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Mechanical analog of temperature for the description of force distribution
in static granular packings
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It is shown that in a stressed granular packing, the effect of the applied pressure and structural randomness
on the contact force distribution can be described accurately by a variational principle of minimizing energy
subject to the constraint of keeping entropy at a fixed value. The constraint on entropy may be regarded as a
measure of the degree of retained disorderness in the system. This procedure leads to the introduction of a
parameter known as the ‘‘mechanical temperature.’’ Similar to the role of the conventional thermal temperature
in a thermal system, the mechanical temperature can be viewed as a parameter controlling the mixity between
energy minimization and entropy maximization in the equilibrium condition.
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I. INTRODUCTION

Either by design or otherwise, many engineering mater
are randomly structured. Examples include atomistically d
ordered or partially disordered materials, such as amorph
solids or polymers, and macroscopically disordered mat
als, such as foam materials or random grain piles. Becaus
structural randomness, the internal force distribution in th
materials due to external loadings would not be unifor
Earlier experiments and computer simulations have c
cluded that intergranular contact forces in a granular pack
under gravity or compaction loading, in general, follow
exponential probabilistic distribution, in which large forc
are exponentially rare@1–3#. More recent experiments hav
focused on the force distribution at large applied loads
that the particles enter the deformable regime. Some aut
have concluded that the force distribution observed tran
into a Gaussian form in the deformable regime@4,5#. Others
have found distributions that are peaked at about the m
force, but the large force regime still follows an exponent
tail with an increasing slope as the load increases@6#. From
computer simulations, O’Hernet al. @7,8# have also found
Gaussian force distributions in frictionless granular packin
as well as in supercooled liquids and foams as tempera
decreases.

Much of the theoretical understanding of the exponen
probabilistic distribution and the diffusive nature of the co
tact forces in grain piles available to date is provided by
‘‘ q model’’ @9# or its variants@10–15#. The q model, origi-
nally developed to understand random river networks
based on the assumption of a hierarchy structure in wh
force ~as in the case of uniaxial compaction loading! or body
weight ~as in the case of loading due to gravity! disperses
through the material volume from one end to another. Thq
model is successful in providing a mean-field description
how forces percolate throughout the granular medium, bu
is self-inconsistent in the sense that a regular structur
required for analyticity but force transmission among
grains is assumed to be random. Also, theq model predicts
power-law distribution at small forces, implying vanishin
probability distribution at zero force—a prediction that d
agrees with experimental findings@16#.
1063-651X/2003/68~1!/011301~10!/$20.00 68 0113
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A number of authors have also investigated the appli
bility of statistical physics concepts in describing granu
systems. In modeling avalanches on the slopes of a flow
sandpile, Jaeger, Liu, and Nagel mimic the effects of m
chanical vibrations by an effective temperature@17#. Ed-
wards@18# has studied extensively the application of entro
concepts to the description of configurations of random gr
piles. Edwards’ theory is aimed at describing how space
filled by the granular volumes, taking into account rando
ness as expressed by an entropy function. He transforme
laws of thermodynamics into the granular analogies by dra
ing parallelism between energy and volume, and the inc
poration of the entropy function introduces an analog of te
perature, which he called the ‘‘compactivity.’’ The extensio
of Edwards’ entropy and compactivity to describe cont
forces, however, has not been pursued. Bagi@19# and
Evesque@20#, on the other hand, have argued that the pr
ciple of maximum entropy should be applicable to descr
force distribution in random granular packings. However,
prediction of the maximum entropy assumption is the ex
nential Maxwell-Boltzmann~MB! distribution, which is not
in agreement with the Gaussian distribution mention
above. Recently, Onoet al. @21# investigated five possible
definitions of an effective temperature to describe the fl
tuations of elastic bubbles during viscous shear. Their res
indicate that an athermal elastic foam during shear can
described by statistical mechanics with an effective tempe
ture that depends on the shear rate.

This work is an attempt to develop further the applicati
of statistical mechanics concepts in the description of r
dom granular materials as advocated in the previous stu
outlined above@18–21#. We first argue that the degree o
retained randomness in a jammed structure can be re
sented by an entropy functional. We then predict equilibriu
by minimizing the strain energy of the system, subject to
constraint imposed by the retained entropy. The result
transition from the exponential to Gaussian form of the fo
distribution, as the retained entropy decreases. To verify
results, computer simulations using the discrete elem
method were also carried out. It is expected that the conc
developed in this work should also be applicable to ot
random materials such as open cell foam materials.
©2003 The American Physical Society01-1
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II. THEORY

A. Entropy as a measure of retained disorderness

The global ground state of a granular packing under lo
ing should evidently be a perfectly crystalline state, since
the packing density is maximum, the potential energy of
load application mechanism would be minimum. Howeve
loaded granular packing may be jammed at a looser, ran
state @22#. The perfectly crystalline state evidently has t
lowest configurational entropy, for there is only one way
the system to manifest itself, and a random state will hav
higher entropy, for there will be many microscopically indi
tinguishable ways the system can manifest itself while be
subject to the same macroscopic conditions. We prop
therefore, that an effective way to describe the degree
randomness of a granular packing is theretained configura-
tional entropy. Assuming that each random state can be ch
acterized by the corresponding contact force distribut
P( f ), the statistical entropy functional is defined as@18–20#

S52kE
0

`

P~ f !ln@P~ f !#d f , ~1!

wherek is a normalization constant analogous to the Bo
mann constant.

B. Equilibrium condition for static granular packing

When a loaded granular packing settles to equilibriu
the energyU must attain a local minimum value, subject
the constraint imposed by the retained entropy in Eq.~1!.
The corresponding variation principle is equivalent to mi
mizing the functional

F5U2uS, ~2!

whereu is the Lagrange multiplier associated with the co
straint in Eq.~1!. Let W( f ) be the work done by a contac
force f between two grains. For a granular packing with
force distributionP( f ), the energy functional will be

U5E
0

`

P~ f !W~ f !d f . ~3!

To find the equilibrium distribution,U should then be mini-
mized, subject to the constraint imposed by the retained
tropy in Eq.~1!, as well as the additional constraints

E
0

`

f P~ f !d f5 f̄ 5constant and E
0

`

P~ f !d f51. ~4!

The result is

P~ f !5A expF2
1

ku
@W~ f !2l f #G , ~5!

whereA andl are normalization constants that makeP( f )
satisfy Eq.~4!.
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1. 2D Hertzian contact

To illustrate the results, let us consider the simple case
a two-dimensional~2D! granular packing in which the con
tact forces are purely Hertzian. For an elastic contact
tween two parallel circular disks, the Hertzian force law
given by @23#

f 5
pEra

2

4R*
, ~6!

wherea is the radius of the circular contact region,Er is the
reduced modulus, andR* is the relative curvature defined a

1

R*
5

1

R1
1

1

R2
,

R1 and R2 being the radii of the two contacting disks. Th
reduced modulusEr is defined as

1

Er
5

12n1
2

E1
1

12n2
2

E2
,

wheren i andEi ( i 51,2) are the Poisson’s ratio and Young
modulus of the disks, respectively.

For the sake of simplicity, let us consider the case wh
the 2D granular packing has identical disks. LetR be the
common radius andn and E be the common elastic con
stants,R* 5R/2 andEr5E/2(12n2), and the Hertzian force
law in Eq.~6! becomesf 5pEra

2/2R. The work done byf is

W~ f !52E
0

`

f
dr

da
da,

where r 52AR22a2 is the distance between the grain ce
ters.W( f ) can be shown to be given by

W~ f !5
2pEr

3 FR22S R f

pEr
1R2DA12

2 f

pErR
G' 2 f 2

3pEr
,

~7!

where the simplification at the end is accurate whenf /ErR is
small compared to unity. With Eq.~7!, P( f ) in Eq. ~5! would
adopt a Gaussian form

P~ f !5A exp@2k~^ f &2 f o!2#, ~8!

where ^ f &5 f / f̄ , f̄ being the mean force, andk
5(2 f̄ 2/3pEr)(1/ku) is an inverse and dimensionless me
sure of the Lagrange multiplieru. For eachk, the normaliza-
tion constantsA and f o can be calculated to makeP( f )
satisfy Eq.~4!, and the results are given in Table I.

2. 3D Hertzian contact

In 3D, the Hertzian force law is@23#

f 5
4Era

3

3R*
, ~9!
1-2
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TABLE I. Normalization constants for 2D equilibrium distribution in Eq.~8!.

k f o A
Entropy

S

EnergyU
~units of

2 f̄ 2/3pEr)

0.01 248.0365 1.0302331010 0.999823 2.10601
0.1 23.22845 2.39813 0.990447 1.77155
0.2 20.841848 0.848929 0.973891 1.65815
0.3 20.0843688 0.652012 0.955138 1.58230
0.4 0.275758 0.597287 0.935470 1.52576
0.5 0.481058 0.582599 0.915435 1.48106
0.6 0.611026 0.583967 0.895306 1.44436
0.7 0.69914 0.593048 0.875240 1.41343
0.8 0.761838 0.606237 0.855331 1.38684
0.9 0.808085 0.621752 0.835638 1.36364
1 0.843156 0.638622 0.816198 1.34316
2 0.968629 0.819483 0.638307 1.21863
3 0.991399 0.984671 0.489865 1.15807
4 0.997355 1.13109 0.366268 1.12236
5 0.999142 1.26256 0.262571 1.09914
6 0.999713 1.38253 0.174389 1.08319
7 0.999903 1.49284 0.098638 1.07133
8 0.999967 1.59582 0.0323445 1.06247
9 0.999988 1.69259 20.0263644 1.05554
10 0.999996 1.78413 20.0789714 1.05000
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so that for a uniform granular packing, it becomesf
58Era

3/3R. W( f ) can be shown to be given by

W~ f !5
2Er

3R F2aAR22a2~3R212a2!

13R4 tan21S a

AR22a2D G .

As a/R→0,

W~ f !'
16Er

15R2 a55
2

5R S 3R

8Er
D 2/3

f 5/3. ~10!

Substituting Eq.~10! into Eq. ~5! yields the following form
for P( f ):

P~ f !5A exp@2k~^ f &5/32l^ f &!#, ~11!

where k5(2/5R)(3R/8Er)
2/3 f̄ 5/3(1/ku), and A and l are

normalization constants given in Table II. Figures 1 and
show the equilibriumP( f ) at different values ofk for 2D
and 3D, respectively. It is perhaps interesting to see that
3D results in Fig. 2 show practically little difference with th
Gaussian forms for 2D shown in Fig. 1.

C. Analogy with thermodynamics

The functionalF in Eq. ~2! evidently resembles a fre
energy in the thermal sense. The Lagrange multiplieru is
analogous to the absolute temperature.u50 means that
01130
2

e

minimization ofF is equivalent to minimization ofE, subject
to the constraints in Eq.~4!. The result isW( f )1l1f 1l2
50, wherel1’s are Lagrange multipliers determined fro
the two constraints in Eq.~4!. This is simply an algebraic
equation inf and the solution to it would give definite value
of f instead of a distributionP( f ). In other words, minimi-
zation of the energy functional alone always yields the K
necker delta function forP( f ) and not a distribution. This is
the limiting case of the distributions in Figs. 1 and 2 ask
→`, and corresponds to the perfect crystalline behavio
which all contact forces must have the same value. This c
is the zero-temperature analog in the thermal situation.
the other hand, in the limitu→`, the entropy functional
alone is to be maximized. When this is done, the result is
Maxwell-Boltzmann distributionP( f )5exp(2f/ f̄ ), and cor-
responds to the limiting case ofk→0 in Figs. 1 and 2. This
case corresponds to infinite temperature in the thermal s
ation, and is also the special case considered by Bagi@19#
and Evesque@20#. The rangeuP@0,̀ ) therefore spans the
entire spectrum from perfect crystallinity to complete ra
domness, or from zero to infinite ‘‘mechanical temperatur
The relationship betweenk andS ~andU! is also shown in
Tables I and II. Here, it can be seen that as the ‘‘mechan
temperature’’ or 1/k decreases, both the entropy and ene
decrease, again in analogy with the thermal situation.

III. COMPUTER SIMULATION

A. Method of simulation

The 2D and 3D simulations were performed using t
discrete element method to illustrate the concepts develo
1-3
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TABLE II. Normalization constants for 3D equilibrium distribution in Eq.~11!.

k l A
Entropy

S

EnergyU
@units of

(2 f̄ 5/3/5R)(3R/8Er)
2/3]

0.01 297.5038 0.990098 0.999966 1.49769
0.1 27.58609 0.910329 0.997393 1.44835
0.2 22.65166 0.835727 0.991587 1.40900
0.3 21.03582 0.771267 0.984020 1.37851
0.4 20.244008 0.714411 0.975338 1.35360
0.5 0.220947 0.663589 0.965903 1.33257
0.6 0.524021 0.617730 0.955939 1.31441
0.7 0.735547 0.576058 0.945593 1.29847
0.8 0.890488 0.537983 0.934972 1.28429
0.9 1.00814 0.503040 0.924153 1.27155
1 1.10001 0.470857 0.913195 1.26000
2 1.47197 0.251574 0.802442 1.18318
3 1.56771 0.138202 0.697786 1.14062
4 1.60532 0.076447 0.602646 1.11321
5 1.62347 0.0422501 0.517210 1.09406
6 1.63353 0.0232564 0.440699 1.08015
7 1.63970 0.0127356 0.372198 1.06950
8 1.64383 0.00693731 0.310593 1.06126
9 1.64679 0.00375993 0.254903 1.05477
10 1.64901 0.00202857 0.20110 1.04936
it
ta
th

n
-
n
bu
th

be

nd
h-

li-
by
ll
ant
way

i-
m

i-
m-
so far. The main purpose of the simulation is to compare w
the theoretical development above. For the elastic con
between two solids, there is strong coupling between
tangential~frictional! forces and the normal pressure@23#,
which renders analytical development of the work do
W( f ) in Eq. ~3! difficult. For this reason, only Hertzian con
tact forces were considered in the simulation. The frictio
less assumption is certainly unrealistic for rough grains,
may nevertheless act as a limiting or ideal behavior for

FIG. 1. 2D equilibrium force distribution at different ‘‘mechan
cal’’ temperatures.k is an inverse measure of the mechanical te
peratureu ~see text!.
01130
h
ct
e

e

-
t

e

smooth grain situation. The issue of friction should better
addressed in a separate effort.

The 2D simulations were performed on 11 112 grains, a
the grain sizes distributed approximately uniformly throug
out a range of610% of the mean value to prevent crystal
zation. The initial packing configuration was generated
allowing a collection of randomly positioned disks to fa
under gravity in a 2D rectangular container. The result
contact forces due to gravity were subsequently relaxed a

-
FIG. 2. 3D equilibrium force distribution at different ‘‘mechan

cal’’ temperatures.k is an inverse measure of the mechanical te
peratureu ~see text!.
1-4
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MECHANICAL ANALOG OF TEMPERATURE FOR THE . . . PHYSICAL REVIEW E 68, 011301 ~2003!
by switching off the gravity. This produced a strain-free in
tial packing configuration with density 0.83 and a rectangu
dimension of 149d̄370d̄ (d̄ is the mean grain size!. Com-
paction was performed by uniformly pressing the four sid
of the rectangular packing by a given hydrostatic stress.
results presented below are from one initial configurati
but repeated calculation has also been done using ano
independently generated rectangular packing with a diffe
aspect ratio of 102d̄393d̄, but with the same initial packing
density and a similar number of grains. The force distrib
tions of the two packings were found to be identical, imp
ing that the results are independent of the geometry of
packing as long as the initial packing density is the same.
virtue of the force law in Eq.~6!, the unit of force~per unit
length! in the simulation scales with the productErd̄ and, as
is obvious, the unit of stress scales withEr or E ~the Pois-
son’s ratio of the grains was set to be 0.3!. In the following
results on 2D, 1 unit of pressure is defined as 531023E. If
E is 200 GPa for example, 1 unit of pressure is equal t
GPa.

For the 3D simulations, 53104 grains were simulated
and the grain size was uniform since it was observed that
structure did not crystallize easily. The initial structure w
generated using a method similar to the 2D above. The d
sity of the initial ~stress-free! packing was 0.64. Compactio
was also performed hydrostatically through applying
same compressive stress on all six sides of the rectang
packing. As for 2D, the unit of pressure in the 3D simulati
scales withEr . The results for 3D below are quoted direct
in terms of GPa where the Young’s modulus was assume
be 200 GPa, and Poisson’s ratio 0.3.

B. Results

Figure 3 shows the simulated results for 2D. It can
seen that the normalized force distribution is invariant w
respect to the applied hydrostatic load over a four-order

FIG. 3. Computer simulation results of contact force distribut
in 2D under hydrostatic load. One unit of pressure5531023E, E
5Young’s modulus.
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magnitude change of load up to about 1 unit. The probabi
curves from 0.0001 to 1 unit of load can be fitted accurat
by Eq. ~8! with k50.2. The curve at 10 units of load can b
fitted accurately byk50.7. A good fit in both cases indicate
the validity of the theory above, namely, the equilibrium d
tribution corresponds to minimization of energy while e
tropy is held constant. The fitted results also indicate thatk is
constant over a four-order-of-magnitude change in the
plied load up to about 1 unit, but starts to decrease when
load becomes larger.

The decrease in the parameterk beyond 1 unit of load is
accompanied by an observed drastic change in the ave
number of contacts per grain, which remained roughly c
stant at the rigid-grain limit@24# of 4 when the load was
smaller than about 1 unit, but increased to 5.2 when the l
was 10 units. The higher coordination at large loads co
sponds to a more regular arrangement or increased degr
crystallinity of the packing. Figure 4 shows the packing co
figurations at different applied hydrostatic loads. It can
seen that the packing at the slightest load of 0.0001 un
rather loose, and many grains evidently make four conta
with neighbors, i.e., the structure is within the rigid-gra
regime@24#. The packing at 1 unit of load is denser, but t
degree of crystallinity is still not high, with the majority o

FIG. 4. 2D packings at different applied hydrostatic loads.Z is
the average number of contacts per grain.
1-5
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A. H. W. NGAN PHYSICAL REVIEW E68, 011301 ~2003!
grains not in the closely packed condition of making s
contacts with neighbors. When the load is increased to
units, the packing exhibits a polycrystalline morphology w
closely packed domains separated by clear boundaries.
coordination number within each domain is usually 6.
conclude, the packing morphology changes very mildly fro
0.0001 to 1 unit of load, but undergoes a significant cha
from 1 to 10 units of load. This marks a structural transiti
at about 1 unit of load, which can be identified as polycr
tallization.

The structural transition past 1 unit of load can be visu
ized more clearly by the contact force networks shown
Fig. 5. Here, the width of the line joining each pair of co
tacting disks is set to be proportional to the contact fo
between the disks and inversely proportional to the ove
applied stress on the granular packing. The same centra
gion of the granular packing is shown for comparison p
poses. It can be seen that the force network remains pr
cally frozen from 0.0001 to about 0.1 unit of load, implyin
that in the low-pressure regime, the local contact forces
simply proportional to the applied load, without significa
variations in the spatial distribution. However, at 1 unit
load, the force network starts to undergo observable chan
and at 10 units of load, the pattern appears remarkably
ferent, exhibiting a much more homogeneous force distri
tion, as suggested by Fig. 3.

FIG. 5. Force networks in 2D packings at different applied h
drostatic loads. The width of the lines denotes the contact fo
magnitude. In each force pattern, the linewidths are normalized
factor proportional to the overall load applied. The same cen
region of the granular packing is shown for all force patterns.
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The mean contact forcef̄ from the 2D simulations is also
found to be proportional to the applied hydrostatic press
in the rigid-grain regime where the average coordinat
numberZ is 4 and the fittedk2D is 0.2, except at the larges
simulated load of 10 units, wheref̄ is observed to be 30%
smaller than what the proportionality relation predicts,
shown in the lower plot in Fig. 6. The 30% reduction inf̄ at
10 units of load is accompanied by a corresponding incre
in Z by 30% from 4 to 5.2 as noted before, i.e., the quan
Z f̄ is found to be proportional to the applied pressure,
indicated in the upper plot in Fig. 6. In fact, one may expe
Z f̄5spd, a condition when the applied hydrostatic pressu
s is balanced on the individual grain level. The proportio
ality constant betweenZ f̄ ands observed in the upper plot in
Fig. 6 is indeed very close to the valuepd used in the simu-
lations, where the mean grain diameterd was fixed at three
length units.

The 3D simulation results, shown in Figs. 7 and 8, a

-
e
a
l

FIG. 6. Variation of mean forcef̄ observed in 2D simulations a
different hydrostatic pressures.

FIG. 7. Computer simulation results of contact force distributi
in 3D under hydrostatic load.
1-6
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MECHANICAL ANALOG OF TEMPERATURE FOR THE . . . PHYSICAL REVIEW E 68, 011301 ~2003!
similar. In Fig. 7, it can be seen that the force distributio
under applied pressure from 0.001 to 1 GPa can all be a
rately fitted by Eq.~11! with thek3D parameter chosen to b
0.7. Within this load range, the average coordination num
Z of the packing rises mildly from the rigid-grain limit@24#
of 6 at 0.001 GPa to 7.5 at 1 GPa, as shown in Fig. 8. T
packing morphologies and force networks shown in Fig
have indeed undergone only very mild changes from 0.
GPa to 1 GPa. However, at 10 GPa, polycrystallization i
close-packed domains occurs, and this is accompanied b
abrupt change in the force network pattern in Fig. 8, in wh
hard contacts can be seen to occur along closely packe
rections locally. Accompanying this change at 10 GPa is
drastic rise ofZ to 9.8, and an increase of the fittedk3D value
to 1.2, as shown in Fig. 7. Higher compaction loads were
simulated because the particle deformation calculated f
the observed mean force at the largest load of 10 GP
already 8.8%, and it is doubtful whether the type of the fo
law assumed in the simulation would still be valid at such
high elastic deformation. To investigate the effect on
force distribution of changing the structure by a larger exte
other means of densification, such as mechanical vibrat
may be used, but this is beyond the scope of the pre
investigation.

FIG. 8. ~Left! 3D packings at different applied hydrostatic load
~Right! Force networks at different loads. The width of the lin
denotes the contact force magnitude. In each force pattern, the
widths are normalized by a factor proportional to the overall lo
applied. The same central region of the granular packing is sh
for all force patterns.
01130
s
u-

er

e
8
1
o
an
h
di-
e

t
m
is

e
a
e
t,
n,
nt

IV. DISCUSSION

The most significant result from the present investigat
is that the force distribution in a static, granular packing w
uniform grain size and Hertzian contact force law is p
dicted to be Gaussian in 2D@Eq. ~8!# and nearly Gaussian in
3D @Eq. ~11!, Fig. 2#. Moreover, the exponential MB distri
bution is recovered as a limiting case of the Gaussian~or
nearly Gaussian! distribution, in the limit as the mechanica
temperature, or the system’s randomness, tends to infi
The predicted Gaussian or the limiting MB distribution are
agreement with the simulated results in the literatu
@4,5,7,8#. In particular, O’Hernet al. @8# have observed tha
the simulated force distributions for a harmonic and a He
zian force law are both Gaussian. Their Hertzian results
what is predicted in the present study. For a harmonic fo
law, W scales withf 2, and this is fortuitously the case con
sidered in the simplification step in Eq.~7! for a 2D Hertzian
contact. The distribution for a harmonic force law shou
therefore, be given by the same Gaussian form as in Eq.~8!,
and O’Hernet al.’s observation can, therefore, be explaine
Most experimental force distributions, however, exhibit
peak near the mean force value with an exponential tai
the large force regime@1–3,6#. As suggested by O’Hern
et al. @8#, the discrepancy between such a behavior and
Gaussian form is likely to be due to friction in the expe
mental situation.

Another interesting finding from the present investigati
is that the simulated force distributions in Fig. 3 for 2D a
in Fig. 7 for 3D are invariant within the rigid-grain limit, an
a structural transition at higher loads results in sharper
tributions. This appears to be different from the simulat
results obtained by Makse, Johnson, and Schwartz@4#, who
have observed that the force distribution undergoes a gra
transition from the MB behavior for small pressures to
Gaussian form for larger pressures. It should however,
noted that the simulation conditions in the two studies
very different. In the study of Makse, Johnson, a
Schwartz, friction was included, and the grain size varied
65%, while in the present 3D simulations, the grains ha
uniform size and are frictionless. The grain size was cho
to be uniform in the present simulations because the ob
tive was to compare with the theoretical development, and
the latter, it was difficult to deal with a spread grain si
distribution as well as friction in the derivation of the wor
done terms in Eqs.~7! and ~10!. With friction and a spread
size distribution. Makse, Johnson, and Schwartz were abl
obtain very loose but jammed configurations with coordin
tion number as low as 4, as compared to the rigid-grain li
of 6 in the frictionless case. It is, however, interesting to s
that the family of the force distributions observed by Maks
Johnson, and Schwartz during the transition from the MB
the Gaussian form as pressure and coordination incre
seems to correspond well to the curves in Fig. 2, ask in-
creases~cf. Fig. 2 of Makse, Johnson, and Schwartz@4# and
Fig. 2 of the present study!. This reinforces the idea that th
parameterk is a structure sensitive parameter, as discus
above, but of course it must be remembered that the ap
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A. H. W. NGAN PHYSICAL REVIEW E68, 011301 ~2003!
cability of the present results to the situation with friction
strictly speaking uncertain.

In the present study, the lowest coordination observed
in 3D, in agreement with the observation of Makse, Johns
and Schwartz who have also simulated the frictionless c
However, the frictionless results of Makse, Johnson, a
Schwartz do not indicate an abrupt rise in coordination nu
ber at a high pressure, as shown in Fig. 8~see Fig. 1 of Ref.
@4#!. The maximum coordination number obtained by Mak
Johnson, and Schwartz is below 8, which indicates no c
tallization. The absence of polycrystallization in the study
Makse Johnson, and Schwartz is probably due to the lo
pressure and the spread grain size used. The maximum
sure used by Makse, Johnson, and Schwartz was
31023E, whereE is Young’s modulus~data from Ref.@4#:
maximum pressure 100 MPa Poisson’s ratio50.2, shear
modulus529 GPa,) while the maximum pressure used in
present study is 0.05E ~maximum pressure 10 GPa,E
5200 GPa). Although the high pressure results in the pre
study may be unrealistic, since the force law assumed m
no longer be valid at pressures as high as 0.05E, the proce-
dure here nevertheless yields a polycrystallized structure
shown in Fig. 8, which could be used to illustrate that
different structure has a different value ofk, as shown in Fig.
7. The key point is that the polycrystallized structure at
GPa in Fig. 8 could be unloaded carefully to keep the co
dination, and if reloaded to a lower and hence realistic pr
sure, it will exhibit a differentk as compared to a random
structure.

As mentioned before, the Lagrange multiplieru in Eq. ~2!
may be viewed as an analog of the thermal temperature
trolling the mixity of strain energy and entropy contributio
in the free-energyF. In 2D, from Eq.~8!,

ku5
2 f̄ 2

3pEr

1

k2D
. ~12!

We have seen in Fig. 6 thatZ f̄ is proportional to the applied
pressures, and therefore, from Eq.~12!, u}s2/Z2k2D . The
u calculated from Eq.~12! is plotted against the applied hy
drostatic load in Fig. 9, where it can be seen thatu is indeed
proportional to the square of the applied pressure in
rigid-grain regime ofZ54, and when the rigid-grain limit is
exceeded (Z.4), departure from the quadratic behavior o
curs. The results in Fig. 3 indicate clearly thatk2D is con-
stant with respect to load within the rigid-grain limit. Th
fact that the packing configuration and the force network
both invariant within this regime, as shown in Figs. 4 and
indicates thatk2D depends on the structure of the packing b
not on the load, as long as the load is not large enoug
cause structural changes. This observation allows one to
compose Eq.~12! into

u5 f̄ 2 ~ for 2D! ~13!

and

k5
2

3pErk2D
~ for 2D!. ~14!
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With such a decomposition,k can be identified as a structure
sensitive term—it carriers the dependence on struc
throughk2D , and on material throughEr . u carries the de-
pendence on the load throughf̄ . Similarly, for 3D, we can
write @cf. Eq. ~11!#

u5 f̄ 5/3 ~ for 3D! ~15!

and

k5
2

5Rk3D
S 3R

8Er
D 2/3

~ for 3D! . ~16!

At constant structure, the increasing relationship betweeu

and f̄ is analogous to the thermal situation, e.g., in an id
gas, where the absolute temperature is proportional to
mean internal energy.

It may be of interest to state the dependence of the c
clusions so far on physical parameters such as elastic m
lus and grain size. The effects of the modulus and grain s
can, in fact, be deduced easily from the force laws used
Eqs.~6! and~9!. In the Hertzian force law for 2D or 3D, the
contact force between two grains is proportional to the
duced modulusEr . Hence, if the modulus is, say, double
the load has to be doubled to maintain the same deforma
at the contact. Thus, the deformation on doubling the mo
lus but keeping the load unchanged is the same as tha
halving the load but maintaining the modulus. Within th
rigid-grain limit, thek value is independent of load, and s
changing the modulus would have no effect on thek value.
The k value, however, would decrease with increasingEr
according to Eq.~14! or Eq.~16!. The effect of grain size can
also be deduced in a similar way. In 2D, for example, t
particle deformation~strain! is measured by (a/R)2 @see Eq.
~6!#. Therefore, ifR is doubled, the forcef in Eq. ~6! needs to
be doubled to maintain the deformation. However, doubl

FIG. 9. u vs applied hydrostatic pressure in 2D simulations. T
average coordination numberZ is 4 in the rigid-grain regime, and
increases beyond 4 as the grains are compressed when the pre
is very high.u is calculated according to Eq.~12! using the fittedk

in Fig. 3 and the mean forcef̄ observed in the simulations.
1-8
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MECHANICAL ANALOG OF TEMPERATURE FOR THE . . . PHYSICAL REVIEW E 68, 011301 ~2003!
both the length scale and the force implies that the app
pressure is unchanged in 2D. Hence, changing the grain
can have no effect on the deformation if the applied press
is unchanged. The same conclusion can also be drawn fo
using Eq.~9!. Therefore,k is also unaffected by changing th
grain size. According to Eq.~14!, k for 2D is also indepen-
dent of the grain size, but Eq.~16! suggests thatk for 3D
decreases with increasing grain size.

The current mechanical analog of temperatureu is similar
in nature to other effective temperatures proposed by pr
ous researchers for athermal but fluctuating systems@17–21#.
Edwards@18# has proposed a quantity known as compac
ity for granular packings, and this is also an analog to te
perature. Edwards’ treatment deals with the problem of
ing a volumeV by a granular powder, and statistical physic
concepts were introduced by drawing analogy between
ume and energy. Edwards’ expression for the free-ene
analog is@18#

F5V2X~]F/]X!, ~17!

whereX is the compactivity analogous tou in our present
treatment@cf. Eq. ~2!#. Energy itself did not come in as
direct focus for consideration in Edwards’ treatment. Ho
ever, the problem of filling space itself clearly has mu
relevance to energy minimization. For the case of packin
powder under gravity, for example, gravitational potent
energy should attain a local minimum when equilibrium
reached, and for the case of compaction by a loaded pis
the work done on the piston should also reach a minimu
The two temperaturesX andu are, therefore, clearly related
as for the perfectly crystalline system, both the compactiv
and the mechanical temperatureu would be zero, and for the
maximally disordered system~i.e., that having the Maxwell-
Boltzmann force distribution!, both the compactivity andu
would be very large. The current mechanical temperatureu is
also closely related to the dynamic granular temperature
posed by Jaeger, Liu, and Nagel@17#. The temperature o
Jaeger, Liu, and Nagel measures the extent of the fluctua
available to cause avalanches in a dynamic grain pile
should, therefore, be closely related to Edwards’ compac
ity X or the current mechanical temperatureu, i.e., a densely
packed powder has small compactivity and is also more
ficult to exhibit avalanches. A detailed analysis on the ma
ematical relationship betweenX and u would require the
mean energyU to be expressed as a function of grain vo
ev
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ume. This may not be done analytically but may be p
formed numerically. Such an analysis is beyond the scop
the present work and may be pursued as a future exer
Lastly, Onoet al. @21# have also investigated a similar effe
tive temperature asu here, namely, the reciprocal of the ra
of change of the entropy with respective to energy,dS/dU
@cf. Eq. ~2!#. Ono et al. @21# have shown that, for a sheare
elastic foam, such a definition of temperature agrees w
other definitions of temperatures concerning fluctuations
system properties~pressure, shear stress, energy!, as well as
viscosity. Onoet al. calculateddS/dU by randomly generat-
ing foam structures and considering the probability distrib
tion of the energies of these structures.dS/dU is then ob-
tained as the slope of the log~probability! vs energy plot at a
certain energy. It is clear that such an approach is applica
to a dynamic system only, since a randomly generated c
figuration is usually not in mechanical equilibrium. Ther
fore, the presentu has nothing to do with this effective tem
perature calculated by Onoet al.

V. CONCLUSIONS

In structurally random materials, such as a granular pa
ing, the internal force distribution due to external loading
not uniform. The internal force distribution enables the de
nition of an energy as well as an entropy functional. It
proposed here to use the retained entropy as a nume
measure of the degree of randomness. Minimization of
energy functional subject to the constraint imposed by
retained entropy yields force distributions in excellent agr
ment with computer simulation results. The constrain
variational principle of energy minimization is also equiv
lent to that of minimization of a free-energy functional co
sisting of a mixture of energy and entropy. The mixity b
tween the energy and entropy is controlled by a param
known as the ‘‘mechanical temperature.’’ At constant stru
ture, the mechanical temperature is found to increase w
the applied loading or the mean value of the intergranu
contact forces.
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