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The transport equations for polarized radiation transfer in non-Riemannian, Weyl-Cartan type space-
times are derived, with the effects of both torsion and nonmetricity included. To obtain the basic
propagation equations we use the tangent bundle approach. The equations describing the time evolution
of the Stokes parameters, of the photon distribution function and of the total polarization degree can be
formulated as a system of coupled first-order partial differential equations. As an application of our results
we consider the propagation of the cosmological gamma-ray bursts in spatially homogeneous and
isotropic spaces with torsion and nonmetricity. For this case the exact general solution of the equation
for the polarization degree is obtained, with the effects of the torsion and nonmetricity included. The
presence of a non-Riemannian geometrical background in which the electromagnetic fields couple to
torsion and/or nonmetricity affect the polarization of photon beams. Consequently, we suggest that the
observed polarization of prompt cosmological gamma-ray bursts and of their optical afterglows may have
a propagation effect component, due to a torsion/nonmetricity induced birefringence of the vacuum. A
cosmological redshift and frequency dependence of the polarization degree of gamma-ray bursts also
follows from the model, thus providing a clear observational signature of the torsional/nonmetric effects.
On the other hand, observations of the polarization of the gamma-ray bursts can impose strong constraints
on the torsion and nonmetricity and discriminate between different theoretical models.

DOI: 10.1103/PhysRevD.71.103001 PACS numbers: 95.30.Gv, 95.30.Sf, 98.70.Rz
I. INTRODUCTION

The study of the propagation of electromagnetic radia-
tion in gravitational fields plays an essential role in rela-
tivistic astrophysics and cosmology. In order to obtain a
correct and consistent description of the radiative transfer
processes for photons propagating on cosmological dis-
tances or on the cosmic microwave background one must
also take into account the effects of the background ge-
ometry on the radiation emitted near the surface of neu-
trons stars or black holes [1]. The radiation follows curved
paths according to the underlying geometry and is red-
shifted or blueshifted. Spatial curvature in some geome-
tries, like, for example, the Kerr geometry, rotates the
polarization of photons propagating through them.

Generally, one cannot solve Maxwell’s equations ex-
actly for waves propagating in curved space-times or in a
relativistic medium. Instead one either uses a geometrical
optics approximation or a kinetic description of the multi-
photon system, by treating photons as massless classical
particles, characterized by a four-momentum p at an event
x [2]. In the geometrical optics approximation, which is
reasonable in most of the cases, the degree of polarization
is not affected by the underlying geometry. The field vector
address: hrspksc@hkucc.hku.hk
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propagate parallel along the light paths. For nonflat curved
paths, a rotation of the polarization angle results.

Astrophysicists measure intensities and spectral distri-
butions. These can conveniently be described by a distri-
bution function, which is defined on phase space and is
directly related to the spectral intensity. In this picture the
propagation of radiation is described by an equation of
radiative transfer, which is a differential equation for the
photon distribution function. In addition to the above-
mentioned quantities, degrees and plane of polarization
of the observed radiation provide important means of
information about the source and the intervening medium
and geometry.

A general relativistic form of the Boltzmann transport
equation for particles or radiation interacting with an ex-
ternal medium has been developed by Lindquist [3]. The
comoving frame radiation transfer equation in an Eulerian
coordinate system was obtained by Riffert [4]. A transport
equation for photons in curved Riemannian space-times
was derived by Bildhauer [5], by making use of the cova-
riant generalization of the Wigner transformation. Two
linear equations on the tangent bundle are obtained whose
correction terms to the Liouville equation and the classical
mass-shell condition are of the order of the wavelength
over the variation length of the background geometry. The
comoving frame transfer equation for the Stokes parame-
ters in an arbitrary background metric in an Eulerian
coordinate system has been obtained in [6] and applied
to the study of the Berry’s phase for polarized light in [7].
-1  2005 The American Physical Society
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A long time ago Brans [8] has suggested that a rotation
of the polarization plane of the radiation arises whenever
there is shear, by an effect analogous to the Thomas
precession. Therefore if there is a large scale anisotropy
in the expansion of the Universe, the microwave back-
ground radiation is expected to be linearly polarized. In
Friedmann-Robertson-Walker models with small expan-
sion anisotropy the observed rotation of the polarization
plane would be appreciable and constant over the celestial
sphere in closed (Bianchi type IX) models or it should
vanish in flat (type I) and open (type V) models [9]. Hence
the study of the polarization of the cosmic microwave
background radiation can imposes strong limits on the
anisotropy and other fundamental physical parameters of
the Universe. A rigorous first-order solution with respect to
the anisotropy for the equation of polarized radiation trans-
fer in a homogeneous anisotropic Universe was obtained in
[10]. The degree of polarization of the background radia-
tion is very sensitive to the recombination dynamics and to
the reheating epoch. For a Bianchi type-II space-time with
a frozen-in magnetic field the polarization and anisotropy
properties of the cosmic microwave background radiation
have been studied in [11]. Faraday-rotation effects, such as
the rotation of the linear polarization plane, are found to be
independent of the spatial curvature effect and are thus the
same as in type-I models.

Almost immediately after the birth of general relativity
(GR), more general geometries, with nonmetricity and
torsion, have been proposed by Weyl and Cartan, in order
to incorporate in a geometric framework the effects of the
electromagnetism and of the angular momentum. Later on,
these extensions of the classical GR have been incorpo-
rated in the different gauge theoretical formulations of
gravity [12]. There are different gauge theories of gravity
in dependence of the choice of the gravitational gauge
group and of the gravitational Lagrangian. One of the
most studied gauge theories of gravity is the Poincaré
gauge theory, which requires a generalization of the
Riemannian geometry and the introduction of the torsion
of the space-time [13]. Nonsymmetric gravitation theories,
in which the gravitational field is described by a nonsym-
metric metric tensor, whose antisymmetric part couples
directly to the electromagnetic field, have also been pro-
posed [14].

The study of the propagation of light in a gravitational
field has provided the classic observational tests of general
relativity. The modifications of the geometry due to the
non-Riemannian effects, like torsion and nonmetricity,
further affect the motion of photons, by inducing a bire-
fringence of the vacuum which can modify the polarization
of the photons as they propagate through the gravitational
field. Thus the study of the polarization of photons from
astrophysical or cosmological sources can provide a valu-
able tool for discriminating between the different modifi-
cations and extensions of general relativity. Ni [15] has
103001
shown that nonmetric gravitational fields can single out
linear polarization states of light that propagate with differ-
ent speeds. He also proposed to use pulsar polarization data
to impose constraints on nonmetric theories. Limits on the
gravity-induced polarization of the Zeeman components of
the solar spectral lines have been obtained in [16]. The
polarization of light from magnetic white dwarfs can be
used to impose constraints on the gravity-induced birefrin-
gence of space in nonmetric gravitational theories [17]. By
using the magnetic white dwarf Grw�70� 8247 polariza-
tion data one can obtain the constraint l2� < �4:9 km�2,
where l� is the nonsymmetric gravitational theory charge.

In conventional Maxwell-Lorentz electrodynamics, the
propagation of light is influenced by the metric only, and
not by the torsion T of the space-time. However, there is a
possibility of interaction between light and torsion if the
latter is nonminimally coupled to the electromagnetic field
F by means of a Lagrangian of the form �l2F2T2, where l
is a coupling constant. Several such couplings have been
proposed and analyzed recently. A supplementary
Lagrangian of the form L � 
0l

2�T� ^ F�T� ^ Fwas con-
sidered in [18], and it was shown that it can yield
birefringence in the vacuum. Nonminimally coupled ho-
mogeneous and isotropic torsion field in a Friedmann-
Robertson-Walker geometry affects the speed of light,
with the photons propagating with a torsion-dependent
speed. In fact, torsion generates three major effects affect-
ing the propagation of light: it produces an axion field that
induces an optical activity into space-time, modifies the
light cone structure that yields birefringence of the vacuum
and modifies the speed of light in a torsion-dependent way
[19]. An example of a metric-affine gauge theory of gravity
in which torsion couples nonminimally to the electromag-
netic field was considered in [20]. The coupling causes a
phase difference to accumulate between different polariza-
tion states of light as they propagate through the metric-
affine gravitational field. The model has been constrained
by using solar spectropolarimetric observations, which
allow one to set an upper bound on the relevant coupling
constant k; k2 < �2:5 km�2.

The confirmation that at least some gamma-ray bursts
(GRBs) are indeed at cosmological distances raises the
possibility that observations of these could provide inter-
esting constraints on the fundamental laws of physics (for
reviews on GRBs, see [21–24]). The fine-scale time struc-
ture and hard spectra of GRB emissions are very sensitive
to the possible dispersion of electromagnetic waves in
vacuo. Hence the study of short-duration photon bursts
propagating over cosmological distances is the most prom-
ising way to probe the quantum gravitational and/or the
effects related to the existence of extra dimensions [25].
The modification of the group velocity of the photons by
the quantum effects would affect the simultaneity of the
arrival times of photons with different energies. Thus,
given a distant, transient source of photons, one could
-2
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measure the differences in the arrival times of sharp tran-
sitions in the signals in different energy bands and use this
information to constrain quantum gravity and/or multidi-
mensional effects [26].

The announcement of the results of the polarization
measurements of the prompt gamma rays and of the optical
afterglows of gamma-ray bursts has attracted great interest
recently. Coburn and Boggs [27] claimed the measurement
of a very large linear polarization, 80	 20%, of the
prompt gamma rays from an extremely bright burst, GRB
021206. However, this polarization measurement has been
criticized by Rutledge and Fox [28], who obtained an upper
limit of only <4:1% at 90% confidence from the same
data, while in Wigger et al. [29] a value of 41% ( � 57%

44%) is found. One the other hand, the polarization mea-
surements of the optical afterglows are much more con-
vincing. The first positive detection of the polarization was
for GRB 990510 with the degree of 1:7	 0:2%, and since
then polarized emission has been measured in several other
afterglows (see [30] for a review).

It is the purpose of the present paper to generalize the
transport equations for polarized radiation [3–6] for the
case of the polarized radiation propagating in a space-time
manifold with non-Riemannian geometry. More exactly,
we shall consider the case of the so-called Weyl-Cartan
space-times, whose geometrical structure is described by
three tensors: the metric, the torsion and the nonmetricity
[13]. In this case the propagation equations for the radia-
tion distribution function, for the Stokes parameters, for the
linear polarization and for the degree of the total polariza-
tion can be formulated as a system of a first-order partial
differential equations on the photon phase space, with the
non-Riemannian effects included via the contorsion tensor.

As an astrophysical application of the obtained equa-
tions we consider the propagation of gamma-ray bursts in a
non-Riemannian geometrical background. The general so-
lution of the propagation equation for the total polarization
degree can be obtained in an exact form. The presence of a
non-Riemannian geometrical background, in which the
electromagnetic fields couple to torsion and/or nonmetric-
ity affect the polarization of photon beams. The polariza-
tion of the beam is generally a function of time, with non-
Riemannian effects induced via the contorsion tensor.
Since most of the gamma-ray bursts have a cosmological
origin, due to the long propagation times, the influence of
the torsion and nonmetricity could significantly affect their
polarization. Therefore we suggest that the observed po-
larization of the prompt gamma-ray bursts and of their
optical afterglows could also contain a propagation effect
component, due to a torsion/nonmetricity induced birefrin-
gence of the vacuum. If such a component could be un-
ambiguously detected, this would provide a significant test
for the existence of the non-Riemannian geometrical ef-
fects in our Universe. However, there are many conven-
tional astrophysical mechanisms that could explain the
103001
polarization of the gamma-ray bursts, and affect the propa-
gation of the electromagnetic radiation. The uncertainties
in the knowledge of the astrophysical environment in
which photons propagate, and the difficulty in separating
the different physical effects contributing to the polariza-
tion of the gamma-ray bursts make the practical detection
of the torsion or nonmetricity an extremely difficult and
very challenging observational task.

The present paper is organized as follows. The transport
equations for polarized light in Weyl-Cartan space-times
are derived in Sec. II. The general solution for the total
polarization degree for a homogeneous and isotropic back-
ground geometry is obtained in Sec. III. Constraints on
torsion and nonmetricity obtained from the observed po-
larization of gamma-ray bursts are obtained in Sec. IV. In
Sec. V we discuss and conclude our results.
II. TRANSPORT EQUATIONS FOR POLARIZED
LIGHT IN WEYL-CARTAN SPACE-TIMES

Relativistic transport theory finds its most elegant and
natural expression in terms of geometric structures defined
in the tangent bundle over the space-time manifold.

Consider a time-oriented Lorentzian four-dimensional
space-time manifold M, with metric g of signature
��;
;
;
�. The tangent bundle T�M� is a real vector
bundle whose fibers at a point x 2 M is given by the
tangent space Tx�M�. If X is a tangent vector and s is a
section of T�M�, then a connection r is a rule rX�s� for
taking the directional derivative of s in the direction X
satisfying the properties of linearity in s and X, behaving
like a first-order differential operator and being tensorial in
X. The curvature operator is defined as R�X; Y� �
rxrY�s� 
 rYrX�s� 
 rX;Y��s�, where R�@=@x�;
@=@x���ei� � ejR

j
i��, where fe1; e2; . . . ; ekg is a local

frame defined on each neighborhood U � M. The curva-
ture operator satisfies the properties of multilinearity, anti-
symmetry and tensoriality. The torsion operator on T�M� is
defined as T�X; Y� � rXY 
rYX
 X; Y�. This is a
vector field with components T�@=@x�; @=@x�� � ��
�� 

�
����@=@x
� � T
���@=@x
�, where �
�� are the Christoffel
symbols on T�M� and T
�� is the torsion tensor [31].
Moreover, we assume that the space-time manifold M is
equipped with a conformal structure, i.e. with a class g� of
conformally equivalent Lorentz metrics (and not a definite
metric as in general relativity). This corresponds to the
requirement that it should only be possible to compare
lengths at one and the same world point. We also suppose
that the connection r respects the conformal structure.
Differentially this means that for any g 2 g� the covariant
derivative rg should be proportional to g: rg � 
2A � g
(r
g�� � 
2A
g�� � 
Q
��), where A � A�dx

� is a
differential 1-form andQ is called the nonmetricity [32]. A
change of calibration of the metric induces a gauge trans-
formation for A: g! exp�2
�g, A! A
 d
. Therefore
-3
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in terms of the torsion and nonmetricity the connection �
��
on M can be expressed as

�
�� � �
�� � T
�� � T��

 � T��




�
1

2
�Q��


 
Q�


� 
Q�



��; (1)

where �
�� is the Christoffel symbol computed from the
metric g by using the general relativistic prescription,
���� � g���@�g�� � @�g�� 
 @�g���. Generally, we
may represent the connection as �
�� � �
�� 
 K��


,
where K��
, the contorsion tensor, is a function of the
torsion T and of the nonmetricity Q [13].

In the space-time M the instantaneous state of a photon
is given by a four-momentum p 2 Tx�M� at an event x 2
M. The one-particle phase space P� is a subset of the
tangent bundle given by [5]

P� :� f�x; p�jx 2 M;p 2 Tx�M�; p2 � 0g: (2)

A state of a multiphoton system is described by a
continuous, non-negative distribution function f�x; p�, de-
fined on P�, and which gives the number dN of the
particles of the system which cross a certain spacelike
volume dV at x, and whose 4-momenta p lie within a
corresponding three-surface element d ~p in the momentum
space. The mean value of f gives the average number of
occupied photon states �x; p�. Macroscopic, observable
quantities can be defined as moments of f.

Let fx�g, � � 0; 1; 2; 3 be a local coordinate system in
M, defined in some open set U � M. Then f@=@x�g is the
corresponding natural basis for tangent vectors. We ex-
press each tangent vector p in U in terms of this basis as
p � p��@=@x�� and define a system of local coordinates
fzAg, A � 0; . . . ; 7 in TU�M� as z� � x�, z��4 � p�. This
defines a natural basis in the tangent space given by
f@=@zAg � f@=@x�; @=@p�g. A vertical vector field over
TM is given by & � p�@=@p�. The geodesic flow field
', which can be constructed over the tangent bundle, is
defined as ' � p�@=@x� 
 p�p�����@=@p� � p�D�,
where D� � @=@x� 
 p�����@=@p�. Physically, ' de-
scribes the phase flow for a stream of particles whose
motion through space-time is geodesic.

Therefore the transport equation for the propagation of a
photon beam in a curved arbitrary non-Riemannian space-
time is given by

�
p�

@
@x�


 p�p��i��
@
@pi

�
f � 0: (3)

By taking explicitly into account the decomposition of
the connection in an arbitrary non-Riemannian space-time
with torsion and nonmetricity, Eq. (3) for the photon
103001
distribution function takes the form�
p�

@
@x�


 p�p��i��
@

@pi

�
f�x�; p��

� p�p�K��
i @f�x

�; p��
@pi

� 0: (4)

To describe polarized or partially polarized radiation,
the distribution function has to be generalized to a distri-
bution tensor f���x; p� �

P2
a;b�1 fabe

�a�
� e

�b�
� , where e�a��

(a � 1; 2) two spacelike unit vectors orthogonal to the
direction of propagation. fab is a Hermitian and positive
matrix, satisfying the conditions Tr�fab�x; p�� � f�x; p�,
detfab�x; p� � f�x; p�, and �fab � fba. The matrix fab can
be parametrized by the Stokes parameters ,i, ,i: P� !


1; 1�, i � 1; 2; 3, three measurable quantities, which
describe polarization as [33]

fab �
1

2
f�x; p�

1� ,3 ,1 � i,2
,1 � i,2 1� ,3

� �

�
1

2
f�x; p��1� , � '�; (5)

where ' � �'1'2'3�, with 'i the Pauli matrices, and , �
�,1,2,3�.

In a spacelike hypersurface element � of P� at �x; p� the
number of photons linearly polarized along the e�1� and e�2�

axes are 1
2 �1� ,3�f� and 1

2 �1
 ,3�f�. 1
2 �1� ,1�f� is

the result of the measurement of the linear polarization in a
direction at &=4 to the e�1� axis. PL � �,21 � ,22�

1=2 is the
degree of linear polarization. The parameter ,2, the anti-
symmetric part of fab, represents the degree of circular
polarization. A measure for the right-hand and left-hand
circular polarization is �1� ,2�=2 and �1
 ,2�=2, respec-
tively. The polarization degree is given by P �

�
P3
i�1 ,

2
i �

1=2. The polarization angle is defined as � �
tan�,1=,3�=2 [5].

The transport equation satisfied by the distribution ten-
sor f���x; p�, describing polarized radiation, is [3,5]�

p�r� 
 p�p��i��
@
@pi

�
f���x; p� � 0: (6)

In a general non-Riemannian space-time with nonvan-
ishing torsion and nonmetricity the equation satisfied by
the distribution tensor takes the form�
p�

@
@x�


 p�p��i��
@
@pi

�
f�� � p�p�K��

i
@f��
@pi


p��
��f
� 
 p��
��f�
 � p�K��
f
�

�p�K��
f�
 � 0: (7)

As in the Riemannian space-time we may introduce a
pseudo-orthonormal basis of vectors e� � ea�@a (a tetrad),
and the dual basis -� � e�adxa of the one-forms. The
components ea� and their reciprocals e�a satisfy the relations
-4
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ea�e�b � .ab and ei�e
�
i � .��, respectively. The metric ten-

sor can be expressed as gab � e�a e
�
b/��, where /�� is the

Minkowski metric tensor [31]. The object of anholonomy
�ab

c � e�a e
�
b @ief�

c, �abc � �ab
dgdc measures the non-

commutativity of the tetrad basis. The connection ex-
pressed in these anholonomic coordinates is [13,31]

�abc � �dabgdc � 
�abc ��bca 
�cab 
 Kabc: (8)

Any tangent vector p at x can be expressed as p �
p�e�. If we set ea � e�a e�, then pa � ea�p� and p� �
e�ap

a. In terms of the tetrad components the transport
equations can be expressed in the forms

paDaf � 0; paDafbc 
 pa�dbafdc 
 pa�dcafbd � 0;

(9)

where Da � @a 
 �bacpc@=@pb.
As an application of the tetrad formalism briefly de-

scribed above we consider the transformation from the
coordinate basis e� � @� to the basis b� of an arbitrary
coordinate system, obtained from a Lorentz boost of the
coordinate basis, so that b� � L̂��e�, e� � L��b�, with the
transformation matrices L̂�� and L�� satisfying the condition
L��L̂

�
� � .��. The explicit form of the matrix components

is given by L̂b0 � ub, L̂0
� � 
a�u� and L̂�� � a��.

�
� �

ku�u��, where a� �
��������
g��

p
, 
 �

�����������

g00

p
, and k �

�1� u0
�����������

g00

p
�
1. The components of the four-

momentum with respect to b� are p̂� � L��p
�. The photon

four-momentum is described by its frequency, defined as
� � 
p � u � 
p̂aba � u � p̂0, and two angle for the di-
rection of propagation. Hence, the photon four-momentum
can be described in the basis fb�g as p̂� � ��1; n̂�. To
parametrize the unit three-vector n̂ we introduce spherical
coordinates in the momentum space so that

n̂ 1 � �; n̂2 �
���������������
1
�2

q
cos3;

n̂3 �
���������������
1
�2

q
sin3:

(10)

By assuming that the observer places a two-dimensional
screen normal to the propagation direction of the photon
beam in his rest frame, we can perform a further trans-
formation of the basis so that in the new basis d� � D̂�

�b�
the spatial propagation direction of the photon is now the
z axis. The transformation matrix D̂�

� is given by [6]

D̂ �
� �

1 0 0 0
0

���������������
1
�2

p
0 �

0 
� cos3 sin3
���������������
1
�2

p
cos3

0 
� sin3 
 cos3
���������������
1
�2

p
sin3

0BBB@
1CCCA:
(11)

The components of the four-momentum in the new basis
fd�gare �p� � ��1; 0; 0; 1�. With respect to the initial basis
e� � @�we have d� � Â��e�, where Â�� � L̂��D̂

�
� . The
103001
inverse transformation is given by e� � A��d�. The com-
ponents of the four-momentum in the two basis are related
by the transformations �p� � A��p

� � D�
�p̂

�.
With respect to the basis fd�g the transport equation can

be written as�
Â�� �p

� @
@x�


 �p� �p� ��i��
@
@ �pi

�
�fab � �p� �p� �K��

i @
�fab
@ �pi


 �p� ��ca� �fcb 
 �p� ��cb� �fac � �p� �Kc
a�

�fcb

� �p� �Kc
b�

�fac � 0; (12)

where �K��
i are the components of the contorsion tensor

with respect to fd�g. The new connection coefficients ��
��
and �K��


 can be calculated by means of the transforma-
tions

�� 

�� � A
�Â

/
��Â

�
��

�
/� � @/Â

�
� �; (13)

and

�K ��

 � A
�Â

/
��Â

�
�
�K/�

� � @/Â
�
� �; (14)

respectively.
By denoting

D �
1

�

�
Â�� �p

� @
@x�


 �p� �p� ��i��
@
@ �pi

� �p� �p� �K��
i @

�fab
@ �pi

�
;

(15)

it follows that in a non-Riemannian space-time the radia-
tion distribution function and the Stokes parameters satisfy
the equations

Df � 0;

D,1 
 2� ��1
20 � ��2

23�,3 � 2� �K1
20 �

�K2
23�,3 � 0;

(16)

D,2 � 0;

D,3 � 2� ��1
20 � ��2

23�,1 
 2� �K1
20 �

�K2
23�,1 � 0:

(17)

The evolution equations describing the degrees of the
linear polarization PL and the total polarization P are

DPL � 0; DP � 0: (18)

In the limit of the zero contorsion K��
i ! 0, corre-

sponding to the transition to the Riemannian geometry,
from Eqs. (16)–(18) we recover the transport equations
given in [5,6].
III. RADIATION TRANSFER IN ISOTROPIC AND
HOMOGENEOUS WEYL-CARTAN SPACE-TIMES

In order to analyze the influence of the non-Riemannian
background on the propagation properties of the electro-
magnetic radiation we adopt the simplifying assumption of
an isotropic, homogeneous and flat Friedmann-Robertson-
Walker type geometry, that is, we assume that the metric of
-5
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the Universe is given by

ds2 � dt2 
 a2�t��dx2 � dy2 � dz2�: (19)

Generally in the comoving reference frame the torsion
tensor is determined by two functions of time T�t� and �T�t�,
so that T0�� � �T�t�=l�.�� and T��� � � �T�t�=l�"���,
where l is a coupling constant and "��� is the totally
antisymmetric tensor in three dimensions [19]. By suppos-
ing that the theory is invariant under space inversions we
have �T�t� � 0. Therefore the only nonvanishing compo-
nents of the torsion are T�t� � T1

10 � T2
20 � T3

30. The non-
metricity torsion is defined by three functions of time
Qi�t�; i � 1; 2; 3, so that, in an anholonomic basis we
have �Q110 � �Q220 � �Q330 � Q1�t�, �Q000 � Q2�t�, and
�Q011 � �Q022 � �Q033 � Q3�t� [34].

By denoting K�t� � 
�T�t� �Q3�t��, the transport
equation of the total polarization degree P of the
gamma rays in a non-Riemannian space-time is given by


@
@t

�
�
a
@
@x

�

���������������
1
�2

p
cos3

a
@
@y

�

���������������
1
�2

p
sin3

a
@
@z


 �
�
_a
a

 K�t�

�
@
@�

�
P � 0: (20)

We assume that the photon is emitted at a point Q �
�x0; y0; z0� with frequency �0 in the direction ��0; 30� and
is observed at the point O � �x; y; z� with the correspond-
ing four-momentum quantities ��;�;3�.

Equation (20) represents a first-order partial differential
equations with the characteristics given by

dt �
adx
�

�
ady���������������

1
�2
p

cos3
�

adz���������������
1
�2

p
sin3

� 

d�

� _aa� K�t��
; (21)

which can be immediately integrated to give

���������������
1
�2

q
cos3x
�y �

���������������
1
�2

0

q
cos30x0 
�0y0

� constant; (22)
���������������
1
�2

q
sin3x
�z �

���������������
1
�2

0

q
sin30x0 
�0z0

� constant; (23)
sin3y
 cos3z � sin30y0 
 cos30z0 � constant; (24)
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ln�a�� �
Z
K�t�dt � constant; (25)

x
�
Z dt
a
� constant;

y

���������������
1
�2

q
cos3

Z dt
a
� constant;

z

���������������
1
�2

q
sin3

Z dt
a
� constant:

(26)

Hence the general solution of Eq. (20) is given by

P � P
� ���������������

1
�2
q

cos3x
�y;
���������������
1
�2

q
sin3x


�z; sin3y
 cos3z; x
�
Z dt
a
; y



���������������
1
�2

q
cos3

Z dt
a
; z



���������������
1
�2

q
sin3

Z dt
a
; ln�a�� �

Z
K�t�dt

�
: (27)

For K�t� � 0, Eq. (25) gives the usual redshift relation
a� � a0�0 and Eq. (27) describes the propagation of ra-
diation in the Riemannian space-time of general relativity.

In the following we denote by P0 the value of the
polarization corresponding to the propagation of the elec-
tromagnetic radiation in a curved Riemannian space-time,
P0 � PjK�t��0. We also make the simplifying assumption
that generally the dependence of the polarization on the
term ln�a�� �

R
K�t�dt is linear, so that

P � P0

"
1�

1

ln�a��

Z
K�t�dt

#
: (28)

In order to obtain a quantitative characterization of the
non-Riemannian effects on the radiation propagation we
introduce a parameter ., describing the variation of the
polarization due to the propagation effects, and defined as

. �
P
 P0

P0
: (29)

In terms of the contorsion tensor, by taking into account
that at the receiver a � arec and by denoting the observed
frequency of the radiation by �rec, we obtain

. �
1

ln�arec�rec�

Z
K�t�dt: (30)

The integration over t can be converted to integration
over the redshift z, by using the equality dt � �dt=da��
�da=dz�dz � 
dH�z�dz=�1� z�, where dH�z� �
� _a=a�
1 � H
1�z�, where H is the Hubble function. We
assume that generally the Hubble function can be written
as

H�z� � H0

�����������������������������������������������������������������
�m;0�1� z�3 ��% ��K;0f�z�

q
; (31)
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where H0 � 3:24� 10
18h s
1, with 0:5< h< 1,
�m;0 � 0:3 is the present day matter density parameter,
�% � 0:7 is the dark energy density parameter and �K;0 is
the density parameter formally associated with the non-
Riemannian effects. f�z� describes the time variation of the
contorsion. �K;0 and f�z� are strongly model-dependent
quantities and generally they depend on the assumed func-
tional form for the contorsion K�t�. Therefore in terms of
the redshift, the parameter . can be expressed as

.�z� � 

tH

ln�arec�rec�

�
Z 0

z

K�z�dz

�1� z�
�����������������������������������������������������������������
�m;0�1� z�3 ��% ��K;0f�z�

q ;

(32)

where tH � 1=H0 � 3:09� 1017h
1 s is the Hubble time.
IV. CONSTRAINING THE TORSION AND THE
NON-METRICITY WITH GAMMA-RAY BURSTS

As an application of the formalism developed in the
previous section we consider the possible effects of a
non-Riemannian structure of the space-time on the propa-
gation of the gamma-ray bursts. Gamma-ray bursts (GRBs)
are cosmic gamma-ray emissions with typical fluxes of the
order of 10
5 to 5� 10
4 erg cm
2 with the rise time as
low as 10
4 s and the duration of bursts from 10
2 to 103 s.
The distribution of the bursts is isotropic and they are
believed to have a cosmological origin, recent observations
suggesting that GRBs might originate at extragalactic dis-
tances [21]. The large inferred distances imply isotropic
energy losses as large as 3� 1053 erg for GRB 971214 and
3:4� 1054 erg for GRB 990123 [22].

The widely accepted interpretation of the phenomenol-
ogy of �-ray bursts is that the observable effects are due to
the dissipation of the kinetic energy of a relativistically
expanding fireball, whose primal cause is not yet known
[23].

The proposed models for the energy source involve
merger of binary neutron stars, capture of neutron stars
by black holes, differentially rotating neutron stars or
neutron star-quark star conversion, etc. ([23] and referen-
ces therein). However, the most popular model involves the
violent formation of an approximately one solar mass
black hole, surrounded by a similarly massive debris torus.
The formation of the black hole and debris torus may take
place through the coalescence of a compact binary or the
collapse of a quickly rotating massive stellar core [22].
There are still many open problems concerning GRBs,
from which the most important is the problem of the source
of the large energy emission during the bursts.

The recent observations of the polarization of the GRB’s
are considered to be of fundamental importance for the
understanding of the nature and properties of these phe-
nomena. The polarization of the afterglows is well estab-
103001
lished. Typically, the polarization of the afterglows is
observed to be at the 1%–3% level, with constant or
smoothly variable level and position angle when associated
with a relatively smooth light curve. The usual explanation
for the polarized radiation of afterglows is the synchrotron
emission from the fireball when some kind of asymmetry is
present. There are mainly two kinds of asymmetry consid-
ered. One class includes the models assuming that ordered
magnetic fields play a crucial role. The magnetic fields can
be either locally ordered, which corresponds to the mag-
netic domain model [35], or even entirely aligned within
the ejecta, which is magnetized by the central engine [36].
In addition, small regions in which the magnetic field has
some degree of order could be amplified by scintillation
[37], or by gravitational microlensing [38]. A different
class of models postulates that the fireball is collimated.
In this case the observer likely sees the fireball off-axis, as
the probability of being exactly on-axis is vanishingly
small. When the line of sight makes an angle with the
collimation axis, the asymmetry and hence a net polariza-
tion may arise. The magnetic fields, compressed in the
plane normal to the motion, are postulated to be distributed
in a random but anisotropic manner [37,39].

A strong gamma-ray polarization may indicate a
strongly magnetized central engine, either in pure
Poynting-flux-dominated form [40] or in conventional hy-
drodynamical form, but with a globally organized mag-
netic field configuration [41]. Models involving inverse
Compton scattering with offset beaming angles can also
give rise to large degrees of polarization in gamma rays
[42]. There are also indications that the polarization degree
and position angle may evolve significantly with time for
optical transients [43]. Two-component jet models have
also been proposed to explain the observed polarization of
the afterglows [44].

Hence still there are no definite physical models to
consistently predict or explain the observed polarization
of the gamma-ray bursts.

Since a non-Riemannian geometrical structure of the
space-time manifold cannot be excluded a priori, the
possible effect of a nonzero contorsion must also be taken
into account in the description of the propagation of the
gamma-ray bursts. In the following we investigate the
effect of different choices of the torsion and nonmetricity,
corresponding to different physical and cosmological mod-
els, on the parameter . � �P
 P0�=P0, describing the
deviations in the polarization of the gamma-ray bursts
due to the propagation effects in a Weyl-Cartan geometry.

A. Models with constant contorsion

The simplest case that could arise in the analysis of the
modifications of the polarization of the gamma-ray bursts
due to propagation effects is the one corresponding to a
constant contorsion, with K�z� � KA � constant.
Moreover, we ignore the contributions of the torsion and
-7
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nonmetricity to the density parameter, by taking �K;0 � 0.
Therefore we obtain for . the simple expression

.�z� � 

tHKA
ln��rec�

Z 0

z

dz

�1� z�
�����������������������������������������
�m;0�1� z�3 ��%

q : (33)

For this model the variation of . as a function of z is
represented, for different numerical values of the constant
contorsion K0, in Fig. 1.

On the other hand the observational knowledge of .
would allow one to impose some constraints on the value
of the contorsion tensor, with

KA �
H0 ln�arec�rec�

F�z�
.; (34)

where we denoted F�z� �
Rz
0 dz=�1� z�������������������������������������������

�m;0�1� z�3 ��%

q
.

B. The Weyssenhoff spin fluid case

In the framework of the Einstein-Cartan theory, the
intrinsic angular momentum (the spin) of a particle is
introduced via a generalization of the structure of the
space-time, by assuming that the affine connection is non-
symmetric. The torsion contributes to the energy momen-
tum of a spin fluid which has the form

Teff
�� � �;� p
 2s2�u�u� 
 �p
 s2�g��; (35)

where ; and p are the energy density and the pressure,
respectively, and s2 � s��s

�� is the spin. This energy-
0 0.5 1 1.5 2 2.5 3
z
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g 
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(z
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FIG. 1. Variation, as a function of the redshift z, of the pa-
rameter . (in a logarithmic scale) for gamma-ray bursts prop-
agating in a Weyl-Cartan geometry with constant contorsion
tensor KA, for different values of KA: KA � 10
14 s
1 (solid
curve), KA � 10
15 s
1 (dotted curve), KA � 10
16 s
1 (dashed
curve) and KA � 10
17 s
1 (long dashed curve). For the cos-
mological parameters we have adopted the values arec � 1,
�m;0 � 0:3 and �% � 0:7. The frequency at the detector of
the gamma-ray bursts is assumed to be �rec � 3� 1014 s
1,
corresponding to the optical afterglow emission.
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momentum tensor corresponds to a perfect fluid with
spin, called the Weyssenhoff fluid model [13]. The macro-
scopic spin tensor may be expressed in terms of the spin
density tensor s�� and the four-velocity of the fluid as
<
�� � u
s��. For a pressureless fluid (p � 0) we have
; � mn and s � �hn=2, respectively, where n is the num-
ber of particles with mass m per unit volume and s is the
spin density. The effect of the spin is dynamically equiva-
lent to introducing into the model some additional non-
interacting spin fluid with the energy density ;s � ;0s=a

6

[45]. Although the contribution of the spin to the dense
matter appears to be negligible small, on a large scale it can
produces a ‘‘centrifugal force’’ which is able to prevent the
occurrence of singularities in cosmology [13].

By taking into account that for a Weyssenhoff fluid
dominated universe the contorsion is proportional to the
spin, the parameter . becomes

.�z� � 

tHKB
ln��rec�

�
Z 0

z

�1� z�2dz�������������������������������������������������������������������������
�m;0�1� z�3 ��s;0�1� z�6 ��%

q ;

(36)

where �s;0 � ;s;0=3H
2
0 is the density parameter of the spin

fluid, with ;s;0 � �h2n�0�=16. S0 can be related to the mass
m of the particles forming the spinning fluid by means of
the relation KB � ;s;0=

���
2

p
m.
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FIG. 2. The parameter . as a function of the redshift z for
gamma-ray bursts propagating in a Weyssenhoff spinning fluid
filled universe, with the torsion tensor proportional to the spin
density, for different values of the cosmological parameters:
�m;0 � 0:25, �% � 0:7 and �s;0 � 0:05 (solid curve), �m;0 �

0:20, �% � 0:7 and �s;0 � 0:1 (dotted curve), �m;0 � 0:15,
�% � 0:7 and �s;0 � 0:15 (short dashed curve) and �m;0 �

0:20, �% � 0:6 and �s;0 � 0:20 (long dashed curve). The
frequency at the detector of the gamma-ray bursts is assumed
to be �rec � 3� 1014 s
1, corresponding to the optical afterglow
emission. For the constant KB we have adopted the value KB �
2:5� 10
16 s
1

-8



0 1 2 3 4 5
z

0

2

4

6

8

10

δ(
z)

FIG. 3. The parameter . as a function of the redshift z for
gamma-ray bursts propagating in a Riemann-Cartan space-time,
with vanishing spin density and the modified double duality
ansatz satisfied, for different values of the constant KC: KC �
2� 10
15 s
1 (solid curve), KC � 10
15 s
1 (dotted curve),
KC � 8� 10
16 s
1 (dashed curve) and KC � 5� 10
16 s
1

(long dashed curve). For the cosmological parameters we have
adopted the values arec � 1, �m;0 � 0:3 and �% � 0:7. The
frequency at the detector of the gamma-ray bursts is assumed to
be �rec � 3� 1014 s
1, corresponding to the optical afterglow
emission.
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The variation of the parameter . for a Weyssenhoff fluid
filled universe is represented, for different values of the
cosmological parameters, in Fig. 2.

The study of the polarization of the gamma-ray bursts
can impose some constraints on s. Once the functional
forms of the polarization of the gamma-ray bursts at the
source and observer are known, from Eq. (36) one can
evaluate the basic physical parameters characterizing the
Weyssenhoff fluid and obtain some restrictions on the spin
density of the particles.

C. Models with modified double duality ansatz

An extensive study of the spatially homogeneous and
SO�3�-isotropic cosmologies in the framework of the 10
parameter Lagrangian of the Poincaré gauge theory was
performed in [46]. By evaluating the action in the tangent
spaces induced by the isotropy group it follows that the
torsion tensor has two nonvanishing components h�t� and
f�t�. By excluding the parity violating terms in the
Lagrangian the field equations are invariant under the
discrete transformation f ! 
f and s! 
s, where s is
the spin scalar. This symmetry rules out classical spin
distributions like the Weyssenhoff fluid we have previously
discussed. It is difficult to find a physical interpretation of a
spin tensor within this model and therefore the case of a
vanishing spin was considered in detail.

A simple class of solutions of the Einstein-Cartan field
equations can be obtained by assuming that the axial
torsion is nonvanishing and the modified double duality
ansatz ) � )0 � constant and � � 0 is satisfied, where
) � M� N � R=6 and � � fH� F � R���."

���.,
with H � h� _a=a, M � _H� � _a=a�H, N � H2 �

k=a2 
 f2=4 and F �  _f� � _a=a�f�. By further imposing
the constraints H � 0 and k � 0, it follows that the only
nonvanishing component of the torsion is h � 
 _a=a, and
the field equations reduce to � _a=a�2 � �4&G=9c4�;

c0=6c4, c0; c4 � constants, and the conservation law for
the energy and pressure. In this model the function K�t�,
describing the effect of the torsion on the propagation of
the gamma-ray bursts is given by K�t� � 
KC lna�t�,
whereKC is an integration constant. In terms of the redshift
we have K�z� � KC ln�1� z�. The constants 
c0=6c4 can
be interpreted as an effective cosmological constant %eff ,
generated by the presence of the torsion. Therefore in this
model the parameter .�z� is given by

.�z� � 

tHKC
ln��rec�

Z z

0

ln�1� z�dz

�1� z�
�����������������������������������������
�m;0�1� z�3 ��%

q ; (37)
where �% � %eff=;c is the mass density parameter asso-
ciated to the torsion-generated cosmological constant.

The variation of . as a function of the redshift is pre-
sented in Fig. 3.
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V. DISCUSSIONS AND FINAL REMARKS

In the present paper we have generalized the radiation
propagation equations for polarized photons in curved
space-times from Riemannian geometries to Weyl-Cartan
type geometries, with torsion and nonmetricity. The non-
Riemannian background enters in the equations via the
contorsion tensor and, for particles propagating on cosmo-
logical distances, can induce a significant and observatio-
nally detectable change in the photon polarization state. Of
course, to fully evaluate this effect one should know the
behavior of the contorsion in different classes of general-
ized gravitation theories with torsion. For the Poincaré
gauge theory and for vanishing nonmetricity spatially ho-
mogeneous and SO�3�-isotropic exact solutions for a
10-parameter Lagrangian have been studied in [46], while
the effect of the nonmetricity on the cosmological evolu-
tion has been considered in [34]. All these solutions are
strongly model dependent and generally have a compli-
cated mathematical form.

On the other hand the study of the polarization of the
prompt cosmological gamma-ray bursts and of their after-
glows offers, at least in principle, the possibility of obser-
vationally testing Poincaré type gauge theories.

Assuming, as an extreme and perhaps unrealistic case,
that the initial gamma-ray emission is totally unpolarized,
as predicted by some models of the gamma-ray burst
emission (see [21–24] and references therein), the detected
polarization amount could be mainly due to the propaga-
tion effects of the photons traveling on cosmological dis-
tances in a non-Riemannian geometrical background. The
-9



K. S. CHENG, T. HARKO, AND X. Y. WANG PHYSICAL REVIEW D 71, 103001 (2005)
presence of the contorsion in the radiation transport equa-
tions in curved space-times could generate a supplemen-
tary polarization of the photon beam. If the polarization of
the gamma-ray bursts is indeed due to the coupling be-
tween photons and geometry, then the observed degree of
the polarization must be redshift dependent, since photons
traveling on longer distances will be more affected. The
smallness of the observed effect even for high redshift
sources (P � 1:7	 0:2%) also seems to suggest mainly a
propagation effect.

A second important effect, which follows from the
consideration of the non-Riemannian structure of the
space-time is related to the prediction of the frequency
dependence of the polarization of gamma-ray bursts.
Since the dependence of the frequency is logarithmic, the
total polarization degree of the gamma-ray component
should be smaller by a factor of around 2 than the polar-
ization degree of the optical afterglow emission. Together
with the cosmological redshift dependence, the frequency
dependence of the polarization degree of gamma-ray bursts
provides a clear observational signature of the possible
presence of non-Riemannian, Weyl-Cartan type geometri-
cal features in our Universe.

On the other hand, if the initial polarization degree of the
gamma-ray bursts could be exactly predicted by some
photon emission models, then the comparison of the po-
larization of the gamma-ray bursts at the observer and
emitter could impose some strong constraints on the devi-
ations of the geometry of the Universe with respect to the
Riemannian background. The torsional effects generated
by the spin fluid modify the background geometry and
affect the propagation of the photons. The study of the
103001
polarization of the gamma-ray bursts could also impose
some limits on the spin density and overall rotation of the
Universe.

However, the practical implementation of an observa-
tional program aiming at detecting torsion and nonmetric-
ity from the polarization of the gamma-ray bursts could be
extremely difficult. From the present observational point of
view, the polarization measurements of the gamma-ray
bursts and the interpretation of the data are still controver-
sial. There is no general agreement on the detected value of
the polarization degree [27–29], and, since at the moment
the data quality is insufficient to constrain the polarization
degree in most of the cases [29], a major improvement in
the observational techniques is required. On the other hand,
there are many astrophysical mechanisms which can in-
duce an initial polarization of the photons from the cos-
mological gamma-ray bursts, which makes the task of
distinguishing between the different involved physical pro-
cesses extremely difficult. The propagation of the photons
takes place on cosmological distances in a cosmic environ-
ment whose properties also present many uncertainties.
However, when a larger amount of high precision spectro-
polarimetric data from gamma-ray bursts will be available,
the possibility of testing the foundations of general rela-
tivity and other more general gravitational theories could
become a reality.

ACKNOWLEDGMENTS

We would like to thank Professor Y. F. Huang for very
useful suggestions and help. This work is supported by a
grant of the government of the Hong Kong SAR.
[1] H. Riffert and P. Meszaros, Astrophys. J. 325, 207 (1988).
[2] R. A. Breuer and J. Ehlers, Proc. R. Soc. A 370, 389

(1980); R. A. Breuer and J. Ehlers, Proc. R. Soc. A 374,
65 (1981).

[3] R. W. Lindquist, Ann. Phys. (N.Y.) 37, 487 (1966).
[4] H. Riffert, Astrophys. J. 310, 729 (1986).
[5] S. Bildhauer, Classical Quantum Gravity 6, 1171 (1989).
[6] S. Bildhauer, Astron. Astrophys. 219, 25 (1989).
[7] S. Bildhauer, Classical Quantum Gravity 7, 2367 (1990).
[8] C. H. Brans, Astrophys. J. 197, 1 (1975).
[9] R. A. Matzner and B. W. Tolman, Phys. Rev. D 26, 2951

(1982).
[10] M. M. Basko and A. G. Polnarev, Mon. Not. R. Astron.

Soc. 191, 207 (1980).
[11] R. Fabbri and M. Tamburrano, Astron. Astrophys. 179, 11

(1987).
[12] F. W. Hehl, G. D. McCrea, E. W. Mielke, and Y. W.

Ne’eman, Phys. Rep. 258, 1 (1995).
[13] F. W. Hehl, P. von der Heyde, G. D. Kerlick, and J. Nester,

Rev. Mod. Phys. 48, 393 (1976).
[14] J. W. Moffat and E. Woolgar, Phys. Rev. D 37, 918 (1988).
[15] W.-T. Ni, in Precision Measurements and Fundamental

Constants II, NBS Spec. Pub. No. 617, edited by B. N.
Taylor and W. D. Philips (U.S. GPO, Washington, DC,
1984).

[16] M. D. Gabriel, M. P. Haugan, R. B. Mann, and J. H.
Palmer, Phys. Rev. Lett. 67, 2123 (1991).

[17] S. K. Solanski, M. P. Haugan, and R. B. Mann, Phys. Rev.
D 59, 047101 (1999).

[18] G. F. Rubilar, Y. N. Obukhov, and F. W. Hehl, Classical
Quantum Gravity 20, L185 (2003).

[19] Y. Itin and F. W. Hehl, Phys. Rev. D 68, 127701 (2003).
[20] S. K. Solanki, O. Preuss, M. P. Haugan, A. Gandorfer, H. P.

Povel, P. Steiner , K. Stucki, P. N. Bernasconi, and D.
Soltau, Phys. Rev. D 69, 062001 (2004).

[21] K. S. Cheng and T. Lu, Chin. J. Astron. Astrophys. 1, 1
(2001).

[22] P. Meszaros, Annu. Rev. Astron. Astrophys. 40, 137
(2002).

[23] B. Zhang and P. Meszaros, Int. J. Mod. Phys. A 19, 2385
-10



RADIATION TRANSPORT EQUATIONS IN NON- . . . PHYSICAL REVIEW D 71, 103001 (2005)
(2004).
[24] T. Piran, Rev. Mod. Phys. 76, 1143 (2005).
[25] T. Harko and K. S. Cheng, Astrophys. J. 611, 633 (2004).
[26] K. S. Cheng and T. Harko, Astropart. Phys. 22, 297

(2004).
[27] W. Coburn and S. E. Boggs, Nature (London) 423, 415

(2003).
[28] R. E. Rutledge and D. B. Fox, Mon. Not. R. Astron. Soc.

350, 1288 (2004).
[29] C. Wigger, W. Hajdas, K. Arzner, M. Güdel, and A.
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