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Fig. 3. Tracking-errore to a unit-ramp input for the reset control system.

Fig. 4. Output responsey to a unit-step input for the reset control system
(dotted line shows rise time constraint).

track step inputs with zero steady-state error; see [7], [9], and [14] for
more details.

IV. CONCLUSION

The main contribution of this note is an example of control specifica-
tions that can be achieved by reset control and not by linear feedback.
This does not imply that reset control is superior; rather, that reset con-
trol has a different set of performance limitations. Such differences can
be exploited in specific control applications as demonstrated in [4], [5],
[8], and [11].
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On Quadratic Stability of Systems With Structured
Uncertainty

Wei-Yong Yan and James Lam

Abstract—This note considers the problem of stability robustness
with respect to a class of nonlinear time-varying perturbations which
are bounded in a component-wise rather than aggregated manner. A
family of robustness bounds is parameterized in terms of a nonsingular
symmetric matrix. It is shown that the problem of computing the largest
robustness bound over the set of nonsingular symmetric matrices can be
approximated by a smooth minimization problem over a compact set.
A convergent algorithm for computing an optimal robustness bound is
proposed in the form of a gradient flow.

Index Terms—Linear systems, optimization, quadratic stability, stability
robustness.

I. INTRODUCTION

Linear systems are often subject to time-varying nonlinear perturba-
tions including parametric uncertainties. The issue of stability robust-
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ness has been given a great deal of attention in recent decades. Many
results have been obtained for determining the extent of uncertainty that
the system can tolerate without becoming unstable [1]–[3]. However, it
remains challenging to develop methods for finding less conservative
robustness bounds in the presence ofstructuredperturbations.

The notion of quadratic stability provides a convenient means of
dealing with the stability robustness of a linear system to time-varying
nonlinear perturbations. Quadratic stability is associated with the exis-
tence of a single independent Lyapunov function which guarantees sta-
bility for a set of time-varying nonlinear perturbations characterized by
an upper bound. Obviously, quadratic stability implies robust stability
defined in such a way that a Lyapunov function is allowed to be de-
pendent on perturbations. Conversely, robust stability of a system with
unstructured norm bounded parametric uncertainty implies quadratic
stability even when the uncertainty is time-varying and nonlinear, see
[4]. While this surprising result together with the availability of the
maximum allowable bound on the norm of the uncertainty such that ro-
bust stability is still maintained drastically diminishes the significance
of the robustness bounds recently given in [5] as well as some related
bounds obtained later such as those in [6], it does not carried over to
systems with structured uncertainty. It has been revealed through ex-
amples in [7] that robust stability is no longer equivalent to quadratic
stability when the system is subject to at least two blocks of real para-
metric uncertainty. As such, those bounds obtained to measure the de-
gree of robust stability for general structured uncertainty may not be
applicable to quadratic stability even if the uncertainty is parametric.
On the other hand, a robustness bound obtained with quadratic stability
is always a bound for robust stability no matter whether the uncertainty
is structured or unstructured. Interestingly, the real structured singular
value used to express the sufficient condition for robust stability with
respect to real structured uncertainty has been known to be NP-hard to
compute [8].

The focus of this note is on quadratic stability of a linear system
with time-varying nonlinear perturbations characterized by individual
bounds on perturbation components. Our objective is twofold. First,
we seek a condition on such bounds such that the perturbed system
is quadratically stable; the derivation of the condition will be given in
the next section. Second, the robustness index describing the condition
will be optimized so as to obtain tight bounds for quadratic stability.
The optimization problem to be discussed in Section III turns out to
be a nonsmooth optimization problem which can be approximated by
a smooth problem. A simple and effective algorithm for computing a
minimum of the robustness index will be presented in Section III.

The following notation is adopted in the remainder of this note.
kxk1; kxk2, andkxk1 denote the 1, 2, and1-norms of a

vectorx, respectively.
kXk2 andkXkF denote the spectral and Frobenius

norms of a matrixX, respectively.
denotes the set of invertible symmetric
matrices.

II. ROBUSTNESSBOUNDS

Consider a dynamic system described by

_x = Ax + f(x; t) (2.1)

whereA 2 n�n is a nominal matrix with eigenvalues in the open
left-half plane andf(x; t) is a possibly time-varying nonlinear uncer-
tain function. A widely used constraint onf(x; t) is of the form

kf(x; t)k2 � �kxk2 (2.2)

in which all components off(x; t) are weighted equally. In this note,
we assume instead thatf(x; t) obeys the following constraints:

jfi(x; t)j � �i w
T
i x ; i = 1; 2; . . . ; r

fi(x; t) = 0; i = r + 1; . . . ; n (2.3)

wherewi is a constant weighting vector inn; �i is nonnegative, and
r is the number of uncertain components. Of course, there will be no
equality constraints whenr = n. It is reasonable to expect that a
smallerr tends to result in a larger robustness bound.

Quite obviously, this kind of constraints onf(x; t) is different from
the constraint of the form (2.2) and is capable of describing the structure
of the uncertain termf(x; t) more accurately in many practical situa-
tions. For example, consider the following system with norm bounded
structured uncertainty:

_x = (A+B�C)x (2.4)

whereB 2 n�r; C 2 r�n, and the uncertain term� is of the form

� = diagf�1; . . . ; �rg: (2.5)

If B is of full-column rank, then a suitable similarity transformation of
the formx = Tz will convert the (2.4) into

_z = T
�1
ATz + f(z; t) (2.6)

wheref(z; t) = [
I

0
]�CTz obeys

jfi(z; t)j = j�ij c
T
i Tz ; i = 1; 2; . . . ; r (2.7)

fi(z; t) = 0; i = r + 1; . . . ; n (2.8)

wherecTi is theith row ofC.
The system (2.1) with (2.3) will be said to be quadratically stable if

there is a common quadratic Lyapunov function for all the uncertain
f(x; t) obeying (2.3). The following lemma plays a pivotal role later
on and may be of interest in its own right though its proof is simple.

Lemma 2.1: For any given matrixM 2 n�m, there holds

max
kxk =1

kMxk1 = kMk2;1

wherekMk2;1 denotes the square root of the maximum diagonal el-
ement ofMMT .

Proof: Put

yi = e
T
i Mx; i = 1; 2; . . . ; n

whereei is thei-th column of then � n identity matrix. Since

max
kxk =1

y
2

i = max
kxk =1

x
T
M

T
eie

T
i Mx (2.9)

= M
T
eie

T
i M

2

= e
T
i MM

T
ei (2.10)

it follows that:

max
kxk =1

kMxk1 = max
kxk =1

max
1�i�n

jyij (2.11)

= max
1�i�n

max
kxk =1

y2i (2.12)

= max
1�i�n

eTi MMT ei: (2.13)

This completes the proof.
Remark 2.1: Note thatkMk2;1 = kMk2 whenM is a row vector,
Theorem 2.1: The perturbed system (2.1) with (2.3) is quadratically

stable if

inf

r

i=1

�i w
T
i Q

2

p
T
i Q

2

< 1 (2.14)
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wherepi is the i-th column of the unique solution to the Lyapunov
equation

PA+ A
T
P + 2Q�2 = 0: (2.15)

Proof: Let Q 2 be such that (2.14) holds andP be the sym-
metric positive definite solution to (2.15), and set the Lyapunov func-
tion

V (x) = x
T
Px:

Then, there holds

_V (x) = x
T (PA+ A

T
P )x+ 2fT (x; t)Px (2.16)

= �2xTQ�2x+ 2fT (x; t)Px (2.17)

� �2xTQ�2x+ 2

r

i=1

�i w
T
i x p

T
i x (2.18)

= �2kQ�1xk22 1�
r

i=1

�i
wT
i x

kQ�1xk2
pTi x

kQ�1xk2 (2.19)

� �2kQ�1xk22 1�
r

i=1

�i w
T
i Q

2

p
T
i Q

2

: (2.20)

Because of (2.14), there results_V (x) < 0, which implies the asymp-
totic stability of the system (2.1).

The above theorem enables one to test if the system (2.1) with (2.3)
is quadratically stable when all the�i are given. Moreover, one can
derive a robustness bound on the vector

�
�
= [�1 �2 � � � �r ]

T (2.21)

directly from the condition (2.14) for the system (2.1) with (2.3) to be
quadratically stable.

Corollary 2.1: The perturbed system (2.1) with (2.3) is quadrati-
cally stable if

k�k1 < 1

kWQk2;1kPrQk2;1 (2.22)

for someQ 2 , wherePr is ther�n upper submatrix of the unique
solution to the Lyapunov equation (2.15) andW is given by

W =

wT
1

wT
2

...
wT
r

:

Apparently, the robustness bound given above can be optimized by
minimizing the functionJ(Q) : 7! defined as

J(Q) = kWQk2;1kPQk2;1 (2.23)

over the set . As such,J(Q)will be termed therobustness indexin the
sequel. There are two main difficulties with the problem of minimizing
this index. First,J(Q) generally is not a differentiable or convex func-
tion in . Second,J(Q) may not have a minimum in despite the
existence of the infimum.

We end this section by pointing out that all the techniques to be de-
veloped in the next two sections for computing the infimum ofJ(Q)
as defined in (2.23) are equally applicable to the problem of computing
the infimum on the left-hand side of (2.14) in Theorem 2.1.

III. OPTIMIZATION OF ROBUSTNESSINDEX

In this section, we will introduce a smooth auxiliary cost function
which has a global minimum and approximates the robustness index
J(Q).

Let Z be a fixed constant matrix such that[
W

Z
] is of full-column

rank, and let

Wk =
W

k�1Z
and Uk =

Ir 0

0 k�1In�r

wherek is a positive integer. Further, letDk( � ) denote the operator
defined by

Dk(X) = diag x
k
11; . . . ; x

k
nn

for X = (xij)n�n. Now, for each givenk, define a functionJk(Q) :
7! as

Jk(Q)
�
= trace Dk WkQ

2
W

T
k

� trace Dk UkPQ
2
PU

T
k (3.1)

whereP is the solution to the Lyapunov equation (2.15).
Theorem 3.1:For any given positive integerk, the functionJk(Q)

defined as in (3.1) is smooth and has a global minimum in.
Proof: ThatJk(Q) is smooth in is obvious from the definition.

Also, it is easy to verify thatJk(Q) satisfies

Jk(�Q) = Jk(Q); 8Q 2 ; � 2 ; � 6= 0

which implies that Jk(Q) has the same infimum in the set
fQ 2 ; kQkF = 1g as in . As such, it suffices to prove
that the set

� = fQ 2 ; kQkF = 1 andJk(Q) � ag
is closed for any given numbera > 0. To this end, fixa > 0 and let
Q 2 �. Since it is true thatWkQ = 0 if and only if Q = 0, there
exists a constant
 > 0 such that

trace Dk WkQ
2
W

T
k � 


2k
; 8Q 2 �: (3.2)

Therefore, it follows that:

kPk2 � kPQk2kQ�1k2 (3.3)

� kUkPQk2 U
�1

k 2
kQ�1k2 (3.4)

� p
nkUkPQk2;1 U

�1

k 2
kQ�1k2 (3.5)

� p
nftrace[Dk(UkPQ

2
PUk)]g U

�1

k 2
kQ�1k2

(3.6)

=

p
nJk(Q)

ftrace [Dk (WkQ2WT
k )]g

U
�1

k 2
kQ�1k2

(3.7)

� a
p
n



U
�1

k 2
kQ�1k2: (3.8)

On the other hand, it is seen from (2.15) that

k2Q�2k2 = kPA+ A
T
Pk2 � 2kAk2kPk2

i.e.,

kQ�1k22 � kAk2kPk2: (3.9)

A combination of (3.8) and (3.9) yields

kQ�1k2 � a
p
n



U
�1

k 2
kAk2: (3.10)

SinceQ is arbitrary, (3.10) implies that any limit point of� is nonsin-
gular and thus belongs to� due to the fact that bothkQkF andJk(Q)
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are continuous with respect toQ. In this way, the set� is shown to be
closed in .

As a result of the following lemma, the robustness indexJ(Q) as
defined in (2.23) can be approximated by the smooth functionJk(Q)
whenk is large.

Lemma 3.1: GivenX 2 p�q, there holds

kXk2;1 � [traceDk(XX
T )] < p kXk2;1;

k = 1; 2; . . . :

Proof: Let the diagonal entries ofXXT be

�1 � �2 � � � � � �p:

Then it is easily seen that

kXk22;1 = �1

[traceDk(X
T
X)k] =

p

i=1

�
k
i � p �1

from which the lemma is concluded.
Remark 3.1: It is seen that Lemma 3.1 is closely related to the well-

known formula

kxk1 = max
i
jxij = lim

p!1
kxkp = lim

p!1
i

jxij
p

1=p

for theLp norm.
We move on to show thatJ(Q) can be minimized by minimizing the

smooth functionJk(Q) as defined in (3.1) as integerk tends to infinity.
Theorem 3.2:Let the functionJk(Q) : 7! be defined as in

(3.1) fork = 1; 2; . . . and the robustness indexJ(Q) : 7! be as
defined in (2.23). There holds

inf J(Q) = lim
k!1

minJk(Q); (3.11)

moreover, ifJk(Q) assumes its minimum atQk 2 , then there holds

inf J(Q) = lim
k!1

J(Qk): (3.12)

Proof: First, it is seen from Lemma 3.1 that

J(Q) � kWkQk2;1kPkQk2;1

� Jk(Q) � (np) kWkQk2;1kPkQk2;1;

8k � 1; Q 2 (3.13)

wherep is the number of rows ofWk. Since

lim
k!1

(np) kWkQk2;1kPkQk2;1 = kWQk2;1kPQk2;1

there results

J(Q) = lim
k!1

Jk(Q); 8Q 2 : (3.14)

Now take an arbitrary number� > 0. Then there existsQ� such that

J(Q�)� inf J(Q) � �

leading to

min Jk(Q)� inf J(Q) = min Jk(Q)� Jk(Q�) + Jk(Q�)

� J(Q�) + J(Q�)� inf J(Q)

� � + Jk(Q�)� J(Q�): (3.15)

On the other hand, it follows from (3.13) that:

minJk(Q)� inf J(Q) � 0:

Consequently, it is deduced that

0 � minJk(Q)� inf J(Q) � �+ Jk(Q�)� J(Q�):

This implies that

lim sup
k!1

min Jk(Q)� inf J(Q)

� lim inf
k!1

minJk(Q)� inf J(Q) � �

due to

lim
k!1

[Jk(Q�)� J(Q�)] = 0:

As � is arbitrary, one obtains

lim
k!1

minJk(Q)� inf J(Q) = 0

i.e., (3.11). To prove (3.12), note from (3.13) that

inf J(Q) � J(Qk) � Jk(Qk) � Jk(Q�):

So there holds

0 � J(Qk)� inf J(Q) � Jk(Q�)� inf J(Q):

In this way, (3.12) is concluded from

lim
k!1

[Jk(Q�)� inf J(Q)] = J(Q�)� inf J(Q) � �

and the fact that� is arbitrary.

IV. COMPUTATIONAL ALGORITHM

Recall from Section II that the robustness bound given in (2.22) can
be maximized by finding the infimum ofJ(Q) over the set of invert-
ible symmetric matrices. Owing to Theorem 3.2, this infimum can be
arbitrarily approximated by the minimum of the auxiliary cost function
Jk(Q) with a sufficiently largek. The purpose of this section is to de-
velop a method for performing the minimization ofJk(Q). The way to
achieve this purpose is through the use of differential techniques.

Introduce the following notation:

Fk =
Jk(Q)

2 trace [Dk (WkQ2W
T
k )]

Dk�1 WkQ
2
W

T
k (4.1)

Gk =
Jk(Q)

2 trace [Dk (UkPQ2PUT
k )]

Dk�1 UkPQ
2
PU

T
k (4.2)

with �k 2 satisfying the Lyapunov equation

�kA
T + A�k +Q

2
PU

T
k GkUk + U

T
k GkUkPQ

2 = 0: (4.3)

In what follows, an algorithm for minimizingJk(Q) will be pre-
sented in the form of a matrix differential equation, which can be easily
integrated using an appropriate numerical routine, e.g., in Matlab on a
digital computer. Recently, analog computing has gained renewed in-
terest in view of advances in neural networks which allow massively
parallel processing. As a result, it becomes increasingly acceptable to
make use of differential equations for solving various problems such
as optimization and linear algebra problems, see e.g., [9]–[11] and the
references therein.

Theorem 4.1:Consider the functionJk(Q) : 7! as defined in
(3.1).

1) The gradient ofJk(Q) is given by

rJk(Q) = Rk +R
T
k (4.4)

where

Rk
�
= FkWkQ+ PU

T
k GkUkPQ� 2Q�1�kQ

�2
: (4.5)
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2) The differential equation

_Q(t) = �rJk(Q(t)); Q(0) = Q0
(4.6)

has no finite escape time in for anyQ0 2 with

kQ(t)kF = kQ0kF ; 8t � 0: (4.7)

3) The cost functionJk(Q) is monotonically decreasing along the
solutionQ(t) for t > 0 and the gradientrJk(Q) converges to
zero alongQ(t) ast ! 1.

Proof:

1) Denote the Fréchet derivatives ofJk(Q) andP as a function of
Q atQ 2 by dJk anddP , respectively. By definition,dJk
anddP are simply linear operators onn�n. Straightforward
calculations give

dJk(X)

=
1

2
trace Dk WkQ

2
W

T
k

�1

� trace Dk UkPQ
2
PU

T
k

� trace Dk�1 WkQ
2
W

T
k (Wk(QX +XQ)WT

k

+
1

2
trace Dk WkQ

2
W

T
k

� trace Dk UkPQ
2
PU

T
k

�1

� trace Dk�1 UkPQ
2
PU

T
k

� Uk(dP (X)Q2
P + PQ

2
dP (X)

+ PQXP + PXQP )UT
k (4.8)

= trace Fk(Wk(QX +XQ)WT
k

+ trace (GkUk(dP (X)Q2
P + PQ

2
dP (X)

+ PQXP + PXQP )UT
k (4.9)

= trace FkWkQ+QW
T
k Fk X

+ trace PU
T
k GkUkPQ+QPU

T
k GkUkP X

+ trace Q
2
PU

T
k GkUk + U

T
k GkUkPQ

2
dP (X) :

(4.10)

By differentiating both sides of the Lyapunov (2.15) with respect
to Q, one obtains

dP (X)A +A
T
dP (X)� 2 Q

�2
XQ

�1 +Q
�1
XQ

�2 = 0

from which it follows that:

trace Q
2
PU

T
k GkUk + U

T
k GkUkPQ

2
dP (X)

= �trace 2 Q
�2
XQ

�1 +Q
�1
XQ

�2 �k

= �trace 2 Q
�1�kQ

�2 +Q
�2�kQ

�1
X : (4.11)

Combining this with (4.10) immediately yields

dJk(X) = trace Rk +R
T
k X (4.12)

which implies (4.4) by definition.
2) Recall from the Proof of Theorem 3.1 that

Jk(�Q) = Jk(Q); 8Q 2 ; � 2 ; � 6= 0

which implies that

trace[QTrJk(Q)] = 0; 8Q 2 : (4.13)

Therefore, it follows that:

kQ(t)kF = kQ0kF ; 8t � 0: (4.14)

By employing an argument similar to that used in the Proof of
Theorem 3.1, it can be shown thatkQ�1(t)kF is bounded by a
constant for allt � 0. It is thus concluded that the differential
equation (4.6) has no finite escape time.

3) The proof is omitted due to its simplicity.

Remark 4.1: In the case where there are isolated minimum points
in the setfQ 2 ; kQkF = 1g, the solution to the Eq. (4.6) is bound
to converge to one of the minimum points ofJk(Q).

Now it is appropriate to recap briefly the main results developed so
far before a numerical algorithm is presented.

• Theorem 2.1 gives a sufficient condition for quadratic stability of
the uncertain system (2.1)–(2.3) in terms of the inequality

inf

r

i=1

�i w
T
i Q

2

p
T
i Q

2

< 1

where�i characterizes the uncertainty of thei-th dynamic equa-
tion together with a weighting vectorwi via (2.3) andr is the
number of uncertain equations. This sufficient condition is veri-
fiable only when the uncertainty parameters�i are given.

• By Corollary 2.1, the largest robustness bound on the 1-norm of
the uncertainty vector in the sense of (2.22) is the reciprocal of
the infimum ofJ(Q)over the set of invertible symmetric matrices
where

J(Q)
�
= kWQk2;1kPQk2;1:

• By Theorem 3.2, the infimum ofJ(Q) is equal to the limit of
a sequence of global minima of a smooth functionJk(Q) over
the compact set of invertible symmetric matrices with Frobenius
norm equal to 1, where

Jk(Q)
�
= trace Dk WkQ

2
W

T
k

� trace Dk UkPQ
2
PU

T
k :

• By Theorem 4.1, the solution to the ODE

_Q(t) = �Rk �R
T
k ; Q(0) = Q0

converges to a local minimum ofJk(Q) for any initial invertible
symmetric matrixQ with kQkF = 1, whereRk is a function of
Q as defined by (4.5).

The summarized theoretic results naturally give rise to the following
numerical procedure for computing a suboptimal robustness bound.

Algorithm 1:

Step 1) Choose an initial indexk and a starting pointQ0 2 .
Step 2) Seek a minimum point�Q of the cost functionJk(Q) by

finding a limiting solution to the ODE (4.6) with the initial
conditionQ(0) = Q0.

Step 3) If jJ(Q0) � J( �Q)j is less than a preset tolerance, stop;
otherwise, go back to Step 2 with a largerk andQ0 = �Q.

Finally, a remark concerning the practical implementation of Algo-
rithm 1 is in order.

Remark 4.2: To implement the above algorithm, it is often ade-
quate and convenient to set the initial pointQ0 to the identity ma-
trix in light of the fact thatJk(Q) assumes the same minimum in
fQ 2 ; kQkF = 1g as in . The proposed algorithm is not guaran-
teed to generate a sequence convergent to the infimum ofJ(Q) since
the limiting solution to the ODE associated withJk(Q) obtained in
Step 2) is not necessarily a global minimum ofJk(Q). It is worthwhile
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Q =

1:0418 �0:2348 0:2956 �0:0628 0:0526

�0:2348 0:7136 �0:2550 0:4125 �0:1699
0:2956 �0:2550 1:0788 �0:0691 0:0298

�0:0628 0:4125 �0:0691 1:0286 �0:1445
0:0526 �0:1699 0:0298 �0:1445 0:5508

TABLE I
ROBUSTNESSBOUNDS VERSUS THENUMBER OF CONSTRAINTS

to mention that general purpose optimization algorithms could also be
used to find a local minimum ofJk(Q).

V. AN EXAMPLE

In this section, we consider the system

_x = Ax + f(x; t) (5.1)

with

A =

�0:201 0:755 0:351 �0:075 0:033

�0:149 �0:696 �0:160 0:110 �0:048
0:081 0:004 �0:189 �0:003 0:001

�0:173 0:802 0:251 �0:804 0:056

0:092 �0:467 �0:127 0:075 �1:162
and

jfi(x; t)j � �ikxk1; i = 1; . . . ; r (5.2)

jfi(x; t)j = 0; i = r + 1; . . . ; 5: (5.3)

This system was discussed in [1] and [5] when subject to the unstruc-
tured perturbation of the form

kf(x; t)k2 � �kxk2: (5.4)

It is also known from [4] that under the same type of perturbation, the
largest� for quadratic stability is1=(k(sI �A)�1k1), i.e., 0.1116,
which is well greater than the two previously obtained bounds 0.0774
and 0.0929 in [1], [5].

We are interested in computing an optimal bound onr
i=1

�i for
everyr from 1 to 5 such that the perturbed system is asymptotically
stable. Table I shows the robustness bounds obtained by implementing
the proposed algorithm in the previous section withQ0 = I andk =
1; 50; 100 in Matlab. In particular, this implies that the system (5.1) is
asymptotically stable for any perturbationf(x; t) obeying

jfi(x; t)j � �ikxk1; i = 1; . . . ; 5 (5.5)

with

�1 + �2 + �3 + �4 + �5 < 0:1490:

It is worth pointing out that this inequality characterizes a large class
of perturbations which are not covered by the unstructured constraint
(5.4) with the optimal� = 0:1116. It is also interesting to note that the
algorithm gives the same robustness bound forr = 3; 4; 5 and that�1
is allowed to be much larger without violating the stability when there
are less than 3 inequality constraints on the perturbation, i.e.,r equals
1 or 2.

The finalQ obtained with the algorithm is shown in the equation
at the top of the page, at which the robustness bound1=J(Q) equals
0.1490.

Remark 5.1: To demonstrate the usefulness of the obtained robust-
ness bounds given in Table I, let us consider a simple case where all
components off(x; t) exceptf1(x; t) are known to be identically zero,
i.e., r = 1. In this case, the structured constraint (5.2) with�1 =
0:2867 becomes

jf1(x; t)j � 0:2867kxk1 (5.6)

while the unstructured constraint (5.4) with� = 0:1116 becomes

jf1(x; t)j � 0:1116kxk2: (5.7)

It is seen that the latter inequality strictly implies the former because of

0:1116kxk2 � 0:1116�
p
5kxk1 = 0:2495kxk1:

In other words, the new robustness bound is capable of describing
a larger set of structured uncertainties against which the system is
quadratically stable.

VI. CONCLUSION

A sufficient condition has been derived for quadratic stability of a
linear system with time-varying nonlinear perturbations whose com-
ponents are individually bounded. The problem of finding an optimal
robustness bound based on the condition has been treated with an effec-
tive numerical algorithm proposed. An extension of the present method
to the case of delayed perturbations can be envisaged in view of the
work in [3].
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Design of Fault Diagnosis Filters and Fault-Tolerant
Control for a Class of Nonlinear Systems

P. Kabore and H. Wang

Abstract—This note presents a set of algorithms for fault diagnosis and
fault tolerant control strategy for affine nonlinear systems subjected to an
unknown time-varying fault vector. At first, the design of fault diagnosis
filter is performed using nonlinear observer techniques, where the system
is decoupled through a nonlinear transformation and an observer is used to
generate the required residual signal. By introducing an extra input to the
observer, a direct estimation of the time-varying fault is obtained when the
residual is controlled, by this extra input, to zero. The stability analysis of
this observer is proved and some relevant sufficient conditions are obtained.
Using the estimated fault vector, a fault tolerant controller is established
which guarantees the stability of the closed loop system. The proposed al-
gorithm is applied to a combined pH and consistency control system of a
pilot paper machine, where simulations are performed to show the effec-
tiveness of the proposed approach.

Index Terms—Fault detection, fault estimation, fault tolerant, feedback,
nonlinear observers, nonlinear systems.

I. INTRODUCTION

In fault detection and diagnosis (FDD), the residual generator [3]
takes the input and the output of the process and delivers a signal which
indicates the system healthy status. The analysis of the nonzero residual
signals can help to determine which fault has occurred [4]. Indeed,
residual generation for linear systems have been well documented in
the literature [10], [11]. However, few results exist for nonlinear sys-
tems [5], [1], where the identification of faults for nonlinear systems is
not considered in most of the existing approaches. Only the methods
based on parameter estimation techniques [2] can give the identification
of multiplicative faults and provide some fault tolerant control using an
adaptive control framework. This is because in most cases it is difficult
to use residuals alone to determine the size of the fault. One way for
fault estimation could be to use the system inversion techniques in order
to estimate the fault which affects the residual signal [6]. However, such
an approach is not always robust with respect to measurement noises.
As such, it is necessary to develop effective fault identification and fault
tolerant control algorithms for nonlinear systems. This forms the main
purpose of this paper where the contributions are to 1) reformulate the
problem of residual generation so as to incorporate fault identification
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for nonlinear systems; 2) provide the estimation of the fault by charac-
terizing “fault estimability” through the concept of input observability
and input detectability for a class of nonlinear systems; 3) develop a
simple method which can link the residual generation based fault diag-
nosis techniques to the design of fault tolerant control; and 4) establish
a fault tolerant control using directly the diagnosis information so as to
stabilize the closed loop system.

II. RESIDUAL GENERATION AND FAULT RECONSTRUCTION

Consider the following class of known nonlinear systems:

_x(t) = g0(x(t)) +

m

i=1

gi(x(t))ui +

n

i=1

ei(x(t))fi

y(t) = h(x(t))

(1)

wherex 2 IRn is the state vector,y 2 IRp is the output vector,u =
(u1; u2; . . . ; um) 2 U � IRm is the bounded input vector of the
system andU is the set of admissible inputs. The vector fieldsgi (i =
0; . . . ;m); ei (i = 0; . . . ; nf) andh are assumed to be smooth with
respect to their arguments. Thefi 2 IRn are unknown but bounded
fault vectors. The purpose here is to usefui(t); y(t)g to estimatefi and
then construct a fault tolerant control algorithm. For this purpose, the
reformulation of the fundamental problem of the residual generation
(FPRG) [5], [10] is made to incorporate the fault estimation task into
the design of residuals.

Definition 1: The purpose of solving the problem of fault detec-
tion and identification (PFDI) with respect tofi is to find a dynamical
system of the form shown in the (2) at the bottom of the page, where
z 2 IR�n; r 2 IR�p is the residual, and̂fi(t) are the estimate offi, such
that 1)r only depends onfi; 2) if fi = 0, thenlimt!1 r(t) = 0; 3) if
limt!1 r(t) = 0 thenlimt!1(f̂i � fi) = 0, holds for8x(0); z(0)
and8u 2 U . In particular, iflimt!1 r(t) = 0 andlimt!1 f̂i = 0
thenfi = 0.

These conditions summarize an asymptotic property of input observ-
ability [6]. If system (2) can be constructed so that the residualr(t)
realizes 1), 2), and 3), then̂fi can be regarded as the estimate offi.
Using the procedures in [8], system (1) can be decoupled into an inter-
connected system whosejth subsystem is expressed by

_�j = Aj�j +G0j(�) +

m

l=1

ulGlj(�) +Eij(�)fi

�yj = 'j(y) = Cj�j ; j = 1; . . . ; �p � p

(3)

where�j = (�j;1; . . . ; �j;n )> 2 IRn ;
�p

j=1
nj = ~n � n; Aj =

[al;s]1�l;s�n is a(nj � nj) matrix,al;l+1 = 1 andal;s = 0 for s 6=
l + 1. Also,G0j = G0j;n (�)Bj ; G0j;n 2 IR. B>j = (0 � � � 0 1)
andCj = [1 0 � � � 0] are(nj�1) and(1�nj) matrices, respectively.
Moreover, we require that the output function' : IRp

! IR�p; �p � p,
and a state transformation� = (�1; . . . ; ��p)

> defined on an open set
V0 of IRn satisfy

i)

Glj(�)

=

0
...
0

Glj;k (�1;1; . . . ; �1;k ; . . . ; ��p;1; . . . ; ��p;k )

Glj;k +1(�1;1; . . . ; �1;k +1; . . . ; ��p;1; . . . ; ��p;k +1)

...
Glj;n (�)

;

l = 1; . . . ;m:

0018–9286/01$10.00 © 2001 IEEE


