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Mechanical analog of temperature for the description of force distribution
in static granular packings
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It is shown that in a stressed granular packing, the effect of the applied pressure and structural randomness
on the contact force distribution can be described accurately by a variational principle of minimizing energy
subject to the constraint of keeping entropy at a fixed value. The constraint on entropy may be regarded as a
measure of the degree of retained disorderness in the system. This procedure leads to the introduction of a
parameter known as the “mechanical temperature.” Similar to the role of the conventional thermal temperature
in a thermal system, the mechanical temperature can be viewed as a parameter controlling the mixity between
energy minimization and entropy maximization in the equilibrium condition.

DOI: 10.1103/PhysRevE.68.011301 PACS nund)erd5.05:+x, 45.70-n, 81.05.Rm, 05.76-a

I. INTRODUCTION A number of authors have also investigated the applica-
bility of statistical physics concepts in describing granular
Either by design or otherwise, many engineering materialsystems. In modeling avalanches on the slopes of a flowing
are randomly structured. Examples include atomistically dissandpile, Jaeger, Liu, and Nagel mimic the effects of me-
ordered or partially disordered materials, such as amorphouzhanical vibrations by an effective temperatdde]. Ed-
solids or polymers, and macroscopically disordered materiwards|[18] has studied extensively the application of entropy
als, such as foam materials or random grain piles. Because obncepts to the description of configurations of random grain
structural randomness, the internal force distribution in theseiles. Edwards’ theory is aimed at describing how space is
materials due to external loadings would not be uniformfilled by the granular volumes, taking into account random-
Earlier experiments and computer simulations have conness as expressed by an entropy function. He transformed the
cluded that intergranular contact forces in a granular packinéaws of thermodynamics into the granular analogies by draw-
under gravity or compaction loading, in general, follow aning parallelism between energy and volume, and the incor-
exponential probabilistic distribution, in which large forces poration of the entropy function introduces an analog of tem-
are exponentially rargl—3]. More recent experiments have perature, which he called the “compactivity.” The extension
focused on the force distribution at large applied loads s@f Edwards’ entropy and compactivity to describe contact
that the particles enter the deformable regime. Some authoferces, however, has not been pursued. BEH] and
have concluded that the force distribution observed transitEvesqud 20], on the other hand, have argued that the prin-
into a Gaussian form in the deformable regifdes]. Others  ciple of maximum entropy should be applicable to describe
have found distributions that are peaked at about the meaforce distribution in random granular packings. However, the
force, but the large force regime still follows an exponentialprediction of the maximum entropy assumption is the expo-
tail with an increasing slope as the load incred€édsFrom  nential Maxwell-Boltzmann{MB) distribution, which is not
computer simulations, O’Heret al. [7,8] have also found in agreement with the Gaussian distribution mentioned
Gaussian force distributions in frictionless granular packingsabove. Recently, Onet al. [21] investigated five possible
as well as in supercooled liquids and foams as temperatur@efinitions of an effective temperature to describe the fluc-
decreases. tuations of elastic bubbles during viscous shear. Their results
Much of the theoretical understanding of the exponentiaindicate that an athermal elastic foam during shear can be
probabilistic distribution and the diffusive nature of the con-described by statistical mechanics with an effective tempera-
tact forces in grain piles available to date is provided by theture that depends on the shear rate.
“g model” [9] or its variants[10—15. The g model, origi- This work is an attempt to develop further the application
nally developed to understand random river networks, if statistical mechanics concepts in the description of ran-
based on the assumption of a hierarchy structure in whicldom granular materials as advocated in the previous studies
force (as in the case of uniaxial compaction loadiogbody  outlined above[18—21]. We first argue that the degree of
weight (as in the case of loading due to gravyitjisperses retained randomness in a jammed structure can be repre-
through the material volume from one end to another. Ghe sented by an entropy functional. We then predict equilibrium
model is successful in providing a mean-field description ofoy minimizing the strain energy of the system, subject to the
how forces percolate throughout the granular medium, but itonstraint imposed by the retained entropy. The result is a
is self-inconsistent in the sense that a regular structure igansition from the exponential to Gaussian form of the force
required for analyticity but force transmission amongstdistribution, as the retained entropy decreases. To verify the
grains is assumed to be random. Also, theodel predicts results, computer simulations using the discrete element
power-law distribution at small forces, implying vanishing method were also carried out. It is expected that the concepts
probability distribution at zero force—a prediction that dis- developed in this work should also be applicable to other
agrees with experimental findingj6]. random materials such as open cell foam materials.
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Il. THEORY 1. 2D Hertzian contact

A. Entropy as a measure of retained disorderness To illustrate the results, let us consider the simple case of

The global ground state of a granular packing under loa a two-dimensiona(2D) granular packing in which the con-

. . . . -tact forces are purely Hertzian. For an elastic contact be-
INg shou!d ewdently_be a perfectly crystallln_e state, since Iftween two paral|loel ci?/cular disks, the Hertzian force law is
the packing density is maximum, the potential energy of the iven by[23]
load application mechanism would be minimum. However, & y

loaded granular packing may be jammed at a looser, random +E a2
state[22]. The perfectly crystalline state evidently has the f= —r*
lowest configurational entropy, for there is only one way for 4R
the system to manifest itself, and a random state will have a ) ) ) L
higher entropy, for there will be many microscopically indis- Wherea s the radius Oi the circular contact regid, is the
tinguishable ways the system can manifest itself while being€duced modulus, arig”™ is the relative curvature defined as
subject to the same macroscopic conditions. We propose,

therefore, that an effective way to describe the degree of i: i+ i

randomness of a granular packing is tetained configura- R* R Ry’

tional entropy Assuming that each random state can be char-

acterized by the corresponding contact force distributiorR1 andR; being the radii of the two contacting disks. The
P(f), the statistical entropy functional is defined[a8—2(0  reduced modulug, is defined as

* 1 1-v5 1-43
—kfpflnpf df, 1 i
, PINLP()] (N E-E TE

(6)

S=

wherek is a normalization constant analogous to the Boltz-wherev; andE; (i =1,2) are the Poisson’s ratio and Young's
mann constant. modulus of the disks, respectively.

For the sake of simplicity, let us consider the case when
the 2D granular packing has identical disks. IRete the
common radius and> and E be the common elastic con-

When a loaded granular packing settles to equilibriumstants R* =R/2 andE,=E/2(1— v?), and the Hertzian force
the energyl must attain a local minimum value, subject to |aw in Eq.(6) becomed = E,a?/2R. The work done by is
the constraint imposed by the retained entropy in &g.

The corresponding variation principle is equivalent to mini- o dr
mizing the functional W(f)=— fo fygda

B. Equilibrium condition for static granular packing

F=U-0S, 2
@ wherer =2,/R?>—a? is the distance between the grain cen-

where d is the Lagrange multiplier associated with the con-t€rs-W(f) can be shown to be given by

straint in Eq.(1). Let W(f) be the work done by a contact

2
force f between two grains. For a granular packing with a W(F)= 2mE, Rz—( Rf +R?|~\[1- 2f }% 2f
force distributionP(f ), the energy functional will be 3 wE, wER| 3wE,’

)
U= f P(f)w(f)df. 3 where the simplification at the end is accurate whdf}R is
0

small compared to unity. With E@7), P(f) in Eqg. (5) would

adopt a Gaussian form
To find the equilibrium distributiony should then be mini-

mized, subject to the constraint imposed by the retained en- P(f)=Aexd — k({f)—fg)?2], 8
tropy in Eqg.(1), as well as the additional constraints

where (f)=f/f, f being the mean force, andc
fop(f )df=T=constant and pr(f ydf=1, (4) =(2f%37E,)(1K6) is an inverse and dimensionless mea-
0 0 sure of the Lagrange multipliet. For eachx, the normaliza-
tion constantsA and f, can be calculated to mak@e(f)

The result is satisfy Eq.(4), and the results are given in Table I.
1 2. 3D Hertzian contact
P(1 )=Aexp{ B k_a[W(f )_)‘f]} ®) In 3D, the Hertzian force law if23]
whereA and\ are normalization constants that maRéf ) _ 4Ea° ©
satisfy Eq.(4). 3R* ’
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TABLE I. Normalization constants for 2D equilibrium distribution in E®).

EnergyU
Entropy (units of
K fo A S 2 f2/37E,)
0.01 —48.0365 1.03028 10%° 0.999823 2.10601
0.1 —3.22845 2.39813 0.990447 1.77155
0.2 —0.841848 0.848929 0.973891 1.65815
0.3 —0.0843688 0.652012 0.955138 1.58230
0.4 0.275758 0.597287 0.935470 1.52576
0.5 0.481058 0.582599 0.915435 1.48106
0.6 0.611026 0.583967 0.895306 1.44436
0.7 0.69914 0.593048 0.875240 1.41343
0.8 0.761838 0.606237 0.855331 1.38684
0.9 0.808085 0.621752 0.835638 1.36364
1 0.843156 0.638622 0.816198 1.34316
2 0.968629 0.819483 0.638307 1.21863
3 0.991399 0.984671 0.489865 1.15807
4 0.997355 1.13109 0.366268 1.12236
5 0.999142 1.26256 0.262571 1.09914
6 0.999713 1.38253 0.174389 1.08319
7 0.999903 1.49284 0.098638 1.07133
8 0.999967 1.59582 0.0323445 1.06247
9 0.999988 1.69259 —0.0263644 1.05554
10 0.999996 1.78413 —0.0789714 1.05000

so that for a uniform granular packing, it becomés minimization ofF is equivalent to minimization d&, subject

=8E,a%3R. W(f) can be shown to be given by to the constraints in Eq4). The result isW(f)+\.f+\,
=0, where\,’s are Lagrange multipliers determined from
2E, the two constraints in Eg4). This is simply an algebraic
W(f)= 3r| 2V R®—a’(3R*+2a%) equation inf and the solution to it would give definite values
of f instead of a distributioP(f ). In other words, minimi-

zation of the energy functional alone always yields the Kro-

+3R*tan ! e necker delta function foP(f ) and not a distribution. This is
R?2—a? the limiting case of the distributions in Figs. 1 and 2 s
—oo, and corresponds to the perfect crystalline behavior in
As a/R—0, which all contact forces must have the same value. This case
) 3 is the zero-temperature analog in the thermal situation. On
W(f )~ 16E, a5:_(3_R> £513 (10) the other hand, in the limi#—o, the entropy functional
15R? 5R 1\ 8E, alone is to be maximized. When this is done, the result is the

Maxwell-Boltzmann distributiorP(f ) = exp(—f/f), and cor-
responds to the limiting case af—0 in Figs. 1 and 2. This
case corresponds to infinite temperature in the thermal situ-
_ _ 5/3_ ation, and is also the special case considered by BEdji
P()=Aexd —«((f) ML, @) and Evesqué¢20]. The rangefde[0,») therefore spans the
entire spectrum from perfect crystallinity to complete ran-
omness, or from zero to infinite “mechanical temperature.”
he relationship betweer and S (andU) is also shown in
'Iéables | and Il. Here, it can be seen that as the “mechanical
temperature” or 14 decreases, both the entropy and energy
decrease, again in analogy with the thermal situation.

Substituting Eq(10) into Eq. (5) yields the following form
for P(f):

where = (2/5R) (3R/8E,)?® t°3(1/k#), and A and \ are
normalization constants given in Table Il. Figures 1 and
show the equilibriumP(f) at different values ofc for 2D
and 3D, respectively. It is perhaps interesting to see that th
3D results in Fig. 2 show practically little difference with the
Gaussian forms for 2D shown in Fig. 1.

C. Analogy with thermodynamics lll. COMPUTER SIMULATION

The functionalF in Eq. (2) evidently resembles a free A. Method of simulation

energy in the thermal sense. The Lagrange multiplies The 2D and 3D simulations were performed using the
analogous to the absolute temperatuée=0 means that discrete element method to illustrate the concepts developed
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TABLE Il. Normalization constants for 3D equilibrium distribution in EdJ1).

EnergyU
Entropy [units of
K A A S (2 f¥35R) (3R/BE,) 2
0.01 —97.5038 0.990098 0.999966 1.49769
0.1 —7.58609 0.910329 0.997393 1.44835
0.2 —2.65166 0.835727 0.991587 1.40900
0.3 —1.03582 0.771267 0.984020 1.37851
0.4 —0.244008 0.714411 0.975338 1.35360
0.5 0.220947 0.663589 0.965903 1.33257
0.6 0.524021 0.617730 0.955939 1.31441
0.7 0.735547 0.576058 0.945593 1.29847
0.8 0.890488 0.537983 0.934972 1.28429
0.9 1.00814 0.503040 0.924153 1.27155
1 1.10001 0.470857 0.913195 1.26000
2 1.47197 0.251574 0.802442 1.18318
3 1.56771 0.138202 0.697786 1.14062
4 1.60532 0.076447 0.602646 1.11321
5 1.62347 0.0422501 0.517210 1.09406
6 1.63353 0.0232564 0.440699 1.08015
7 1.63970 0.0127356 0.372198 1.06950
8 1.64383 0.00693731 0.310593 1.06126
9 1.64679 0.00375993 0.254903 1.05477
10 1.64901 0.00202857 0.20110 1.04936

so far. The main purpose of the simulation is to compare wittsmooth grain situation. The issue of friction should better be
the theoretical development above. For the elastic contacddressed in a separate effort.

between two solids, there is strong coupling between the The 2D simulations were performed on 11 112 grains, and
tangential(frictional) forces and the normal pressur23], the grain sizes distributed approximately uniformly through-
which renders analytical development of the work doneout a range oft10% of the mean value to prevent crystalli-
W(f) in Eqg. (3) difficult. For this reason, only Hertzian con- zation. The initial packing configuration was generated by
tact forces were considered in the simulation. The friction-allowing a collection of randomly positioned disks to fall
less assumption is certainly unrealistic for rough grains, butinder gravity in a 2D rectangular container. The resultant
may nevertheless act as a limiting or ideal behavior for thecontact forces due to gravity were subsequently relaxed away

10' 3 10" 3
10° £\
= 2
2 2
8 10" \ 8
3 3
[:] <
8 402 / \ \\\ 8 \\\\
I BN “ AN
10° \ \\ \ \\\\\\
\ VAN N AR AN NN
10 1. 04 02 x=001 1 04 02 «=001
10+ 1 ViAo S \ NN N
T T T L L B —1 T T v LA L B | U
0 1 2 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10
Normalized contact force Normalized contact force
FIG. 1. 2D equilibrium force distribution at different “mechani- FIG. 2. 3D equilibrium force distribution at different “mechani-
cal” temperaturesk is an inverse measure of the mechanical tem-cal” temperaturesx is an inverse measure of the mechanical tem-
peratured (see text peratured (see text
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Model curve: x,, = 0.2

= = =Model curve: x,, = 0.7

Pressure = 0.0001 unit

Pressure = 0.001 unit

Pressure = 0.01 uplt Load = 0.0001 unit
Pressure = 0.1 unit 7=40
Pressure = 1 unit

Pressure = 10 units

10' 5| 2D uniform compaction
no cohesion

30
O 0ODO

-
S

-
v
RN RERR
\
\\ , . Load = 1 unit

10* r r T T ) -
0 1 2 3 4 5 6 Z=43

Normalized Contact Force

Probability Density
=)

=
o
3

FIG. 3. Computer simulation results of contact force distribution
in 2D under hydrostatic load. One unit of pressafiex 10 °E, E
=Young’s modulus.

by switching off the gravity. This produced a strain-free ini-
tial packing configuration with density 0.83 and a rectangular

dimension of 148X70d (d is the mean grain sizeCom-

paction was performed by uniformly pressing the four sides Load = 10 units
of the rectangular packing by a given hydrostatic stress. The Z=52
results presented below are from one initial configuration,

but repeated calculation has also been done using another
independently generated rectangular packing with a different

aspect ratio of 102x93d, but with the same initial packing
density and a similar number of grains. The force distribu-
tions of the two packings were found to be identical, imply-
ing that the results are independent of the geometry of th

packing as long as the initial packing density is the same. By ) ) -
virtue of the force law in Eq(6), the unit of force(per unit ~ Magnitude change of load up to about 1 unit. The probability

- ; ; ; ry from 0.0001 to 1 unit of load can be fitted accurately

length in the simulation scales with the produUgtd and, as curves ) T .
is obvious, the unit of stress scales wih or E (the Pois- t?y Eq.(8) with ¥=0.2. The curve ?‘ .10 units of qud can be
son's ratio of the grains was set to be J0.B the following fitted accurately byc=0.7. A good fit in both cases indicates
results on 2D, 1 unit of pressure is defined as1® 3E. If the validity of the theory above, namely, the equilibrium dis-
E is 200 GPa, for example, 1 unit of pressure is equal to 1tr|but|on corresponds to minimization of energy while en-
GPa ' tropy is held constant. The fitted results also indicate ihat

For the 3D simulations, §10° grains were simulated, constant over a four-order-of-magnitude change in the ap-

and the grain size was uniform since it was observed that th lied load up to about 1 unit, but starts to decrease when the

structure did not crystallize easily. The initial structure was oad becomes larger.

generated using a method similar to the 2D above. The den- The dec_r%aie in thebparargeéebeg_/onorlll unit_ oftlhoad is
sity of the initial (stress-fregpacking was 0.64. Compaction accompanied by an observed drastic change in the average

: ; number of contacts per grain, which remained roughly con-
was also performed hydrostatically through applying the fant at the rigid-grain limi{24] of 4 when the load was

same compressive stress on all six sides of the rectangul§ ller th bout 1 unit. but | 410 5.2 when the load
packing. As for 2D, the unit of pressure in the 3D simulationSTMaler than about L untt, but increased 1o .2 when the joa

scales WithE, . The results for 3D below are quoted directly was 10 units. The higher coordination at large loads corre-

in terms of GPa where the Young’s modulus was assumed t onds to a more regular arrangement or increased degree of
be 200 GPa. and Poisson’s ratio 0.3 crystallinity of the packing. Figure 4 shows the packing con-

figurations at different applied hydrostatic loads. It can be
seen that the packing at the slightest load of 0.0001 unit is
rather loose, and many grains evidently make four contacts
Figure 3 shows the simulated results for 2D. It can bewith neighbors, i.e., the structure is within the rigid-grain
seen that the normalized force distribution is invariant withregime[24]. The packing at 1 unit of load is denser, but the
respect to the applied hydrostatic load over a four-order-ofdegree of crystallinity is still not high, with the majority of

FIG. 4. 2D packings at different applied hydrostatic load$s
(t_pe average number of contacts per grain.

B. Results
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FIG. 6. Variation of mean forcé observed in 2D simulations at
different hydrostatic pressures.

The mean contact forcefrom the 2D simulations is also
found to be proportional to the applied hydrostatic pressure
in the rigid-grain regime where the average coordination
numberZ is 4 and the fitted¢, is 0.2, except at the largest

simulated load of 10 units, wherfeis observed to be 30%
smaller than what the proportionality relation predEts, as

FIG. 5. Force networks in 2D packings at different applied hy-shown in the lower plot in Fig. 6. The 30% reductionfimat
drostatic loads. The width of the lines denotes the contact forcd 0 units of load is accompanied by a corresponding increase
magpnitude. In each force pattern, the linewidths are normalized by i Z by 30% from 4 to 5.2 as noted before, i.e., the quantity
factor proportional to the overall load applied. The same central;§ is found to be proportional to the applied pressure, as
region of the granular packing is shown for all force patterns. indicated in the upper plot in Fig. 6. In fact, one may expect

_ _ - _ _ Zf=omd, a condition when the applied hydrostatic pressure
grains not in the closely packed condition of making six¢ is balanced on the individual grain level. The proportion-

contacts with neighbors. When the load is increased to 1Q)ity constant betweeAf ando observed in the upper plot in
units, the packing exhibits a polycrystalline morphology with rig. 6 is indeed very close to the valuel used in the simu-
closely packed domains separated by clear boundaries. Thgtions, where the mean grain diametewas fixed at three
coordination number within each domain is usually 6. Tolength units.
conclude, the packing morphology changes very mildly from  The 3D simulation results, shown in Figs. 7 and 8, are
0.0001 to 1 unit of load, but undergoes a significant change
from 1 to 10 units of load. This marks a structural transition 10’ 3D Uni .

. . . o niform Compaction
at about 1 unit of load, which can be identified as polycrys- Grain size = 3 nm, no cohesion
tallization. ;

The structural transition past 1 unit of load can be visual- 10°
ized more clearly by the contact force networks shown in
Fig. 5. Here, the width of the line joining each pair of con- £
tacting disks is set to be proportional to the contact forceg
between the disks and inversely proportional to the overall z ]
applied stress on the granular packing. The same central re3 442,
gion of the granular packing is shown for comparison pur- § ]
poses. It can be seen that the force network remains practi® ]
cally frozen from 0.0001 to about 0.1 unit of load, implying 107 o
that in the low-pressure regime, the local contact forces are ] :
simply proportional to the applied load, without significant :
variations in the spatial distribution. However, at 1 unit of 10" +——T— y " =T " y y "

0 1 2 3 4 5 6 7 8 9 10
load, the force network starts to undergo observable change Normalized Contact Force
and at 10 units of load, the pattern appears remarkably dif-
ferent, exhibiting a much more homogeneous force distribu- FIG. 7. Computer simulation results of contact force distribution
tion, as suggested by Fig. 3. in 3D under hydrostatic load.

Load = 1 unit oad = 10 units

Model curve: K,y =07
----- Model curve: x,, =12
A Load =0.001 GPa
v Load =0.01 GPa
O Load =0.1 GPa
X
(o]

10" 5

Load = 1 GPa
Load = 10 GPa
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IV. DISCUSSION

The most significant result from the present investigation
is that the force distribution in a static, granular packing with
uniform grain size and Hertzian contact force law is pre-
dicted to be Gaussian in 2[Eq. (8)] and nearly Gaussian in
3D [Eq. (11), Fig. 2]. Moreover, the exponential MB distri-
bution is recovered as a limiting case of the Gauss@n
nearly Gaussiandistribution, in the limit as the mechanical
temperature, or the system’s randomness, tends to infinity.
The predicted Gaussian or the limiting MB distribution are in
agreement with the simulated results in the literature
[4,5,7,8. In particular, O’'Hernet al. [8] have observed that
the simulated force distributions for a harmonic and a Hert-
zian force law are both Gaussian. Their Hertzian results are
what is predicted in the present study. For a harmonic force
law, W scales withf?, and this is fortuitously the case con-
sidered in the simplification step in E(Y) for a 2D Hertzian
contact. The distribution for a harmonic force law should,
therefore, be given by the same Gaussian form as i(&g.
and O’Hernet al’s observation can, therefore, be explained.
Most experimental force distributions, however, exhibit a
peak near the mean force value with an exponential tail in
the large force regim¢l-3,6. As suggested by O’Hern
et al. [8], the discrepancy between such a behavior and the
Gaussian form is likely to be due to friction in the experi-
mental situation.

Another interesting finding from the present investigation

FIG. 8. (Left) 3D packings at different applied hydrostatic loads. is that the simulated force distributions in Fig. 3 for 2D and
(Right) Force networks at different loads. The width of the lines in Fig. 7 for 3D are invariant within the rigid-grain limit, and
denotes the contact force magnitude. In each force pattern, the lingx structural transition at higher loads results in sharper dis-
widths are normalized by a factor proportional to the overall loadtributions. This appears to be different from the simulated
applied. The same central region of the granular packing is showpesyits obtained by Makse, Johnson, and Schwaitzwho
for all force patterns. have observed that the force distribution undergoes a gradual

similar. In Fig. 7, it can be seen that the force distributionst’@nsition from the MB behavior for small pressures to a

under applied pressure from 0.001 to 1 GPa can all be acc@aussian form for larger pressures. It should however, be
rately fitted by Eq(11) with the k35 parameter chosen to be noted that the simulation conditions in the two studies are
0.7. Within this load range, the average coordination numbeYery different. In the study of Makse, Johnson, and
Z of the packing rises m||d|y from the rigid_grain ||n'ﬁ24] Schwartz, friction was included, and the grain size varied by
of 6 at 0.001 GPa to 7.5 at 1 GPa, as shown in Fig. 8. The=5%, while in the present 3D simulations, the grains have
packing morphologies and force networks shown in Fig. 8uniform size and are frictionless. The grain size was chosen
have indeed undergone only very mild changes from 0.0010 be uniform in the present simulations because the objec-
GPa to 1 GPa. However, at 10 GPa, polycrystallization intdive was to compare with the theoretical development, and in
close-packed domains occurs, and this is accompanied by dhe latter, it was difficult to deal with a spread grain size
abrupt change in the force network pattern in Fig. 8, in whichdistribution as well as friction in the derivation of the work
hard contacts can be seen to occur along closely packed dione terms in Eqs.7) and (10). With friction and a spread
rections locally. Accompanying this change at 10 GPa is theize distribution. Makse, Johnson, and Schwartz were able to
drastic rise oZ to 9.8, and an increase of the fittegp value  obtain very loose but jammed configurations with coordina-
to 1.2, as shown in Fig. 7. Higher compaction loads were notion number as low as 4, as compared to the rigid-grain limit
simulated because the particle deformation calculated fromf 6 in the frictionless case. It is, however, interesting to see
the observed mean force at the largest load of 10 GPa ihat the family of the force distributions observed by Makse,
already 8.8%, and it is doubtful whether the type of the forceJohnson, and Schwartz during the transition from the MB to
law assumed in the simulation would still be valid at such athe Gaussian form as pressure and coordination increase
high elastic deformation. To investigate the effect on theseems to correspond well to the curves in Fig. 2xéas-
force distribution of changing the structure by a larger extentgcreasescf. Fig. 2 of Makse, Johnson, and Schw&dz and
other means of densification, such as mechanical vibratiorf;ig. 2 of the present studlyThis reinforces the idea that the
may be used, but this is beyond the scope of the preseiparameterx is a structure sensitive parameter, as discussed
investigation. above, but of course it must be remembered that the appli-

D
P

(X
A
%

)

Load = 10GPa, Z=9.8
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cability of the present results to the situation with friction is 10°
strictly speaking uncertain. 10°

In the present study, the lowest coordination observed is 6
in 3D, in agreement with the observation of Makse, Johnson,
and Schwartz who have also simulated the frictionless case
However, the frictionless results of Makse, Johnson, and
Schwartz do not indicate an abrupt rise in coordination num-2
ber at a high pressure, as shown in Figs8e Fig. 1 of Ref. 5
[4]). The maximum coordination number obtained by Makse, §
Johnson, and Schwartz is below 8, which indicates no crys-= 49+
tallization. The absence of polycrystallization in the study of s
Makse Johnson, and Schwartz is probably due to the lowel

LT . 10°
pressure and the spread grain size used. The maximum pre: . Z=40,x=02
sure used by Makse, Johnson, and Schwartz was 1./ B
—3 i ’ . 107 Ty
X 10" °E, whereE is Young’s modulugdata from Ref[4]: R 4 PR PR PR

maximum pressure 100 MPa Poisson’s rath2, shear
modulus=29 GPa,) while the maximum pressure used in the
present study is 0.8 (maximum pressure 10 GP& FIG. 9. 6 vs applied hydrostatic pressure in 2D simulations. The
=200 GPa). Although the high pressure results in the presefsiverage coordination numbgris 4 in the rigid-grain regime, and
study may be unrealistic, since the force law assumed maiyicreases beyond 4 as the grains are compressed when the pressure
no longer be valid at pressures as high as B,0he proce- is very high.¢ is calculated according to E€1L2) using the fittedk
dure here nevertheless yields a polycrystallized structure, as Fig. 3 and the mean forck observed in the simulations.
shown in Fig. 8, which could be used to illustrate that a
different structure has a different valuegfas shown in Fig.  With such a decompositiok,can be identified as a structure-
7. The key point is that the polycrystallized structure at 10sensitive term—it carriers the dependence on structure
GPa in Fig. 8 could be unloaded carefully to keep the coorthrough«,p, and on material througk, . ¢ carries the de-
dination, and if reloaded to a lower and hence realistic prespendence on the load throudh Similarly, for 3D, we can
sure, it will exhibit a differentx as compared to a random \yrite [cf. Eq. (11)]
structure.

As mentioned before, the Lagrange multipliin Eq. (2) 9=153 (for 3D) (15)
may be viewed as an analog of the thermal temperature con-
trolling the mixity of strain energy and entropy contributions and
in the free-energy. In 2D, from Eq.(8),

Hydrostatic pressure (arb. units)

B 2 (3R
2f2 1 _SRKQ,D 8_Er

2/3
) (for 3D). (16
(12

ko= 37E, rpp
At constant structure, the increasing relationship betwgen
We have seen in Fig. 6 thtf is proportional to the applied andf is analogous to the thermal situation, e.g., in an ideal
pressurer, and therefore, from Eq12), #xo?/Z%k,5. The  gas, where the absolute temperature is proportional to the
6 calculated from Eq(12) is plotted against the applied hy- mean internal energy.
drostatic load in Fig. 9, where it can be seen tha indeed It may be of interest to state the dependence of the con-
proportional to the square of the applied pressure in thelusions so far on physical parameters such as elastic modu-
rigid-grain regime ofZ=4, and when the rigid-grain limit is lus and grain size. The effects of the modulus and grain size
exceededZ>4), departure from the quadratic behavior oc-can, in fact, be deduced easily from the force laws used in
curs. The results in Fig. 3 indicate clearly thaty is con-  EQgs.(6) and(9). In the Hertzian force law for 2D or 3D, the
stant with respect to load within the rigid-grain limit. The contact force between two grains is proportional to the re-
fact that the packing configuration and the force network areluced modulus, . Hence, if the modulus is, say, doubled,
both invariant within this regime, as shown in Figs. 4 and 5,the load has to be doubled to maintain the same deformation
indicates thaik,p depends on the structure of the packing butat the contact. Thus, the deformation on doubling the modu-
not on the load, as long as the load is not large enough ttus but keeping the load unchanged is the same as that on
cause structural changes. This observation allows one to déalving the load but maintaining the modulus. Within the
compose Eq(12) into rigid-grain limit, the x value is independent of load, and so
. changing the modulus would have no effect on ihealue.
6=1? (for 2D) (13 The « value, however, would decrease with increaskfg
according to Eq(14) or Eqg.(16). The effect of grain size can
and also be deduced in a similar way. In 2D, for example, the
particle deformatioristrain is measured bya/R)? [see Eq.
k= (for 2D). (14) ()] Therefore, ifRis doubled, the forcéin Eq. (6) needs to
3mE k2p be doubled to maintain the deformation. However, doubling
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both the length scale and the force implies that the appliedme. This may not be done analytically but may be per-
pressure is unchanged in 2D. Hence, changing the grain siZermed numerically. Such an analysis is beyond the scope of
can have no effect on the deformation if the applied pressurthe present work and may be pursued as a future exercise.
is unchanged. The same conclusion can also be drawn for 3Dastly, Onoet al.[21] have also investigated a similar effec-
using Eq.(9). Thereforex is also unaffected by changing the tive temperature a8 here, namely, the reciprocal of the rate
grain size. According to Eq14), « for 2D is also indepen- of change of the entropy with respective to enedjg/dU
dent of the grain size, but Eq16) suggests thak for 3D  [cf. Eqg.(2)]. Onoet al. [21] have shown that, for a sheared
decreases with increasing grain size. elastic foam, such a definition of temperature agrees with
The current mechanical analog of temperat@iie similar ~ other definitions of temperatures concerning fluctuations in
in nature to other effective temperatures proposed by previsystem propertiegpressure, shear stress, engrgs well as
ous researchers for athermal but fluctuating sysfdms21.  viscosity. Oncet al. calculatedd ¥dU by randomly generat-
Edwards[18] has proposed a quantity known as compactiv-ing foam structures and considering the probability distribu-
ity for granular packings, and this is also an analog to temtion of the energies of these structurds/dU is then ob-
perature. Edwards’ treatment deals with the problem of fill-tained as the slope of the lgmobability) vs energy plot at a
ing a volumeV by a granular powder, and statistical physical certain energy. It is clear that such an approach is applicable
concepts were introduced by drawing analogy between volto a dynamic system only, since a randomly generated con-
ume and energy. Edwards’ expression for the free-energfiguration is usually not in mechanical equilibrium. There-
analog is[18] fore, the presen# has nothing to do with this effective tem-

perature calculated by Oret al.
F=V—X(dF/dX), (17

where X is the compactivity analogous t@ in our present V. CONCLUSIONS

treatment[cf. Eq. (2)]. Energy itself did not come in as a )

direct focus for consideration in Edwards’ treatment. How- [N Structurally random materials, such as a granular pack-
ever, the problem of filling space itself clearly has muching: th_e internal fprce d|str|but|on dge to external loading is
relevance to energy minimization. For the case of packing got uniform. The internal force distribution enable_s the def|-
powder under gravity, for example, gravitational potentia/Mition of an energy as well as an entropy functional. It is
energy should attain a local minimum when equilibrium isProposed here to use the retained entropy as a numerical
reached, and for the case of compaction by a loaded pistof)easure of t_he degre_e of randomness. _Mln_lmlzanon of the
the work done on the piston should also reach a minimum€nergy functional subject to the constraint imposed by the
The two temperatureX and @ are, therefore, clearly related, retalned.entropy yields f_orce d_|str|but|ons in excellent agree-
as for the perfectly crystalline system, both the compactivityMent with computer simulation results. The constrained
and the mechanical temperatutevould be zero, and for the ~Vvariational principle of energy minimization is also equiva-
maximally disordered systefire., that having the Maxwell- Ie:-nt. to that of minimization of a free-energy functlonql con-
Boltzmann force distribution both the compactivity ang  Sisting of a mixture of energy and entropy. The mixity be-
would be very large. The current mechanical temperagise  tWeen the energy and entropy is controlled by a parameter
also closely related to the dynamic granular temperature prd"OWn as the “mechanical temperature.” At constant struc-
posed by Jaeger, Liu, and Naddl7]. The temperature of Ure, the_ mechar_ncal temperature is found to increase with
Jaeger, Liu, and Nagel measures the extent of the fluctuatiod8€ applied loading or the mean value of the intergranular
available to cause avalanches in a dynamic grain pile. Ifontact forces.

should, therefore, be closely related to Edwards’ compactiv-

ity X or the current mechanical tem_p_eratlﬁrd._e., a densely _ ACKNOWLEDGMENT
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