION

The discovery of giant magnetoresistance~GMR! effects
in a number of antiferromagnetically coupled multilayers
such as Fe/Cr and Co/Cu has attracted much attention in
experimental and theoretical study.1–4 A large negative mag-
netoresistance was found first for currents in the plane of the
layers ~CIP! ~Refs. 1,2! and subsequently for currents per-
pendicular to the plane of the layers~CPP!.3,4 Recently, a
similar GMR effect has been observed in heterogeneous
~granular! Co-Cu ~Ref. 5! and Co-Ag films,6 composed of
isolated ferromagnetic granules embedded in a nonmagnetic
matrix.

On the theoretical side, to account for the CIP-MR, two
different transport theories have been developed: a quasiclas-
sical method based on the Boltzmann equation7–10 and a
quantum approach starting from Kubo formula.11,12 Both of
them attribute the GMR effect to the spin-dependent scatter-
ing at ferromagnetic-nonmagnetic interfaces and within fer-
romagnetic layers. Their common physical content is that the
electrons average the properties of the multilayers in the per-
pendicular direction on the length scale of the electron mean
free path~MFP!. This implies that the GMR vanishes when
the repetition lengthd of the layered pattern becomes larger
than the MFPl.7,11 For the CPP geometry,13–15 spin accu-
mulation effects must be taken into account so that the actual
electric field is no longer uniform as it is in the CIP geom-
etry. The total electric field is the sum of the external field
and the internal field produced by the charge accumulation;
the latter depends not only on the coordinate perpendicular to
the plane, but also on the spin of the conduction electrons. In
general, owing to existence of spin-flip~spin mixing!, the

current for each spin is not constant. In the case appropriate
for most experiments, however,d is much shorter than the
spin-diffusion lengthl sf so that the spin-flip scattering can be
neglected,14,15and the current for each spin remains constant.
In particular, in the local limitl!d ~but still d is much
smaller thanl sf), the CPP~CIP! geometry can simply reduce
to a resistor network where the resistances of individual lay-
ers for each spin direction are added in series~parallel!,
while those for the two spin channels are added in
parallel.14,15 Under this limit, the CPP-MR does exist while
the CIP-MR vanishes. On the other hand, the theories of the
MR in granular systems have not been quite well developed
as the spatial distributions of the fields and the currents are
more complicated in these inhomogeneous systems. Spin de-
pendent scattering at the interfaces between granules and the
matrix and within the granules is still believed to be the main
mechanism of GMR in granular systems.5,16–18 It was pro-
posed that the transport in granular films is very close to the
CPP case in multilayers,16,17 which is equivalent to an as-
sumption of a uniformly distributed current density. Such
theories predict a monotonously decreasing GMR with in-
creasing the particle sizes, if the applied magnetic field is
strong enough to saturate the global magnetization of the
systems. The observed maximum of the GMR at a certain
size was considered to stem from the superferromagnetic ef-
fect that the smaller the particle size becomes, the more dif-
ficult to saturate the global magnetization.17 Recently,
Rubinstein18 made an attempt to extend the theory of Valet
and Fert14 which deals with the CPP-MR of multilayers to
the granular systems, but had great difficulty in accounting
for experimental results of GMR. Zhao and Pu19 gave a
quantum treatment for the GMR in granular systems by vir-
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tue of an autocorrelation-function description of interfacial
roughness. Camblong, Levy, and Zhang20 developed a theory
of electron transport in inhomogeneous magnetic structures
that are oriented noncollinearly, in which it is necessary to
introduce currents, fields, and conductivity tensors that are
off diagonal in the spin space of the conduction electrons.

In this paper we develop a macroscopic theory of GMR in
granular magnetic materials to improve on that of Ref. 18.
First, we use an effective conductivity, defined as the aver-
age current density over the average internal electric field, in
lieu of the measurable conductivity. Second, we consider
finite conductivities in both spin channels. Third, an im-
proved self-consistency is developed for the calculation of
averages. The spin-dependent scattering both at interfaces
and within ferromagnetic granules are taken into account.
The interfaces between the ferromagnetic granules and the
nonmagnetic matrix are treated as thin regions of mixed fer-
romagnetic and nonmagnetic atoms. Such a treatment was
first proposed by Johnson and Camley8 to account simulta-
neously for both the CIP-MR and the overall CIP resistivity
of magnetic multilayers. In this model the bulk and interfa-
cial scattering are treated in the same way because the spin-
dependent scattering at the sharp interfaces has been replaced
by the scattering within the mixed regions. As same as most
GMR theories, we limit our theory to the case wherel sf is
much larger than both the MFP and the size of ferromagnetic
regions so that the spin-flip effect can be neglected and the
two-current model is applicable. It has been shown that this
condition is satisfied for most experiments, as discussed in
Appendix A of Ref. 14. To compare the magnetotransport in
granular systems with those for the CIP and CPP geometry
in multilayers, by introducing a useful parametrization, we
show that at least in the local limit~l!d, whered is the
inhomogeneous length scale! the transport in granular sys-
tems is between those for the CPP and CIP cases in magnetic
multilayers. Using the present theory, we have a discussion
on the size dependence of the GMR in granular systems. The
calculated results show that with a decrease in size of the
ferromagnetic granules, the GMR first increases and then

decreases, having a maximum in the middle region. This
theoretical result is in agreement with the observed singular
dependence of the GMR on annealing temperature. We at-
tribute this feature of the GMR to a competition of two fac-
tors in determining the magnetotransport properties. One is
that the proportion of the spin-dependent scattering in the
total scattering increases with decreasing the size of the gran-
ules; the other is that the decrease in size can enhance the
effect that the currents bypass the high-resistivity granules,
leading to a crossover of the magnetotransport from CPP to
CIP. To our knowledge, the latter factor has not yet been
considered in the previous literature.

II. MACROSCOPIC THEORY

Let us consider a granular system consisting of ferromag-
netic granules embedded in a nonmagnetic matrix. In the
absence of the magnetic field the magnetization directions of
the granules are random.20 However, in almost all theoretical
works on GMR, except Ref. 20, only collinear magnetization
configurations of the granules are considered, i.e., all the
ferromagnetic granules are assumed to have only two mag-
netization directions: up~↑! and down~↓!, with the quanti-
zation axis along the direction of the applied magnetic field.
Such a simplifying treatment is an approximation of a mag-
netic granular system, which is similar to that of using the
Ising model to describe a ferromagnetic system. In the
present macroscopic theory we use this collinear approxima-
tion and expect the results obtained to be valid at least quali-
tatively.

It has been shown15 that in the local limit and in the
absence of spin-flip scattering, the relation between the cur-
rent densityJs~r ! and the electric fieldEs~r ! at pointr takes
the local form of the Ohm’s law

Js~r !5ss~r !Es~r !, ~1!

where the signs5↑~↓! is the absolute spin direction, and the
local conductivityss~r ! can be written as

ss~r !5H ssi
f ,

ssi
m ,

sn ,

if r is in the i th ferromagnetic granule,

if r is in the i th mixed region,

if r is in the nonmagnetic matrix,

~2!

with s si
f (s si

m! beings 1
f (s 1

m) for spin s parallel to thei th
granule’s magnetization directionMi~siMi! ands 2

f (s 2
m) for

spin s antiparallel toMi~si2Mi!. Throughout the paper, we
use the signa51, 2, respectively, to denote the majority
and minority spin directions~spin parallel and antiparallel to
the local magnetization! in a magnetic granule. If we intro-
ducet a

f , t a
m , andtn as the relaxation times in the granules,

mixed regions, and matrix, respectively, we have

sa
f 5

ne2ta
f

m
, ~3!

sa
m5

ne2ta
m

m
,

sn5
ne2tn
m

,

wheree is the charge of an electron,m is the effective mass
of conduction electrons, andn is the density of conduction
electrons. Here we wish to point out that the conductivity in
the mixed region must be very small, otherwise the conduc-
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tion electrons could not feel the existence of the interface
scattering when they pass the mixing regions.

To show explicit results of conductivity and GMR in the
local limit, we adopt a simplified picture of the structure of
the granular alloys, similar to that used in Ref. 18. We as-
sume that all the ferromagnetic granules are spherical in
shape and have the same radiusa, each thin mixed region
being a spherical shell with a small thickness oft. Define f
as the volumetric filling factor of the ferromagnetic granules,
andN the number of granules of the system; then

f5
NVg
V

, ~4!

whereVg5
4
3pa3 is the volume of each granule andV is the

total volume of the system.
Since the average current density^Js& has the same direc-

tion as that of the average electric field^Es&, the average
conductivity for spins channel of a granular system is

s˜s5
^Js&

^Es&
, ~5!

with the average field and current density being

^Es&5
1

V S (
i
E
i th
d3r Es~r !1(

i
E
i th mixed

d3r Es~r !

1E
matrix

d3r Es~r ! D ,
^Js&5

1

V S ( E
i th
d3r ssi

fEs~r !1E
matrix

d3r snEs~r ! D , ~6!

where the subscripts ‘‘i th,’’ ‘‘ i th mixed,’’ and ‘‘matrix’’
mean that the integral is performed in thei th granule, thei th
mixed region, and the matrix, respectively, and the sum is
over all the granules embedded in the matrix. In the second
formula of Eq.~6! we have omitted the contribution of the
mixed regions to the average current density, for the volu-
metric filling factor of these regions is very small and the
conductivities in these regions are much smaller than in the
granules and in the matrix. On the other hand, due to spin
accumulation effect there are strong internal electric fields in
the mixed regions. Their contribution to the average electric
field should be taken into account. Here we wish to point out
that a sum of the average conductivitys̃↑ and s̃↓ defined by
Eq. ~5! is very closed to the measurable conductivity. In the
two-current model the measurable conductivity of a sample
is the sum ofs↑ ands↓ with ss5(I s/U)(L/S) whereL is the
sample length along the current direction andS is the area of
cross section,I ↑1I ↓ is the measurable current through the
sample, andU is the potential drop at its terminals. Since
I s5^Js&S, andU5L^E↑&5L^E↓&, we havess5s̃s , indicat-
ing that the use of the effective conductivities defined in Eq.
~5! in lieu of the measurable conductivity is justifiable.

As shown in Eqs.~2! and ~3!, the local conductivity in a
granule depends on the relative spin direction of conduction
electrons in the granule. The electric field in the granule also
depends on the relative spin direction, e.g., in thei th granule,
Es~r ! is equal toE1~r ! for siMi andE2~r ! for si2Mi . It is
convenient to define two kinds of average electric fields in

all the ferromagnetic granules:Ēa8
, and Ēa

, , corresponding
to the average fields including and excluding the contribution
of the mixed regions, respectively,

Ēa
,5

1

NVg
(
i
E
i th
d3r Ea~r !,

Ea8
,5Ea

,1
1

NVg
(
i
E
i th mixed

d3r Ea~r !, ~7!

where the sum is over all the granules, anda51~2!
for majority ~minority! spin direction. Similarly, the average
field in the matrixĒa

. is given by

Ē1~2 !
. 5

1

V2NVg
E
matrix

d3r E↑~↓ !~r !. ~8!

Since MR is defined as the difference of resistivity be-
tween the completely magnetized state and the completely
demagnetized state, in what follows we focus attention on
these two states. For the magnetized state, all the granules
have the same magnetization direction~pointed up!; the av-
erage field and current density in Eq.~6! reduce to

^E↑~↓ !&5 fE81~2 !
, 1~12 f !Ē1~2 !

. ,

^J↑~↓ !&5 fs1~2 !
f Ē1~2 !

, 1~12 f !snĒ1~2 !
. .

According to Eq.~5! the average conductivities for spin-up
and spin-down channels can be obtained, and the measured
total conductivity is the sum of them,

sM5
f k1s18 1~12 f !sn

f k1112 f
1
f k2s28 1~12 f !sn

f k2112 f
, ~9!

wheresa85Ea
,sa

f /E8a
. is the effective conductivity by tak-

ing the effect of the mixed regions into account, andka

5E8a
,/Ea

. is an important parameter which will be dis-
cussed below.

In a demagnetized sample, there are equal numbers of
granules with magnetization pointed up and down. Such a
symmetry results inĒ1

.5Ē2
. , yielding

^E↑&5^E↓&5~ f /2!~E81
,1E82

,!1~12 f !Ē1
. ,

^J↑&5^J↓&5~ f /2!~s1
f Ē1

,1s2
f Ē2

,!1~12 f !snĒ2
. ,

so that the conductivity of the demagnetized state is

sD52
~ f /2!~k1s18 1k2s28 !1~12 f !sn

~ f /2!~k11k2!112 f
, ~10!

and then the MR of the system is obtained by
MR5(sM2sD)/sD.

Now let us see the physical meaning ofka . Whenka51,
Eqs.~9! and ~10! become

sM5sD5 fs18 1 fs28 12~12 f !sn ,

which corresponds to a resistor network in parallel shown in
Fig. 1. We know that in the local limit, the CIP resistances of
a magnetic multilayer reduce to a resistor network in parallel
and the CIP-MR vanishes. Thuska51 corresponds to the
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CIP case of a multilayer. On the other hand, when
ka5sn/s a8 , Eqs.~9! and ~10! become

sM5@ fs18
211~12 f !sn

21#211@ fs28
211~12 f !sn

21#21,

sD52F f2s18
211~12 f !sn

211
f

2
s28

21G21

.

They are just the expressions of resistivities of a resistor
network in series, as shown in Fig. 1, and suitable for the
CPP resistances of a magnetic multilayer in the local limit.
Therefore,ka5sn/s a8 is equivalent to the CPP case of a
multilayer.

III. CALCULATION FOR ka

In this section we develop a macroscopic theory for
granular systems to calculateka . What we want to know is
whetherka is close to 1~the CIP value! or close tosn/s a8
~the CPP value!, or between these two values.

We first solve the problem of an isolated magnetic sphere
embedded in a nonmagnetic metallic matrix~Fig. 2!. In each

region the electric potentials acting on the spin-up and spin-
down conduction electrons are denoted asfa ~there is only
one local magnetization direction in the whole system, so the
relative spin signa and the absolute spin signs have the
same meaning!.

In the absence of the spin-flip process, the potentials in
each region satisfy the Laplace equations.18 Besides, there
are six boundary conditions to be satisfied: one at infinity,
one at the sphere’s origin, and four at two interfaces of the
sphere shell~mixed region!. In the present model both the
potential and the current must be continuous at the two in-
terfaces. Using spherical coordinates, with the sphere cen-
tered atr50, and an electric field of magnitudeE imposed
parallel to thez axis, the Laplace equations and the boundary
conditions are

¹2fa
,50 ~r<a!,

¹2fa
m50 ~a,r<a1t !,

¹2fa
.50 ~r.a!,

fa
.→Er cosu ~r→`!,

fa
,5finity ~r50!, ~11!

fa
,5fa

m ~r5a!,

fa
m5fa

. ~r5a1t !,

sa
f ]fa

,/]r5sa
m]fa

m/]r ~r5a!,

sa
m]fa

m/]r5sn]fa
./]r ~r5a1t !,

wheref a
, , f a

m , andf a
. represent the spin-dependent po-

tentials in the granule, mixed region, and matrix, respec-
tively. The solutions of the Laplace equations are given by

fa
,5AaEr cosu ~r<a!,

fa
m5~Ba1a3Ca /r

3!Er cosu ~a,r<a1t !, ~12!

fa
.5@11~a1t !3Da /r

3#Er cosu ~r.a1t !,

in which the spin-dependent coefficientsAa , Ba , Ca , and
Da are determined by the boundary conditions of continuity
as given above. A simple calculation yields

Aa59~a1t !3sa
msn /F,

Ba53~a1t !3~2sa
m1sa

f !sn /F,
~13!

Ca53~a1t !3~sa
m2sa

f !sn /F,

Da5@~a1t !3~sn2sa
m!~sa

f 12sa
m!

2a3~sn12sa
m!~sa

f 2sa
m!#/F,

with

F5~a1t !3~2sn1sa
m!~2sa

m1sa
f !

12a3~sn2sa
m!~sa

m2sa
f !.

FIG. 1. Sandwich structure composed of two ferromagnetic
films and one nonmagnetic film, with thickness proportional tof
and 12 f , respectively.

FIG. 2. Ferromagnetic sphere of radiusa and mixed sphere shell
of thicknesst. Lines of electric current are shown schematically.
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From Eq.~12! andEa~r !5¹fa~r !, the average fields in the
sphere excluding and including the contribution of the mixed
region are found to be

Ēa
,5AaE,

E8a
,5~11Da!E. ~14!

The electric field in the matrix can be regarded as the sum of
the external fieldE and the spin-dependent field produced by
an effective electric dipole with dipole moment (a1t)3DaE
at the center of the sphere.18When there are many spheres in
the matrix with volumetric filling factorf , the mutual inter-
action between them should be taken into account. This ef-
fect can be calculated only to the lowest order by use of the
Lorentz field approximation. Under this approximation the
average field in the matrix is the external field plus a spin-
dependent average field produced by all electric dipoles.
Then the effective ‘‘external’’ field each magnetic granule
feels isĒa

. rather thanE, so that Eq.~14! should be corrected
by replacingE with Ēa

. , that is

Ēa
,5AaĒa

. ,

E8a
,5~11Da!Ēa

. . ~15!

In fact, we do not need to calculateĒa
. , because what ap-

pears in Eqs.~9! and ~10! for sM and sD is the ratioka
G

5E8a
,/Ea

. and the effective conductivitysa85Ea
,sa

f /E8a
, .

From Eq.~15!, they are given by

ka
G511Da ~16!

and

sa85
Aa

11Da
sa
f . ~17!

Both the conductivity in the mixed region and its thickness
are very small, but their ratior a5t/s a

m has a finite value.
Taking the limit t→0 in Eq. ~13!, we get

Aa5
3asn

2asn1asa
f 12r asnsa

f ,

Da5
asn2asa

f 1r asnsa
f

2asn1asa
f 12r asnsa

f . ~18!

This limit means that the mixed region has been regarded as
a sharp interface, and the definedr a is an effective interfacial
resistance per unit area.18 From Eqs.~16!–~18!, we obtain
k a
G for a granular system

ka
G5

3ka
CPP

2ka
CPP11

, ~19!

with ka
CPP5sn /sa8 . It is straightforward to show from Eq.

~19! that eitherka
CPP.ka

G.1 or 1.ka
G.ka

CPP, depending on
ka
CPP.1 or ka

CPP,1. This indicates thatk a
G is always be-

tweenka
CIP51 andka

CPP. As has been discussed before,ka is
a parameter indicating the pattern of the resistor network:

ka
CIP51 for CIP andka

CPP5sn /sa8 for CPP. Thus it is con-
cluded that the magnetotransport in a granular system is be-
tween those in the CIP and CPP case in a multilayer. From
Eq. ~19! we can see that ifka

CPP is very small, i.e., the con-
ductivity of granules is much larger than that of the matrix,
k a
G is nearka

CPP, and so the granular system is very close to
the CPP case. Under the opposite condition in which the
conductivity of granules is much smaller than that of the
matrix, k a

G is found very close toka
CIP, and the transport is

similar to that in the CIP case. Although the present conclu-
sion is derived in the local limit, it is expected to be appli-
cable for more general scope. These results can be under-
stood by the following physical interpretation. An important
difference in transport between CPP and CIP is that the CPP
currents must pass through the interface regions with high
resistivity, while in the local limit the CIP currents may by-
pass these high resistivity regions. For a granular system
there still exists the effect that the currents bypass the ob-
stacles, especially in the case ofsn.sa8 (ka

CPP.1). It is this
effect that leads to the transport of a granular system to be
between the CPP and CIP cases. Considering the spin-
dependent scattering in the granules and in the mixed re-
gions, we assume the spin-asymmetry factors to be
s 1

f /s 2
f 53 and s 1

m/s 2
m512, the other parameters being

sn5s2 and r252a/s 2
f so that k1

CPP50.5. k1
G50.75 is

shown as the solid circle in Fig. 3, from which one can find
that whenk1 varies fromk1

CPPto k1
CIP51, the MR amplitude

decreases monotonically. It is well known that in the local
limit under consideration, the CIP-MR vanishes but the
CPP-MR still exists due to the spin accumulation. The non-
zero MR fork1

G in granular materials indicates that the spin
accumulation still plays an important part in the MR, but has
less effect than in the CPP geometry of the magnetic multi-
layers.

FIG. 3. Percent magnetoresistance as a function ofk1 in a
granular system. Fork1

CIP51 andk1
CPP50.5, k1

G50.75 indicated as
the solid circle.
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IV. DISCUSSION

We have developed a macroscopic theory to deal with the
problem of GMR in granular magnetic metals in the case of
l!d! l sf . At first glance, the present approach looks like
that in Ref. 18. In reality, however, they are different from
each other in several respects. First, in the present approach
the average conductivity for each spin channel is defined as
the average current density divided by the average electric
field, as given in Eq.~5!. The average field includes the
internal field produced by spin accumulation, which is
closely related to the actual potential drop on the granular
sample. In Ref. 18, the external field rather than the average
field was used in the definition of the average conductivity.
Such an improper treatment would result in a positive MR,
which is undoubtedly an unphysical result. Second, in the
Lorentz field approximation the field produced by all effec-
tive dipoles is roughly treated as a uniform background field.
In the present approach this background field plus the exter-
nal field is regarded as an effective ‘‘external’’ field and the
potentialsf a

, , f a
m , andf a

. are calculated self-consistently
as done in Sec. III. In Ref. 18, however, the Lorentz back-
ground field is simply added to the field inside the ferromag-
netic granules as well as in the matrix. Third, only one spin
channel is considered in Ref. 18 and both spin channels are
taken into account in our work. Since the conductivities for
both spin channels in the matrix are the same, the minority-
spin channel always has contribution to the total conductivity
and so cannot be neglected, even if the conductivity for the
minority-spin electrons is zero inside the spheres, as has been
assumed in Ref. 18.

Finally, we use the present macroscopic theory to calcu-
late the GMR varying with the granule size. All the param-
eters are taken to be the same values as used in Sec. III~Fig.
3! and are assumed to remain independent of granule size. In
Fig. 4 we plot the MR amplitude as a function of the sphere
radiusa. From Fig. 4 we find that the MR first increases and
then decreases with increasing the granule size, and a maxi-
mum occurs in the middle region. As seen from the experi-
mental observations,5 there is always an optimum annealing
temperature in preparing the magnetic granular sample for
GMR. In view of the fact that the sizes of the particles are
always increased with increasing the annealing temperature,
our results are in good agreement with these observations.
Here we wish to make a simple physical interpretation of our
calculated results. The behavior that the MR increases with
decreasinga is easily understood by the argument11 that with
decreasinga, the ratio of interface area to the granule vol-
ume always increases, and so the spin-dependent interface
scattering responsible to the GMR becomes strong. On the
other hand, whena is small enough there appears an oppo-
site tendency that the MR decreases with further decreasing
a. For small granules the effect of interface scattering is
much larger than that of the bulk scattering, making the ef-
fective conductivity of granules much smaller than that of
the matrix. As has been discussed in Sec. III, in this casek a

G

moves towardska
CIP so that the magnetotransport of the

granular system is close to the CIP case in multilayers and
the MR decreases rapidly with further decreasinga. There-
fore, such an opposite size dependence of the MR is closely
related to a crossover of the magnetotransport from CPP to

CIP, and it cannot be obtained by using a pure CPP picture at
very low temperatures. Although the calculated result shown
in Fig. 4 is obtained in the local limit and the further work in
the nonlocal case is highly required, the above argument on
the size dependence of the GMR is believed to be universal
for arbitrary length scales. It is worth mentioning that for
magnetic granular systems a size dependence of the MR
similar to that shown in Fig. 4 was obtained by Zhang and
Levy17 in terms of a different mechanism. In their theory the
increase in MR with the size of the granules was attributed to
the consideration that for a fixed magnetic field and tempera-
ture, very small granules cannot be saturated due to the su-
perferromagnetic effect.

In summary, we have developed a macroscopic theory of
GMR in magnetic granular metals. Taking both spin chan-
nels into account and using a self-consistent way in dealing
with the internal electric field, the conductivities of a granu-
lar system in both the magnetized state and the demagnetized
state have been studied. By introducing a useful parametri-
zation, we find that in the local limit the magnetotransport in
magnetic granular systems is between those for CPP and CIP
in magnetic multilayers. The calculated result shows that
with decreasing the size of the ferromagnetic granules, the
MR first increases and then decreases, exhibiting a maximum
in the middle region, which is in good agreement with the
size dependence of the GMR observed experimentally in
magnetic granular metals.
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FIG. 4. Percent magnetoresistance as a function of the size of
the granulesa for a granular sample composed of ferromagnetic
spheres of radiusa packed with filling factorf . It is assumed the
conductivities do not vary witha.
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