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Fig. 3. Tracking-erroe to a unit-ramp input for the reset control system.
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Abstract—This note considers the problem of stability robustness
Fig. 4. Output responsg to a unit-step input for the reset control systemwith respect to a class of nonlinear time-varying perturbations which
(dotted line shows rise time constraint). are bounded in a component-wise rather than aggregated manner. A
family of robustness bounds is parameterized in terms of a nonsingular
symmetric matrix. It is shown that the problem of computing the largest
track step inputs with zero steady-state error; see [7], [9], and [14] ftwbustness bound over the set of nonsingular symmetric matrices can be
more details. approximated by a smooth minimization problem over a compact set.
A convergent algorithm for computing an optimal robustness bound is

proposed in the form of a gradient flow.
IV. CONCLUSION

) o ) ) » Index Terms—Linear systems, optimization, quadratic stability, stability
The main contribution of this note is an example of control specificasbustness.

tions that can be achieved by reset control and not by linear feedback.
This does not imply that reset control is superior; rather, that reset con-
trol has a different set of performance limitations. Such differences can g
be exploited in specific control applications as demonstrated in [4], [5], Linear systems are often subject to time-varying nonlinear perturba-
[8], and [11]. tions including parametric uncertainties. The issue of stability robust-
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ness has been given a great deal of attention in recent decades. Manyhich all components of («, t) are weighted equally. In this note,
results have been obtained for determining the extent of uncertainty that assume instead thatz, ) obeys the following constraints:
the system can tolerate without becoming unstable [1]-[3]. However, it
remains challenging to develop methods for finding less conservative |fi(e, t)] < i »oi=1200r
robustness bounds in the presencstaficturedperturbations. file,t)=0, i=r+1,....n (2.3)

The notion of quadratic stability provides a convenient means of ) o ) ]
dealing with the stability robustness of a linear system to time-varyi§i€rew: is & constant weighting vector R'", a; is nonnegative, and
nonlinear perturbations. Quadratic stability is associated with the exfsiS the number of uncertain components. Of course, there will be no
tence of a single independent Lyapunov function which guarantees §guality constraints when = n. It is reasonable to expect that a
bility for a set of time-varying nonlinear perturbations characterized [jnaller- tends to resultin a larger robustness bound.
an upper bound. Obviously, quadratic stability implies robust stability Quite obviously, this kind of constraints dfit, ¢) is different from
defined in such a way that a Lyapunov function is allowed to be d&1€ constraint pftheform (2.2)andis capable_ofdescnbmg?he st_ructure
pendent on perturbations. Conversely, robust stability of a system withthe uncertain ternf (-, t) more accurately in many practical situa-
unstructured norm bounded parametric uncertainty implies quadrdifs- For example, consider the following system with norm bounded
stability even when the uncertainty is time-varying and nonlinear, seuctured uncertainty:
[4]. While this surprising result together with the availability of the # = (A4 BAC)x (2.4)
maximum allowable bound on the norm of the uncertainty such that ro- ‘
bust stability is still maintained drastically diminishes the significanc&hereB € R"*", C' € R"™", and the uncertain tera is of the form
of the robustness bounds recently given in [5] as well as some related A = diag{$ 5,1 2.5)
bounds obtained later such as those in [6], it does not carried over to SEeT e O '
systems with structured uncertainty. It has been revealed through ExB is of full-column rank, then a suitable similarity transformation of
amples in [7] that robust stability is no longer equivalent to quadratihe forma = Tz will convert the (2.4) into
stability when the system is subject to at least two blocks of real para-
metric uncertainty. As such, those bounds obtained to measure the de-
gree of robust stability for general structured uncertainty may not b I
applicable to quadratic stability even if the uncertainty is parametri %eref(z, t) = [O]ACTZ obeys
On the other hand, a robustness bound obtained with quadratic stability ,
is always a bound for robust stability no matter whether the uncertainty [filz. )| = 18] |e] T=|. i=1.2.....r (2.7)
is structured or unstructured. Interestingly, the real structured singular filz,t) =0, i=r+1,...,n (2.8)
value used to express the sufficient condition for robust stability with
respect to real structured uncertainty has been known to be NP-harwtgrec! is theith row of C.
compute [8]. The system (2.1) with (2.3) will be said to be quadratically stable if

The focus of this note is on quadratic stability of a linear systeifiere is a common quadratic Lyapunov function for all the uncertain
with time-varying nonlinear perturbations characterized by individudi(z, f) obeying (2.3). The following lemma plays a pivotal role later
bounds on perturbation components. Our objective is twofold. Firéf) and may be of interest in its own right though its proof is simple.
we seek a condition on such bounds such that the perturbed systetemma 2.1: For any given matrix/ € R™*™, there holds
is quadratically stable; the derivation of the condition will be given in
the next section. Second, the robustness index describing the condition I
will be qpt_imiz_ed so as to obtain t_ight boun_ds for quadratic Stabi”%hereHMHg,x denotes the square root of the maximum diagonal el-
The optimization problem to be discussed in Section Il turns out {Q v cerr a7
be a nonsmooth optimization problem which can be approximated by Proof. Put
a smooth problem. A simple and effective algorithm for computing a

T
w; x

F =T ATz 4 f(z,1) (2.6)

max ||Mz|s = ||M]|2,00
z|lz=1

minimum of the robustness index will be presented in Section Il yi=elMz, i=1,2,...,n
The following notation is adopted in the remainder of this note. . . . . A
lell1, ]|z, and||| o denote the 1, 2, ando-norms of a wheree; is thei-th column of then x n identity matrix. Since
vectorz, respectively. max y? = max o' M eiel Mx (2.9)
IX |2 and|| X ||~ denote the spectral and Frobenius lzllz=1 lzllz=1
norms of a matrixX’, respectively. - MTezeiTMH =el MM7e, (2.10)
Q denotes the set of invertible symmetric 2
matrices. it follows that:
”?‘1‘2{1 [ Mz = Hg‘l‘?}_(l max lys | (2.11)
Il. ROBUSTNESSBOUNDS ~ max max \/E (2.12)
1<i<n ||e]lp=1

Consider a dynamic system described by
eI MMTe,. (2.13)

= maXx
1<i<n

&= Ax X, t 2.1
! vt i) 1) This completes the proof. O

Remark 2.1: Note that| M||2,- = ||3]||]> whenM is a row vector,
Theorem 2.1: The perturbed system (2.1) with (2.3) is quadratically
stable if

whereA € R™ " is a nominal matrix with eigenvalues in the open
left-half plane andf(«, t) is a possibly time-varying nonlinear uncer-
tain function. A widely used constraint gf{«, ) is of the form

utal
2

infg » o p,lQH <1 (2.14)
£ (e, )2 < pllll (22 ; ?
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wherep; is thei-th column of the unique solution to the Lyapunov | et 7 pe a fixed constant matrix such tﬁgg ] is of full-column

equation
q rank, and let

PA+A"P+2Q7% =0. (2.15) W

1tz

Wi = |: 0 kI,

el ot

Proof: Let@ € Q be such that (2.14) holds ardd be the sym-
metric positive definite solution to (2.15), and set the Lyapunov fungrhere is a positive integer. Further, 162, (- ) denote the operator
tion defined by

Ve _ T X .
Vi) =2 Pur. Du(X) = ding {ohy.. ..ok, }

Then, there holds ~ . . . .
for X = (x:;)nxn. Now, for each giverk, define a function/, (Q) :

V(z)=a"(PA+ A" P)o 4 2f" (2, t) P (2.16) Q +— Ras
=-22"Q %z +2f" (x,t)Px (2.17) Te(Q) A { trace [Dk (W} szﬁ)]
< -227Q7 %2 +2 i lwle| |pla 2.18 ; . o
= ; (2.18) x trace [Dk (UkPQZPUE )] } * (3.1

20~ 22 (1= Z“ |“LZT”'“| |7’:T’“| (2.19) WhereP is the solution to the Lyapunov equation (2.15).
Q" xll2 |Q "l Theorem 3.1: For any given positive integdr, the function, (Q)
defined as in (3.1) is smooth and has a global minimui@in
p{Q” ) . (2.20) Proof: ThatJy(()) is smooth inQ is obvious from the definition.
? Also, it is easy to verify thafl, (Q) satisfies

=1

IA

otal |

—2/|Q |3 (1 -
=1
Because of (2.14), there resuli's{m) < 0, which implies the asymp- T (aO) =T YO € a€ER a0
totic stability of the system (2.1). O k@) Q). VOeQ. ' #
The above theorem enables one to test if the system (2.1) with (Ad)ich implies that.J,(Q) has the same infimum in the set

is quadratically stable when all the; are given. Moreover, one can{@Q ¢ Q:[|Q|lr = 1} as in Q. As such, it suffices to prove
derive a robustness bound on the vector that the set
A i
aSlar oz oo (2.21) I={Q€cq|Q|r=1andJu(Q) < a}

directly from the condition (2.14) for the system (2.1) with (2.3) to b&; ¢josed for any given number > 0. To this end, fixa > 0 and let

quadratically stable. ) _ @ € II. Since it is true that¥,Q = 0 if and only if Q = 0, there
Corollary 2.1: The perturbed system (2.1) with (2.3) is quadratigyisis 4 constant > 0 such that

cally stable if

) trace [Dk (W,CQQI/V,T )} > vQ el (3.2)
llalli < (2.22)
IWQll2 .00 127 Qll 2,0 Therefore, it follows that:
for someQ € Q, whereP. is ther x n upper submatrix of the unique 1
solution to the Lyapunov equation (2.15) aiidis given by 121> < IPQII=N1Q " [l2 (33)
ol < TPl [T |, 19712 (34)
r < VllUPQz0 | |, Q71 (35)
Wo = ,00 k 9 2 .
W= Ll < /\/ﬁ{tracn[Dk(UkPQQPUk)]}ﬁ | U H2 R~ -
wl (3.6)
Apparently, the robustness bound given above can be optimized by = V(@) + Ut HZ Q-
minimizing the function/(Q) : @ — R defined as {trace [Dy (WeQ*W])]} 2F
\ ) (3.7)
J(Q) = [WQll2.0 1 PQll2, (2.23) <Y e (3.8)
< S 2. -

over the sef). As such,J (@) will be termed theobustness index the v

sequel. There are two main difficulties with the problem of minimizingy, the other hand, it is seen from (2.15) that

this index. First,J(Q) generally is not a differentiable or convex func-

tion in Q. SecondJ(Q)) may not have a minimum i@ despite the 12Q72||s = [|PA+ A" P||2 < 2||A|l2||P||2

existence of the infimum. ]
We end this section by pointing out that all the techniques to be de&:

veloped in the next two sections for computing the infimunvof))

—112 )

as defined in (2.23) are equally applicable to the problem of computing 1@z < llAll=l121]2- (3.9)
the infimum on the left-hand side of (2.14) in Theorem 2.1. A combination of (3.8) and (3.9) yields
Ill. OPTIMIZATION OF ROBUSTNESSINDEX _ av/r .

QM2 < ‘[ T, 1AL (3.10)

In this section, we will introduce a smooth auxiliary cost function
which has a global minimum and approximates the robustness ind&rce( is arbitrary, (3.10) implies that any limit point &F is nonsin-
J(Q). gular and thus belongs 1d due to the fact that bothQ|| » and.J, (Q)
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are continuous with respect €. In this way, the sell is shown to be Consequently, it is deduced that
closed ir. O . . ;

As a result of the following lemma, the robustness ind¢)) as 0< min Je(Q) —infgJ(Q) < e+ Ji(Qe) — J(Qe).
defined in (2.23) can be approximated by the smooth funcligi®))

[ This implies that
whenk is large. Is Implies tha

Lemma 3.1: GivenX € RP*?, there holds litm sup [ngn Ju(Q) - ianJ(Q)]
k—oo
e v xTV %% « 03k .
12,00 < forace (XX < p2E[X]l2 o, — liminf [min J(Q) — ianJ(Q)] <e¢
E=1,2,.... k—oo LG
. ) - due to
Proof: Let the diagonal entries ocf X be
P 3oz o, Jim [74(@0) = T(Q2)] = .
Then it is easily seen that As ¢ is arbitrary, one obtains
X1 o = o Jim [min Ji(Q) —inf J(Q)] = 0

1
%

P : .
frrace Do (X7 XM E = [Z 05,} < phay i.e., (3.11). To prove (3.12), note from (3.13) that
=1

infgJ(Q) < J(Qr) < Jr(Qr) < Jr(Qe).

from which the lemma is concluded. O
So there holds
Remark 3.1: Itis seen that Lemma 3.1 is closely related to the well-
known formula 0 < J(Qr) —infgJ(Q) < Ju(Q.) —infgJ(Q).
1/p . .
In this way, (3.12) is concluded from
llz]|oc = max |z;] = lim [|2]|, = lim (Z'”EZV)) v (3:12)
' e A Jim [Ji(Q.) — infeJ(Q)] = J(Q.) — infgJ(Q) < ¢
for the £, norm. . .
We move on to show that(@) can be minimized by minimizing the and the fact that is arbitrary. =
smooth function/; (@) as defined in (3.1) as integkttends to infinity.
Theorem 3.2:Let the functionJ(Q) : @ — R be defined as in V. COMPUTATIONAL ALGORITHM
(8.1)fork = 1,2,... and the robustness indeX)) : @ — Rbeas  Recall from Section Il that the robustness bound given in (2.22) can
defined in (2.23). There holds be maximized by finding the infimum af(Q) over the set of invert-

ible symmetric matrices. Owing to Theorem 3.2, this infimum can be
arbitrarily approximated by the minimum of the auxiliary cost function
J.(Q) with a sufficiently largek. The purpose of this section is to de-
velop a method for performing the minimization.bf(@). The way to

infgJ(Q) = klEIolo ngn J(Q); (3.11)

moreover, it7;(Q) assumes its minimum &, € Q, then there holds

f J(Q)= lim J(Q). (3.12) achieve this purpose is through the use of differential technigques.

@ oo Introduce the following notation:

Proof: First, it is seen from Lemma 3.1 that 10(Q)
) Fy = ke Dy (W QWY 4.1
J(Q) < IWeQllz < |PA Q.o = S, g o (RO @
1
< Ju(Q) < (np) ZF (W Ql2, 50 [ P Q2,005 T = Ji(Q) . (v.rorPuT) (.

Gt = Stemee D1 (U PGPPUT] 2 L (epPQPUl) (42)

ViE>1l, Q€eQ (3.13)
with ¥, € Q satisfying the Lyapunov equation

wherep is the number of rows ofl’;.. Since ‘ ‘
SeAl + A, + Q*PUL GLUL + UL GRULPQ* =0.  (4.3)

. L B ]
lim (1) %% [|WiQll2 e[| Pe Q12,00 = W Qll2. 50 | PQIl5 0 _ o .
k=0 In what follows, an algorithm for minimizing/ (@) will be pre-
there results sented in the form of a matrix differential equation, which can be easily

integrated using an appropriate numerical routine, e.g., in Matlab on a

J(Q) = lim Ji(Q), YQ€Q (3.14)  digital computer. Recently, analog computing has gained renewed in-
terest in view of advances in neural networks which allow massively

Now take an arbitrary number> 0. Then there exist§). suchthat  parallel processing. As a result, it becomes increasingly acceptable to

J(Q) - infgJ(Q) < e make use of differential equations for solving various problems such

leading to references therein.
Theorem 4.1: Consider the functiod, (Q) : @ — R as defined in
ngn Ji(Q) —infJ(Q) = mén Je(Q) = T (Qe) + Tr(Qe) (3.1).
—J(Q)+ J(Qc) — infgJ(Q) 1) The gradient off;(Q) is given by
<e+ Je(Qo) = J(Q.). (3.15) VJI(Q) =R+ Rf (4.4)
On the other hand, it follows from (3.13) that: where

min J5(Q)) — infgJ(Q) 2 0. Ry & F,WQ + PUL GLULPQ — 207 'S, Q72 (4.5)

as optimization and linear algebra problems, see e.g., [9]-[11] and the
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2) The differential equation Therefore, it follows that:
Q(t) = =VJ(Q(t), Q(0) = Qo (4.6) lQM)IIF = [1Qollr, vt >0. (4.14)
has no finite escape time i@ for any Qo € Q with By employing an argument similar to that used in the Proof of
Theorem 3.1, it can be shown tHe® ' (¢)|| » is bounded by a
1Rl = llQolls, vt >0 (4.7) constant for alk > 0. It is thus concluded that the differential
3) The cost function/, (Q) is monotonically decreasing along the ~ équation (4.6) has no finite escape time.
solution(t) for t > 0 and the gradien¥ Ji.(Q) convergesto ~ 3) The proof is omitted due to its simplicity.
zero alongQ(t) ast — oo. n
Proof: Remark 4.1: In the case where there are isolated minimum points

1) Denote the Fréchet derivatives.bf(Q)) and P as a function of in the set{@ € Q; [|Q||» = 1}, the solution to the Eq. (4.6) is bound

Q atQ € QbydJ, anddP, respectively. By definitiond./, to conv_er_ge to one _Of the minimum points.bj(Q).
anddP are simply linear operators d" <" . Straightforward f Nov;/ itis approprlatle tlo re_csp t_)rleﬂy the main results developed so
calculations give ar before a numerical algorithm is presented.

» Theorem 2.1 gives a sufficient condition for quadratic stability of
dJr(X) the uncertain system (2.1)—(2.3) in terms of the inequality

=1

1
X {trace [Dk ([@PQZPU;;{)] } 2+
whereq; characterizes the uncertainty of théh dynamic equa-

wra,|
2

piTQH <1
2

X trace [Dk,l (WkQ2 W,f) (We(QX + XQ)W,T] tion together with a weighting vectar; via (2.3) andr is the
1 N number of uncertain equations. This sufficient condition is veri-
+ 3 {trace [Dk (WLQQW,CTH } o fiable only when the uncertainty parametessare given.
F » By Corollary 2.1, the largest robustness bound on the 1-norm of
X {tmce [Dk (L,TkPQzPL’E)] } 2 the uncertainty vector in the sense of (2.22) is the reciprocal of
the infimum of.J ((?) over the set of invertible symmetric matrices
X trace [Dkfl (U/LPQQPL’V/;F) where
x Up(dP(X)Q?P + PQ*dP(X)

T(@Q) 2 ([WQl2. | PQ|2,00.

By Theorem 3.2, the infimum of ()) is equal to the limit of

= trace [Fk(Y'Vk(QX + XQ)WE] a sequence of global minima of a smooth functibii@Q) over

the compact set of invertible symmetric matrices with Frobenius
norm equal to 1, where

+ PQXP+ PXQP)UY ] (4.9) Ju(Q) 2 { trace [Dk (Wk szkr)]
— trace [(Fk WeQ + QWY Fk) X]
+ trace [(PU,Z GWUPQ + QPU/ GkUkP) X]

4+ POXP+ PXQP)U;%’] (4.8)

+ trace [(Gk Uk(dP(X)Q>P + PQ*dP(X)

X trace [Dk (UkPQQPU,Z )}}i .

» By Theorem 4.1, the solution to the ODE
- 2pyl 7 rr T 2 s .
+ trace [(Q PU, Gr Uk + Uy, GrUL PQ )dP(l\)] . O(t) = Ry — B!, 0(0) = Qo
4.10
( ) converges to a local minimum g%, (Q)) for any initial invertible
By differentiating both sides of the Lyapunov (2.15) withrespect ~ symmetric matrixQ with ||Q||» = 1, whereRy, is a function of
to 2, one obtains () as defined by (4.5).
dP(X)A + 41'dP(X') _9 (Q,z XO ' +0! YQ,Q) -0 The summarized theoretic results naturally give rise to the following
CoAE T ) - . “ - numerical procedure for computing a suboptimal robustness bound.
from which it follows that: Algorithm 1:
2 5rrT ; T ; 2 - Step 1) Choose an initial indexand a starting poinfo € Q.
frace [(Q PUL GiUs + Ui GRUPQ )dP()&)} Step 2) Seek a minimum poii? of the cost function/,.(Q) by

= —trace 2 (Q ’XQ '+ Q' XQ 7)) T4] finding a limiting solution to the ODE (4.6) with the initial
— —trace [2(Q7'SQ T+ Q7PN QT) X)L (411 condition(0) = Qo.
race [2 (@ K © Q)X ) Step 3) If|J(Qo) — J(Q)| is less than a preset tolerance, stop;
Combining this with (4.10) immediately yields otherwise, go back to Step 2 with a largeandQo = Q.
- : Finally, a remark concerning the practical implementation of Algo-
dJi(X) = trace [(R’“ + RZ) X] (4.12) rithm 1 |ys in order. ’ P P ’
which implies (4.4) by definition. Remark 4.2: To implement the above algorithm, it is often ade-
2) Recall from the Proof of Theorem 3.1 that quate and convenient to set the initial po@¢ to the identity ma-
trix in light of the fact that.J, (@) assumes the same minimum in
Ji(@Q) =Ji(Q), YQER, a€R, a#0 {Q € @;|Q|lr = 1} as in@Q. The proposed algorithm is not guaran-

teed to generate a sequence convergent to the infimufi@§ since
the limiting solution to the ODE associated wifl ()) obtained in
trace[QTVJL(Q)] =0, VQ € Q. (4.13) Step 2) is not necessarily a global minimum/e{ Q). It is worthwhile

which implies that



1804 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 11, NOVEMBER 2001

1.0418  —-0.2348 0.2956 —0.0628 0.0526
—0.2348 0.7136 —0.2550 0.4125 —0.1699
Q= 02956 —0.2550 1.0788 —0.0691 0.0298
—-0.0628 0.4125 —0.0691 1.0286 —0.1445
0.0526  —0.1699 0.0298 —0.1445 0.5508

TABLE | The final () obtained with the algorithm is shown in the equation
ROBUSTNESSBOUNDS VERSUS THENUMBER OF CONSTRAINTS at the top of the page, at which the robustness bdl,(n(l{Q) equals
- - 0.1490.
Number of Inequality Constraints (r} | Robustness Bound .

! 1 Y (r) 0.2867 Remark 5.1: To demonstrate the usefulness of the obtained robust-

5 0'2013 ness bounds given in Table I, let us consider a simple case where all
' components of (x, t) exceptfi (x, t) are known to be identically zero,

3 0.1490 . . . .
) 01490 i.e.,» = 1. In this case, the structured constraint (5.2) with =
5 01490 0.2867 becomes

[ f1(x,t)] < 0.2867||2|| (5.6)

to mention that general purpose optimization algorithms could also be. ) )
used to find a local minimum of . (Q). while the unstructured constraint (5.4) with= 0.1116 becomes

|f1 (2, )] < 0.1116]|2]|2- (5.7)
V. AN EXAMPLE

. . . Itis seen that the latter inequality strictly implies the former because of
In this section, we consider the system

0.1116|a||2 < 0.1116 x v/3|jt]|co = 0.2495|2]| .

&= Az + f(z,t) (5.1)
with In other words, the new robustness bound is capable of describing
—0.201 0735  0.351  —0.075 0.033 a larger set of structured uncertainties against which the system is
—0.149 —0.696 —0.160 0.110 —0.048 quadratically stable.
A= 0.081 0.004 —-0.189 —-0.003 0.001
~0.173  0.802 0251 —0.804 0.056 VI CONCLUSION
0.092 —-0.467 —-0.127 0.075 —1.162 A sulfficient condition has been derived for quadratic stability of a
and linear system with time-varying nonlinear perturbations whose com-
()] < aillellocs i=1,...,r (5.2) ponents are individually bounded. Th_e problem of finding an optimal
) X robustness bound based on the condition has been treated with an effec-
|fi(x,8)] =0, i=r+1,...,5. (5.3)

tive numerical algorithm proposed. An extension of the present method
This system was discussed in [1] and [5] when subject to the unstriie-the case of delayed perturbations can be envisaged in view of the
tured perturbation of the form work in [3].

15 G D)ll2 < pllll2. (5.4)

It is also known from [4] that under the same type of perturbation, the
largesty for quadratic stability isl/(||(s] — A) *||~), i.e., 0.11186,
which is well greater than the two previously obtained bounds 0.079
and 0.0929 in [1], [5].
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Il. RESIDUAL GENERATION AND FAULT RECONSTRUCTION

Consider the following class of known nonlinear systems:

m nr
H0) = go(a () + P laO)u+ D elalf oy

Design of Fault Diagnosis Filters and Fault-Tolerant y(t) = h(x(t))

Control for a Class of Nonlinear Systems wherexz € IR" is the state vectoy € IR? is the output vectory, =

(u1,u2,...,u,) € U C IR™ is the bounded input vector of the
system and’ is the set of admissible inputs. The vector fieldg: =
0,....,m),e; (i =0,...,ny) andh are assumed to be smooth with
Abstract—This note presents a set of algorithms for fault diagnosis and 'espect to their arguments. Tlie€ IR"/ are unknown but bounded
fault tolerant control strategy for affine nonlinear systems subjected to an  fault vectors. The purpose here is to §se(t), y(¢) } to estimatef; and
unknown time-varying fault vector. At first, the design of fault diagnosis  then construct a fault tolerant control algorithm. For this purpose, the

filier is performed using nonlinear observer techniques, where the system oo rmyation of the fundamental problem of the residual generation
is decoupled through a nonlinear transformation and an observer is used to

generate the required residual signal. By introducing an extra input to the  (FPRG) [5], [10] is made to incorporate the fault estimation task into
observer, a direct estimation of the time-varying fault is obtained when the  the design of residuals.

residual is controlled, by this extra input, to zero. The stability analysis of Definition 1: The purpose of solving the problem of fault detec-
this observer is proved and some relevant sufficient conditions are obtained. tion and identification (PFDI) with respect i is to find a dynamical

Using the estimated fault vector, a fault tolerant controller is established .
which guarantees the stability of the closed loop system. The proposed al- system of the form shown in the (2) at the bottom of the page, where

gorithm is applied to a combined pH and consistency control system of a % € R",r € IR” is the residual, ang. (t) are the estimate of;, SU(_:h
pilot paper machine, where simulations are performed to show the effec- that 1)r only depends otf;; 2) if f; = 0, thenlim,_ . r(¢) = 0; 3) if

P. Kabore and H. Wang

tiveness of the proposed approach. lim o r(f) = 0 thenlim, . (fi — fi) = 0, holds forVa(0), =(0)
Index Terms—Fault detection, fault estimation, fault tolerant, feedback, andvu € U. In particular, iflim; .. r(#) = 0 andlim;— f; = 0
nonlinear observers, nonlinear systems. thenf; = 0.

These conditions summarize an asymptotic property of input observ-
ability [6]. If system (2) can be constructed so that the resia¢sl
realizes 1), 2), and 3), thefy can be regarded as the estimatefof

In fault detection and diagnosis (FDD), the residual generator [B)sing the procedures in [8], system (1) can be decoupled into an inter-
takes the input and the output of the process and delivers a signal wiehnected system whogth subsystem is expressed by

|. INTRODUCTION

indicates the system healthy status. The analysis of the nonzero residual . m

signals can help to determine which fault has occurred [4]. Indeed, § = A6+ Goj () + > wGi (&) + B (&) f: 3
residual generation for linear systems have been well documented in B i =1 B

the literature [10], [11]. However, few results exist for nonlinear sys- g =) =C&, j=1....p<p

tems [5], [1], where the identification of faults for nonlinear systems 'Whereﬁj — (Ej,h...vij,nj)T e R"J, ?:1 n; =n < n,Aj =
not considered in most of the existing approaches. Only the methqgﬁ‘s]]g,sg% isa(n; x n;) matrix,a; 41 = 1 anda;, = 0 for s #
based on parameter estimation techniques [2] can give the identificatiop 1. Also, Gy, = Gojn,(§)B;,Gojn, € IR. B,,»T =0 ---01)
of multiplicative faults and provide some fault tolerant control using andC; =[10 --- 0] are(n, x 1) and(1 xn,) matrices, respectively.
adaptive control framework. This is because in most cases it is difficiforeover, we require that the output functipn IR — IR”,p < p,
to use residuals alone to determine the size of the fault. One way £91d a state transformatigh= (¢;,...,&5) " defined on an open set
fault estimation could be to use the system inversion techniques in orglgrof IR" satisfy

to estimate the fault which affects the residual signal [6]. However, such ;

an approach is not always robust with respect to measurement noises:.

As such, itis necessary to develop effective fault identification and fault G ()

tolerant control algorithms for nonlinear systems. This forms the main 0

purpose of this paper where the contributions are to 1) reformulate the :
problem of residual generation so as to incorporate fault identification 0
= Glj,k'(EL]s"'aEl,kjv--wEi?,h '76}3,’6]‘)
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