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We study charge orderedd-wave resonating valence bond statessdRVBd in the doped cuprates, and estimate
the energies of these states in a generalizedt-J model by using a renormalized mean-field theory. The long-
range Coulomb potential tends to modulate the charge density in favor of the charge ordered RVB state. The
possible relevance to the recently observed 434 checkerboard patterns in tunneling conductance in high-Tc

cuprates is discussed.
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A number of recent scanning tunneling microscopy
sSTMd experiments have shown spatial modulations in tun-
neling conductance in high-Tc cuprates.1–5 More recent low-
temperature STM experiments have reported bias-
independent modulations of period approximately 4–4.5a sa
denotes lattice constantd in the tunneling conductance over a
wide range of energy on underdoped Bi2212sRef. 6d and
NaCCOC.7 Several theories have been proposed to interpret
the observed checkerboard charge ordering.8–13 Chenet al.10

have proposed that the modulations are due to Cooper pair
density waves. Fuet al.11 have examined the possibility of a
soliton crystal in a generalized Hubbard model including a
nearest-neighbor Coulomb repulsion and an antiferromag-
netic spin exchange coupling. Anderson13 has proposed an
explicit wave function describing a Wigner solid of holes
embedded in a sea ofd-wave resonating valence bond
sd-RVBd states, and pointed out that the long-range Coulomb
interaction furnishes the energy gain and the stiffness of the
hole wave function opposes the deformation. The detailed
calculations, however, have not been carried out in Ref. 13.

In the present paper, we study the charge ordereddRVB
in the doped cuprates. We use a Gutzwiller projected wave
function with both BCS pairing and charge ordering to de-
scribe the charge ordered state in cuprates. Our approach is
similar to the idea outlined by Anderson,13 who formulated
the charge ordering in adRVB by a site-dependent fugacity,
which was introduced by Laughlin in the context of a
Gutzwiller projected state in the study of the Gossamer
superconductivity.14,15 Here we shall use the renormalized
mean-field theorysRMFTd developed early16,17 to formulate
charge ordering by site-dependent renormalization factors
and estimate the energies of these states in thet-J model. We
show that the long-range Coulomb potential tends to modu-
late the charge density in favor of the charge ordering and
that the favorable patterns depend on the doping concentra-
tion. Our calculations suggest that the observed checker-
board patterns may well be induced by the long-range Cou-
lomb repulsion, but require a rather small dielectric constant.

We consider a generalizedt -J model with an additional
long-range electron Coulomb potential,

H = Ht-J + Hc, s1d

Ht-J = − t o
ki,jls

scis
† cjs + H.c.d + Jo

ki,jl
Si ·Sj ,

Hc =
1

2e
o
iÞ j

n̂in̂j

r i j
,

wherecis is an annihilation operator of a spins electron at
site i. The sums inHt-J run over all the nearest-neighbor
pairs,ni =osnis, andnis=cis

† cis. The sum inHc runs over all
the sites ofi and j . e is the dielectric constant andr ij is the
spatial distance between the two sitesi and j . A positive
charge background to balance the charge neutrality is im-
plied. There is a local constraint on every site,oscis

† cisø1.
In this Hamiltonian,Hc favors a charge ordering, while the
kinetic energy prefers a uniform charge distribution.

We consider a variational Gutzwiller projected ground
state for Hamiltonians1d,

uCl = PGuC0l, s2d

wherePG=Pis1−ni↑ni↓d is the Gutzwiller projection opera-
tor, anduC0l=PkWsukW +vkWdkW↑

† d−kW↓
† du0l is a charge ordered BCS

state, withdkWs=oam1m2
ckW+m1qW1+m2qW2,s. In the above expres-

sion, sqW1,qW2d are the two wave vectors for the charge order-
ing sassumed to be commensurated, andam1m2

are the coef-
ficients satisfying ouam1m2

u2=1 and the sums over the
integersm1 andm2 are to extend the reduced Brillouin zone
to the full original Brillouin zone.

We use the RMFT to estimate the expectation value ofH
in the stateuCl. The RMFT was developed for thet -J model
to study a charge homogeneous RVB state.16,17Here we shall
extend it to the charge inhomogeneous case. We use
Gutzwiller’s approximation to relate the expectation values
of the kinetic or spin exchange energies in the projected state
uCl sdenoted bykld to the corresponding expectation values
in the unprojected stateuC0l sdenoted bykl0d by two differ-
ent renormalization factorsgt andgs,

kcis
† cjsl < gt

ijkcis
† cjsl0,
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kSW i ·SW jl < gs
ijkSW i ·SW jl0. s3d

The renormalization factors are determined by the ratio of
the probabilities of the physical process in the projected and
in the unprojected states.16–19 Similar to the method used16

for the homogeneous case, we find

gt
ij = 2Îs1 − nids1 − njd

s2 − nids2 − njd
,

gs
ij =

4

s2 − nids2 − njd
. s4d

They depend on the electron densities at the sitesi and j . In
the homogeneous case,ni =n, g’s are independent of the
sites, we recover the results in Ref. 16,gt

s0d=2x/ s1+xd and
gs

s0d=4/s1+xd2, with x=1−n the hole density. The variational
calculation of the projected stateuCl in H is then mapped
onto the unprojected stateuC0l in a renormalized Hamil-
tonianHeff, given by

Heff = Ht-J8 + Hc, s5d

Ht-J8 = − t o
ki,jls

gt
ijscis

† cjs + H.c.d + Jo
ki,jl

gs
ijSi ·Sj .

Note that the intersite Coulomb interaction is not renormal-
ized in the theory.

Similar to the procedure in Ref. 16, we introduce two
mean fields: a particle-hole amplitude fieldji j =oskcis

† cjsl0

and a particle-particle pairing fieldDi j =kci↑cj↓−ci↓cj↑l0. The
renormalized Hamiltonian can then be solved by a self-
consistent mean-field theory. The energy ofHeff in the un-
projected state, hence the energy of the generalizedt -J
model in the projected state, can be written in terms of the
self-consistent mean fields,

E = − o
ki,jl

F2tgt
ijji j +

3J

8
gs

ijsji j
2 + Di j

2dG + o
iÞ j

ninj

2er ij
. s6d

In the uniformly chargeddRVB state,ji j =j and Di j = ±D.
The energy per site is found to beEs0d=−4tgt

s0dj
−s3J/4dgs

s0dsj2+D2d, where we have dropped the long-range
Coulomb energy of a uniform electron density because it
cancels to the energy due to the oppositely charged back-
ground.

In the inhomogeneous case, the self-consistent equations,
or the Bogoliubov–de Gennes equations, are more compli-
cated. In what follows, we shall make an approximation to
replace the mean fieldsji j and Di j by their average mean
values obtained in the uniformdRVB state, and consider the
effect of charge ordering on the kinetic and spin-exchange
energies due to the renormalization factorsgt

ij andgs
ij , and on

the Coulomb potential. This is a rather drastic approxima-
tion, similar to what was proposed by Anderson,13 but it
should capture a substantial part of the effect of the charge
ordering. This approximation may be considered as a mean-
field theory with the relaxed self-consistency of the charge
inhomogeneous distribution by neglecting the effect of the
charge distribution to the local mean fieldsji j and Di j . The

variations of the local mean fields are expected to change the
results quantitatively. Therefore, our results should be
viewed as correct qualitatively or semiquantitatively, but not
quantitatively. As we will examine later, this approximation
turns out to be quite good in a limiting case where the holes
are all localized. Within this approximation, the energy per
site of the charge ordereddRVB state relative to the uniform
dRVB state is

DE = DEt + DEs + DEc,

DEt = sḡt − gt
0dkHtl0/Ns,

DEs = sḡs − gs
0dkHsl0/Ns,

DEc = e2/s2eNsdo
i j

sninj − n2d/r ij . s7d

In the above equations,ḡt,s=oki j lgt,s
ij /2Ns, kHt,sl0 is the aver-

age kineticsspin exchanged energy in the uniformdRVB
state. In practice, we first solve the RMFT for the uniform
dRVB state, from which we obtainj, D, andkHt,sl0. In Fig.
1, we plot the two mean fields as functions of hole dopingx
for J/ t= 1

3. We then calculateḡt,s andDEc for various types
of charge ordering patterns to estimate the energy of the
charge ordered RVB state, and to determine the optimal
charge distribution. The calculation of the long-range Cou-
lomb energy is similar to that of the Madelung constant,
which converges rapidly with the appropriate choice of the
summation method.

Motivated by the approximate 434 charge ordered states
observed in STM experiments, we consider four types of
parent patterns shown below with a periodicity of 4a along
both directions in the square lattice. Each symbol represents
a lattice site, and the sites marked with the same symbol
have the same electron density. We restricted ourselves to the
patterns with at most three different site densities. Patterns
III and IV are of fourfold rotational symmetry with respect to

FIG. 1. The mean fieldsD andj vs the hole concentrationx in
the uniformdRVB state of thet-J model with t /J=3.
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a diamond site. Patterns I and II are generated from the sim-
plest two-sublattice pattern by further breaking translational
symmetry by replacing some of the circle sites by diamond
sites. Patterns with hole-rich sites nearby are found to have
poor energy, which are not listed here. While more compli-
cated patterns are possible, these patterns we consider here
include the checkerboard and stripe ones and they should be
illustrative for studying the charge ordered states.

We denotenL=n+d1, ns=n+d2, and n!=n+d3. Since the
overall average electron density of the system isn, only two
out of the threed’s are independent. By using Eq.s4d, we
have ḡt,s

I = 1
2gt,s

L!+ 1
2gt,s

+!, ḡt,s
II = 1

4gt,s
L!+ 3

4gt,s
+!, ḡt,s

III = 1
4gt,s

!!+ 1
4gt,s

++

+ 3
8gt,s

!+ + 1
8gt,s

!L, and ḡt,s
IV = 1

4gt,s
!!+ 1

8gt,s
++ + 1

8gt,s
!L+ 1

8gt,s
+L+ 3

8gt,s
!+.

Here the superscript inḡ indicates the type of the parent
pattern, and the superscript ing refers to the two sites with
the marked symbols. The Coulomb energy can be shown to
be quadratic ind’s, and they are given by, in units ofe2/ea,

DEc
I = − 4.039d1

2 − 4.039d2
2 − 4.847d1d2,

DEc
II = − 1.497d1

2 − 7.959d2
2 − 3.468d1d2,

DEc
III = − 0.567d1

2 − 3.772d2
2 − 2.511d1d2,

DEc
IV = − 1.248d1

2 − 4.138d2
2 − 1.428d1d2. s8d

Using these expressions, we have optimized the energy by
varying parametersd1 and d2, and obtained charge ordered
states with lower energies. These states are derivatives of the
parent patterns under consideration, but may have a higher
symmetry than the parent state because those sites marked
with different symbols may have the same electron density.
Below we shall discuss our results in three different regions
of the hole concentration. In all of our calculations, we use
J/ t=1/3, t=0.3 eV, anda=3.8 Å.

At the hole density around1
16, the lower-energy charge

ordering pattern isA1 as shown in Fig. 2. There are only two
types of the distinct sites in terms of the electron density in
this pattern. The numerical values of the energy gain and the
charge distributions are given in Table I forx= 1

16 and x
=0.05. All other patterns at these dopings have energies ei-
ther higher than or too close to the energy of the uniform
dRVB statesDE.−0.01 eVd, and are not listed here. Atx
= 1

16 ande=1, the lowest-energy state has a charge distribu-
tion slightly deviated from a commensurate state with the
light site completely emptysn=0d and the dark site fully
occupiedsn=1d. As e increases, the energy gain decreases
rapidly. There is no stable charge ordering pattern ate much
larger than 1.5.x= 1

16 is an ideal hole density for the pattern
A1, which was also discussed in Ref. 11 and suggested in the
magnetic and optical measurements.20,21 At x=0.05, the

patternA1 is stable only for smallere, but is no longer stable
for e=1.5. Note that the patternA1 atx=0.05 is an insulator
for there is no connected path for holes to move through the
lattice.

At the hole density around18, there are several charge
ordering patterns as shown in Fig. 3. Among them the favor-
able pattern isB1. PatternsB2 andB4 have three types of
distinct sites in terms of the electron density, whileB1 and
B3 have two types of distinct sites. The energy gain and the
charge distribution are given in Table II forx= 1

8 andx=0.1.
Here we only list those patterns with relatively lower ener-
gies. As we can see from Table II, atx= 1

8 the energies of
patternsB1 andB2 are slightly lower than that of the homo-
geneous case ate=2. At x=0.1, the energy gain due to the
charge ordering ate=2 is already very tiny.

It is interesting to note that around the low hole density
x= 1

8, both the checkerboard patternB2 and the stripe
pattern22 B3 are superconducting states because holes in
these patterns can move through the lattice.

At high hole concentrations, several new charge ordering
patterns with lower energies appear, which are shown in

TABLE I. Approximately estimated energy and charge distribu-
tion at hole densityx=0.0625 andx=0.05. The values of an ideal
hole crystal state withnj=1 at x=0.0625 are also listed for
comparison.

x 0.0625 0.05

e 1 1.5 1

DE seVd −0.038 −0.037 −0.010 −0.016

n sgray boxd 0.005 0.000 0.017 0.200

nj 0.999 1.000 0.999 1.000

Pattern A1 A1 A1 A1

FIG. 2. Low-energy charge ordering patternA1 of 4a34a sym-
metry at hole densityx around 1

16. Shown are 939 patches. Each
square represents a lattice site and the lightsdarkd square represents
low shighd electron density.
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Fig. 4. In Table III, we list the energies and charge densities
of the lower-energy patterns atx=0.15. Fore=1, the five
patterns
sB1, C1, C2, C3, andC4d have very close energies. In the
pattern C’s, the electron densities at the dark and gray sites
are quite close. The empty sites in patternsB1 and C’s form
a Î8a3Î8a Wigner hole crystal. We do not find any lower-
energy charge ordering pattern ate.2.5. At x=0.2, the most
favorable patterns areC1, C4, and the stripe patternB3.

In the energy estimation for the charge ordered RVB state,

we have focused on the effect of the charge-density-
dependent renormalization factors, but neglected the site de-
pendence of the mean fieldsj and D. This rather crude ap-
proximation turns out to be quite good in a limiting case
where all the holes are completely localized at a single site,
which we analyze below. Consider patternA1 at x= 1

16 and
patternB1 at x= 1

8 with the electron densityn either zero or
1. In this limit, the kinetic energy vanishes. The spin ex-
change energy of the state can be estimated by a direct
counting of the missing bonds due to the vacancies in an

TABLE II. Approximately estimated energy and charge distribution of lower-energy charge ordering patterns at hole densityx=0.125 and
x=0.1. Energies of some patterns with charge distribution ofnj=1 are also listed for comparison.

x 0.125 0.1

e 1 1.5 2 1 1.5

DE seVd −0.116 −0.113 −0.056 −0.041 −0.013 −0.048 −0.043 −0.025 −0.015 −0.010 −0.059 −0.056 −0.051 −0.039 −0.021 −0.021 −0.017

nh 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

n sgray boxd 0.006 0.000 0.875 0.857 0.542 0.018 0.000 0.898 0.042 0.909 0.208 0.200 0.933 0.914 0.925 0.943 0.230

nj 0.999 1.000 0.984 1.000 0.986 0.999 1.000 0.964 0.994 0.954 0.999 1.000 0.984 1.000 1.000 0.975 0.996

pattern B1 B1 B2 B2 B3 B1 B1 B2 B1 B2 B1 B1 B2 B2 B4 B2 B1

FIG. 3. Lower-energy charge ordering patterns for hole density aroundx= 1
8. B1 is of a symmetry ofÎ8a3Î8a, andB3 is a stripe.
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otherwise half-filled background, which is given byEs
=2s1−2xda per site, witha=−0.344J the spin exchange en-
ergy per bond at the half-filling. ForJ=0.1 eV, we haveEs

=−0.060 eV atx= 1
16 and Es=−0.052 eV atx= 1

8, which are
very close to the results obtained in the present MFT:Es

=−0.063 eV atx= 1
16 and Es=−0.054 eV atx= 1

8. Since the
holes in the charge ordered states listed in Tables I–III are all
localized or almost localized, our results based on a rather
drastic approximation may not be unreasonable.

In summary, we have studied the charge ordered RVB
states in the doped cuprates within a generalizedt -J model
by using a renormalized mean-field theory. While the kinetic
energy favors a uniform charge distribution, the long-range
Coulomb repulsion tends to spatially modulate the charge

density in favor of charge ordered RVB states. Since both the
Coulomb potential and the leading order in kinetic energy
are quadratic in the density variation, we expect and indeed
have found that the charge-density variation from the uni-
form state is always large in the charge ordered state. The
stability of the charge ordered RVB state strongly depends on
the dielectric constante. We do not have reliable data for the
dielectric constants in Bi2212 and NaCCOC yet. Based on
the optical spectra, Uchidaet al.23 have extractede<2.5–5
for La2−xSrxCuO4, with e<5 at the very light doping limit
x=0.02. Our calculation suggests that the observed charge
ordered state in STM experiments in cuprates may be related
to the long-range Coulomb interaction. However, the dielec-
tric constant in cuprates might not be small enough for the

TABLE III. Approximately estimated energies and charge distributions of lower-energy charge ordering patterns atx=0.15.

e 1 1.5 2 2.5

DE seVd −0.129 −0.113 −0.113 −0.110 −0.093 −0.062 −0.044 −0.035 −0.063 −0.048 −0.046 −0.044 −0.029 −0.148 −0.011 −0.010 −0.010

nh 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

n sgray boxd 0.000 0.933 0.950 0.950 0.933 0.828 0.800 0.428 0.000 0.950 0.933 0.950 0.000 0.950 0.933 0.950 0.000

nj 0.972 1.000 1.000 1.000 1.000 0.975 1.000 0.991 0.973 1.000 1.000 1.000 0.973 1.000 1.000 1.000 0.973

Pattern B1 C1 C3 C2 C4 B2 B2 B3 B1 C3 C1 C2 B1 C3 C1 C2 B1

FIG. 4. Several lower-energy
charge ordering patterns atx
=0.15, not included in Fig. 3. Pat-
terns C1 and C2 are related by the
interchange of the dark and gray
sites; likewise for patterns C3 and
C4.
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Coulomb interaction alone to induce the charge ordering.
Among the favorable charge ordered superconducting states,
patternB1 has a symmetry ofÎ83Î8, patternsB2 andC1
both have checkerboard structure, and patternB3 is a stripe.
We do not find the bound hole pairs in the charged ordered
states due to the Coulomb interaction.
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