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PHYSICAL REVIEW E, VOLUME 65, 026613
Periodic solutions for systems of coupled nonlinear Schro¨dinger equations
with five and six components

K. W. Chow* and D. W. C. Lai
Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong
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Systems of coupled nonlinear Schro¨dinger ~CNLS! equations arise in several branches of physics, e.g.,
optics and plasma physics. Systems with two or three components have been studied intensively. Recently
periodic solutions for CNLS systems with four components are derived. The present work extends the search
of periodic solutions for CNLS systems to those with five and six components. The Hirota bilinear method,
theta and elliptic functions are employed in the process. The long wave limit is studied, and known results of
solitary waves are recovered. The validity of these periodic solutions is verified independently by direct
differentiation with computer algebra software.
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I. INTRODUCTION

Systems of coupled nonlinear Schro¨dinger ~CNLS! equa-
tions occur frequently in theory as well as in application
The integrability and solitary waves of such CNLS syste
have been studied intensively. The focus of the present w
is on the periodic waves of these CNLS systems. More p
cisely, we shall study the CNLS system ofM components,

i
]fm

]t
1

]2fm

]x2 1S (
r 51

M

f rf r* Dfm50, m51,2,3,...,M .

~1.1!

An application of intensive recent interest is the use
CNLS and related systems as models for the propagatio
optical solitons along fibers. Analytically a class of period
waves for CNLS and related systems has been express
products of Jacobi elliptic functions@1–6#. These solutions
are mainly for the case of two components, but some spe
solutions for three or four components have also been fou

A general algorithm based on an ansatz of Lame´ functions
has been developed. Properties of the periodic waves,
the amplitude and the frequency, are solved as solutions
system of algebraic equations. Reductions to the Jacob
liptic functions for the case ofM52,3 are documented ex
plicitly @7–9#.

Solitons can propagate along an optical fiber by a bala
of group velocity dispersion and self-phase modulation.
increase the information carrying capacity it will be desira
to propagate two or more fields simultaneously. A system
CNLS will then be a relevant model. The eigenvalue pro
lem and the Ba¨cklund transformation can be investigated a
one-soliton expressions can be derived explicitly@10#. The
stability of multicomponent solitary waves can be stud
@11#.

Another area where the CNLS model will be applicable
the propagation of multimode, incoherent spatial solitons
noninstantaneous Kerr media. Optical spatial soliton can

*FAX: ~852! 2858 5415. Email address: kwchow@hkusua.hku
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cur when diffraction and light-induced waveguiding effec
are in balance. Recently incoherent spatial solitons were
served in noninstantaneous nonlinear media like biased p
torefractive crystals. Two theories used to describe the p
nomena are the coherent density method and the s
consistent multimode method. In the second approach
total intensity of the multimode soliton solutions is the s
perposition of all the relevant modes in the nonlinear induc
waveguide. Analytically the governing equation for ea
mode consists of a nonlinear Schro¨dinger-like operator, ex-
cept the self-phase modulation nonlinearity is replaced b
linear term, with the total intensity as the multiplicative fa
tor @12#.

The Hirota bilinear operator and theta functions will b
employed in the present paper. They have been demonst
to be effective in treating solitary and periodic waves in t
field of nonlinear waves. Indeed closed form solutions can
obtained when the total intensity profile of these incoher
solitons states is equal to the square of the hyperbolic se
@12#. Here analytical expressions are presented when the
file is equal to the square of a Jacobi elliptic dn function.

Self-trapping for these biased photorefractive crystals a
admits partially coherent solitons on a finite backgrou
@13#. Mathematically the field is governed by a CNLS sy
tem of M components. Stationary solutions with nonze
boundary conditions can be derived by a direct method
the inverse scattering technique is not applicable due to
nonzero conditions in the far field. Physically at least o
component will have a nonzero asymptotic value of the
dex change induced by the partially coherent solitons.

The objective of this paper is to study periodic solutio
of CNLS systems of five and six components. From a care
examination of the cases of two, three, and four compone
periodic solutions for CNLS of five and six components a
deduced. The number of local maxima within each per
will in general increase with the number of components
such CNLS systems. Increasing the number of interac
fields thus may facilitate the propagation of coupled perio
waves@8,9#.

II. THE HIROTA BILINEAR METHOD

The goal here is to seek special solutions of the CN
systems by first using the bilinear forms:k
©2002 The American Physical Society13-1



e-
s

le
s

ur

e

s

ce

ta

o

n-

cia
m
fo
ra
v
e

m-

,

rs

ng

-
hat

s:

-

ng
by

er,
c
suit-
ver-
re

K. W. CHOW AND D. W. C. LAI PHYSICAL REVIEW E65 026613
fm~x,t !5
gm~x!exp~2 iVmt !

f ~x!
for f real, ~2.1!

f @Dx
2gm . f 1Vmgmf #1gmF2Dx

2f • f 1(
r 51

M

grgr* G50,

~2.2!

where D is the Hirota operator. The crucial difference b
tween the present situation and the case of solitary wave
that the bilinear form~2.2! must now be used as a sing
equation, andnot as two decoupled equations. We shall a
sumegm to be real here as well.

Second we choose,

f 5@u4~ax!#p, ~2.3!

where p is a small positive integer~5 or 6 in this paper!.
Formulas for the theta functions are found in the literat
@14–16# and in the Appendix.

Finally gm must be chosen such that Eq.~2.2! is satisfied.
The Hirota derivatives of theta functions are handled by th
identities~the Appendix!. The critical step in formulating the
correct form ofgm is that sufficient powers ofu3(x) must be
canceled in Eq.~2.2! for the matching to be performed.

By invoking products of two and three theta function
periodic solutions for CNLS equations withM52,3 involv-
ing two and three elliptic or theta functions can be dedu
or recovered. Recently the consideration is extended
CNLS equations of four components. A little experimen
tion shows that the arrangements

gm5A@cu4
2~ax!2u3

2~ax!#u1~ax!u2~ax!exp~2 iVt !,
~2.4!

gm5A@cu4
2~ax!2u3

2~ax!#u1~ax!u3~ax!exp~2 iVt !,
~2.5!

gm5A@cu4
2~ax!2u3

2~ax!#u2~ax!u3~ax!exp~2 iVt !,
~2.6!

are possible candidates for solving Eqs.~2.2! @17#. Four lin-
early independent solutions are obtained by suitably cho
ing A andc. A crucial step in the choice ofgm andA is that
the sum of intensity, which is related to the ‘‘refractive i
dex’’ @12,18#, is

(
r 51

4

f rf r* 5h01h1S u3
2~ax!

u4
2~ax!

D 5h01
h1dn2~rx !

~12k2!1/2 ,

whereh0 andh1 are constants.
The main goal of the present work is to present spe

periodic solutions for CNLS systems with five and six co
ponents. The solutions are deduced from special cases
more elaborate general theory outlined earlier in the lite
ture. The case forM52 is reported by Kostov and Uzuno
@3#, while the general integerM case is documented by Hio
@7#.
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III. FORMS OF THE PERIODIC SOLUTIONS

For CNLS systems of odd order, say,M52N11, one
possible reduction of the general theory is that, for each co
ponent,m51,2,...,M ,

fm5Am@am,Nu4
2N~ax!1am,N21u4

2N22~ax!u3
2~ax!1¯

1am,0u3
2N~ax!#F~x!exp~2 iVmt !/u4

2N11~ax!,

fm5Am@jm,N21u4
2N22~ax!1jm,N22u4

2N24~ax!u3
2~ax!

1¯1jm,0u3
2N22~ax!#u1~ax!u2~ax!u3~ax!

3exp~2 iVmt !/u4
2N11~ax!,

whereF(x) will be taken from one of three choices:u1(ax),
u2(ax), u3(ax). The coefficientam,N will be determined by
a polynomial of degreeN11. The remaining coefficient
am,r , r 5N21, N22,...,0, will be related toam,N by well-
defined algebraic relations.jm,N21 will be determined by a
polynomial of degreeN and jm,r , r 5N22, N23,...,0, are
related tojm,N21 algebraically. The amplitude paramete
Am , m51,2,...,M , must be chosen such that

(
r 51

M

f rf r* 5h01h1S u3~ax!

u4~ax! D
2

, ~3.1!

whereh0 andh1 are constants. In other words, the vanishi
of @u3(ax)/u4(ax)#2r , r 52,...,M , and a prescribedh1 will
define M equations forAm

2 and h0 will determine the fre-
quency parameterVm . The resulting equations will be a lin
ear system inAm

2 . The parameters must be chosen such t
the solutions for eachAm

2 will assume a positive value.
For CNLS systems of even order, say,M52N, one pos-

sible form of periodic solutions might be

fm5Am@bm,N21u4
2N22~ax!1bm,N22u4

2N24~ax!u3
2~ax!

1bm,N23u4
2N2b~ax!u3

4~ax!1¯

1bm,0u3
2N22~ax!#G~x!exp~2 iVmt !/u4

2N~ax!,

m51,2,...,M . G(x) will be chosen from the three choice
u3(ax)u1(ax), u3(ax)u2(ax), or u1(ax)u2(ax). The co-
efficient bm,N21 will be determined by a polynomial of de
gree N. The remaining coefficientsbm,r , r 5N22, N
23,...,0 can again be expressed in terms ofbm,N21 . The
constantsAm need to satisfy the constraint~3.1! too.

All the intermediate calculations will be conducted usi
theta functions, as their Hirota derivatives can be handled
the huge variety of theta identities. Final results, howev
will be reported in terms of Jacobi elliptic functions. Ellipti
functions representations are more compact and more
able for graphical treatment by software packages. Con
sion formulas among the theta and elliptic functions a
given in the Appendix.
3-2
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IV. CNLS EQUATIONS WITH FIVE COMPONENTS

As an illustration consider CNLS of five (M55) compo-
nents. The periodic solutions are~k is modulus of the Jacob
elliptic functions!:

f15A1Fc12
dn2~rx !

~12k2!1/2G
3

k sn~rx !cn~rx !dn~rx !exp~2 iV1t !

~12k2!1/2 . ~4.1!

f25A2Fc22
d2dn2~rx !

~12k2!1/22
dn4~rx !

12k2 G dn~rx !exp~2 iV2t !

~12k2!1/4 ,

~4.2!

f35A3Fc32
d3dn2~rx !

~12k2!1/22
dn4~rx !

12k2 G dn~rx !exp~2 iV3t !

~12k2!1/4 ,

~4.3!

f45A4Fc42
d4dn2~rx !

~12k2!1/22
dn4~rx !

12k2 G Akon~rx !exp~2 iV4t !

~12k2!1/4 ,

~4.4!

f55A5Fc52
d5dn2~rx !

~12k2!1/22
dn4~rx !

12k2 GAksn~rx !exp~2 iV5t !

~4.5!

cn , n51 is a root of

3c222S A12k21
1

A12k2D c1150.

Vn , n51, is given by@h0 to be given later in Eq.~4.11!#

Vn1h0518r 2cnA12k2216r 2~22k2!.

cn , n52, 3 are roots of

63c31S 991
24k4

12k2D c21S 411
16k4

12k2D c1550.

dn andVn , n52, 3 are related by

dn54S A12k21
1

A12k2D S 1

cn
23D 21

,

Vn1h05218r 2dnA12k2225r 2~22k2!.

cn , n54 is a root of

189c31
~2192171k2124k4!c2

12k2 1
~31223k218k4!c

12k2 11

50.

dn andVn , n54, are related by

dn54S 2A12k21
3

A12k2D S 1

cn
29D 21

,

02661
Vn1h05218r 2dnA12k22r 2~41216k2!.

cn , n55 is a root of

189c31
~2192267k2172k4!c2

12k2 1
~31239k2116k4!c

12k2 11

50.

dn andVn , n55 are related by

dn54S 3A12k21
2

A12k2D S 1

cn
29D 21

,

Vn1h05218r 2dnA12k22r 2~41225k2!.

An , n51,2,3,4,5 satisfy

2
A12k2A1

2

k2 1A2
21A3

21
A4

2

k
2

A12k2A5
2

k
50, ~4.6!

~22k212c1A12k2!A1
2

k2 12d2A2
212d3A3

2

1S 2d42A12k2

k DA4
21S 122d5A12k2

k DA5
250,

~4.7!

2
@~11c1

2!A12k212c1~22k2!#A1
2

k2 1~d2
222c2!A2

2

1~d3
222c3!A3

21S d4
222c422d4A12k2

k DA4
2

1S 2d51~2c52d5
2!A12k2

k DA5
2

50, ~4.8!

@c1
2~22k2!12c1A12k2#A1

2

k2 22c2d2A2
222c3d3A3

2

1S ~2c42d4
2!A12k222c4d4

k DA4
2

1S d5
222c512c5d5A12k2

k DA5
250. ~4.9!

2
c1

2A12k2A1
2

k2 1c2
2A2

21c3
2A3

21
c4~c412d4A12k2!A4

2

k

2
c5~A12k2c512d5!A5

2

k
530r 2A12k2. ~4.10!

The constantsh0 andh1 are given by
3-3
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h05
c5

2A5
2

k
2

c4
2A12k2A4

2

k
, h1530r 2A12k2.

~4.11!

Intensities of each component are shown in Figs. 1~a!–1~e!
for typical values ofk. Up to five local maxima per period
are possible.

We verify by the softwareMATHEMATICA that Eqs.~4.1!–
~4.5! satisfy Eq.~1.1!.

Long wave limit. The long wave limit (k→1) is instruc-
tive as the solutions reduce to forms known in the literatu
This limit thus provides an additional, independent confirm
tion on the validity of the periodic solutions here. It will b
necessary to solve forYn , n51,2,3,4,5, where

Yn5
An

2

~12k2!5/2 for n52,3,4,

Yn5
An

2

~12k2!2 for n51,5.

Equations~4.6!–~4.10! can be simplified considerably b
taking the k→1 limit in the expressions forcn and dn
given earlier in this section. The long wave limit of th
Jacobi elliptic functions are „sn(rx),cn(rx),dn(rx)…
→(tanhrx,sechrx,sechrx) ask→1.

After some algebraic manipulations we obtain

f15
A210rS2T~223S2!exp~4ir 2t !

2
,

f25
A30rS~8228S2121S4!exp~ ir 2t !

8
,

f35
15A7rS5 exp~25ir 2t !

8
,

f45
3A35rS3~829S2!exp~9ir 2t !

8
,

f55
3A70rS4T exp~16ir 2t !

2
,

S5sechrx, T5tanhrx, (
m51

5

fmfm* 530r 2S2.

This long wave limit thus generates solutions that agree w
known results@12#.

V. CNLS EQUATIONS WITH SIX COMPONENTS

As an example of CNLS systems of even order, consi
M56. Forn51,2,3, the components are~k is modulus of the
Jacobi elliptic functions!
02661
.
-

h

r

fn5AnFcn2
dndn2~rx !

~12k2!1/22
dn4~rx !

12k2 G
3

Aksn~rx !dn~rx !exp~2 iVnt !

~12k2!1/4 . ~5.1!

cn , n51,2,3 are roots of

363c31
11~47255k2116k4!c2

12k2 1
~1692201k2180k4!c

12k2

11550.

dn , Vn , n51,2,3 are related by

dn54S 4A12k21
3

A12k2D S 3

cn
211D 21

,

Vn1h05222r 2dnA12k22r 2~61236k2!.

For n54,5,6, the remaining components are

fn5AnFcn2
dndn2~rx !

~12k2!1/22
dn4~rx !

12k2 G
3

Akcn~rx !dn~rx !exp~2 iVnt !

~12k2!1/2 . ~5.2!

cn , n54,5,6 are roots of

363c31
11~47239k218k4!c2

12k2 1
~1692137k2148k4!c

12k2

11550. ~5.3!

dn , Vn , n54,5,6 are related by

dn54S 3A12k21
4

A12k2D S 3

cn
211D 21

, ~5.4!

Vn1h05222r 2dnA12k22r 2~61225k2!. ~5.5!

The constantsh0 , h1 are given by

h050, h1542r 2A12k2.

h0 is zero due to the special choices in Eqs.~5.1! and ~5.2!.
If the combination sn(rx)cn(rx) is included in addition to
Eqs. ~5.1! and ~5.2!, h0 will be nonzero.An , n51,2,...,6
satisfy

A12k2S (
n51

3

An
2D 2S (

n54

6

An
2D 50,

(
n51

3

~122dnA12k2!An
22 (

n54

6

~A12k222dn!An
250,
3-4



y

PERIODIC SOLUTIONS FOR SYSTEMS OF COUPLED . . . PHYSICAL REVIEW E65 026613
FIG. 1. ~a! Plot of the nondimensional intensityuf1u2 versus the nondimensional coordinatex, r 51, k50.85,c151.37,A1510.77.~b!
Plot of the nondimensional intensityuf2u2 versus the nondimensional coordinatex, r 51, k50.85, c2521.62, A257.90. ~c! Plot of the
nondimensional intensityuf3u2 versus the nondimensional coordinatex, r 51, k50.85,c3520.084,A351.41. ~d! Plot of the nondimen-
sional intensityuf4u2 versus the nondimensional coordinatex, r 51, k50.85,c4520.17,A455.29.~e! Plot of the nondimensional intensit
uf5u2 versus the nondimensional coordinatex, r 51, k50.85,c5520.030,A554.54.
026613-5
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(
n51

3

@2dn1~2cn2dn
2!A12k2#An

22 (
n54

6

@2cn2dn
2

12dnA12k2#An
250,

(
n51

3

~dn
222cn12cndnA12k2!An

22 (
n54

6

@2cndn

1~dn
222cn!A12k2#An

2

50,

(
n51

3

cn~2dn1cnA12k2!An
22 (

n54

6

cn~cn12dnA12k2!An
2

50,

(
n51

3

cn
2An

22A12k2(
n54

6

cn
2An

2542r 2A12k2.

Intensities of the components are illustrated in Figs. 2~a!–
2~f! for typical values ofk. Up to six local maxima are pos
sible for each period.

We verify by the softwareMATHEMATICA that the system
Eqs.~5.1! and ~5.2! satisfy Eq.~1.1!.

VI. CNLS EQUATION FOR SIX COMPONENTS:
ANOTHER SOLUTION

A different combination of elliptic functions will generat
another periodic solution for the CNLS system with six co
ponents. The ‘‘index of refraction’’ will attain a form differ
ent from the case in Sec. V. More precisely, forn51,2,3 the
components are~k is modulus of the Jacobi elliptic func
tions!

fn5AnFcn2
dndn2~rx !

~12k2!1/22
dn4~rx !

12k2 G
3

k sn~rx !cn~rx !exp~2 iVnt !

~12k2!1/4 . ~6.1!

cn , n51,2,3 are roots of

363c31
11~37237k218k4!c2

12k2 1
~45245k2116k4!c

12k2 11

50.

dn , Vn , n51,2,3 are related by

dn512S A12k21
1

A12k2D S 1

cn
211D 21

,

Vn1h05222r 2dnA12k2225r 2~22k2!.

It is extremely important to note thath0 in this case is dif-
ferent from that in Sec. V@Eq. ~6.2! below#.
02661
-

For n54,5,6 the remaining components are still given
Eqs.~5.2!–~5.5!. The constanth1 is still given by

h1542r 2A12k2,

but the constanth0 is now,

h052 (
n51

3 cn
2A12k2An

2

k2 . ~6.2!

The amplitude parametersAn , n51,...,6, are governed by

A12k2

k S (
n51

3

An
2D 2S (

n54

6

An
2D 50.

(
n51

3
~22k222 dnA12k2!An

2

k
2 (

n54

6

~A12k222 dn!An
250,

(
n51

3 F2 dn~22k2!1~2cn212dn
2!A12k2

k GAn
2

2 (
n54

6

@2cn2dn
212 dnA12k2#An

2

50,

(
n51

3 F ~dn
222cn!~22k2!12 dn~cn21!A12k2

k GAn
2

2 (
n54

6

~2cndn1~dn
222cn!A12k2!An

250,

(
n51

3 F2cndn~22k2!1~cn
21dn

222cn!A12k2

k GAn
2

2 (
n54

6

cn~cn12 dnA12k2!An
2

50,

(
n51

3

cnFcn~22k2!12 dnA12k2

k GAn
22 (

n54

6

cn
2A12k2An

2

542r 2A12k2.

Plots for the intensities will be very similar to those from th
preceding section, and hence will be omitted.

VII. CONCLUSIONS

Periodic solutions for CNLS systems with five and s
components are derived by a combination of the Hirota
linear transformation, elliptic and theta functions. Systems
still higher order require an almost oppressive amount
algebra, and systematic use of symbolic manipulation pa
age might be needed. The long wave limit is studied a
3-6
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PERIODIC SOLUTIONS FOR SYSTEMS OF COUPLED . . . PHYSICAL REVIEW E65 026613
FIG. 2. ~a! Plot of the nondimensional intensityuf1u2 versus the nondimensional coordinatex, r 51, k50.85,c1521.19,A1519.83.~b!
Plot of the nondimensional intensityuf2u2 versus the nondimensional coordinatex, r 51, k50.85,c2520.44,A2512.30.~c! Plot of the
nondimensional intensityuf3u2 versus the nondimensional coordinatex, r 51, k50.85,c3520.79,A355.15.~d! Plot of the nondimensiona
intensityuf4u2 versus the nondimensional coordinatex, r 51, k50.85,c4522.06,A4515.74.~e! Plot of the nondimensional intensityuf5u2

versus the nondimensional coordinatex, r 51, k50.85, c5520.40, A557.17. ~f! Plot of the nondimensional intensityuf6u2 versus the
nondimensional coordinatex, r 51, k50.85,c6520.050,A651.28.
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solitary waves solutions published in the literature are rec
ered. The precision and validity of the periodic solutions
verified independently by direct differentiation with a com
puter algebra software. Since results for CNLS systems o
arbitrary integer order are still scarce, the present work m
provide some preliminary results in that direction. CNL
systems are useful in the description of partially coher
02661
-
e

n
ht

t

solitons in media with a slow Kerr-like nonlinearity. In gen
eral exact solutions will give a precise formulation of spat
beams. In particular, according to recent works on photo
fractive crystals, the number of components in such CN
systems can be large. Work and results for such higher o
CNLS systems should prove to be of fundamental as wel
practical interests.
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APPENDIX

The theta functionsun(x) @14,15#, n51,2,3,4 and the pa
rametersq ~the nome!, t ~pure imaginary! are defined by

u1~x!5 (
n50

`

~21!nq~n11/2!2
sin~2n11!x

52 (
m52`

`

expFp i tS m1
1

2D 2

12i S m1
1

2D S x1
p

2 D G ,
~A1!

u2~x!52(
n50

`

q~n11/2!2
cos~2n11!x

5 (
m52`

`

expFp i tS m1
1

2D 2

12i S m1
1

2D xG ,
~A2!

u3~x!5112(
n51

`

qn2
cos 2nx5 (

52`

`

exp~p i tm212imx!,

~A3!

u4~x!5112(
n51

`

~21!nqn2
cos 2nx

5 (
m52`

`

expFp i tm212imS x1
p

2 D G , ~A4!

0,q,1, q5exp~p i t!5expS 2
pK8

K D .

K and K8 are the complete elliptic integrals. Relationshi
between the theta and elliptic functions are

sn~u!5
u3~0!u1~z!

u2~0!u4~z!
, cn~u!5

u4~0!u2~z!

u2~0!u4~z!
,

dn~u!5
u4~0!u3~z!

u3~0!u4~z!
, ~A5!

z5
u

u3
2~0!

, k5
u2

2~0!

u3
2~0!

, k85
u4

2~0!

u3
2~0!

, k21~k8!251.

~A6!

Theta functions possess a huge variety of product identi
e.g.,

u3~x1y!u3~x2y!u2
2~0!5u4

2~x!u1
2~y!1u3

2~x!u2
2~y!,

~A7!
02661
g
/

s,

u4~x1y!u4~x2y!u2
2~0!5u4

2~x!u2
2~y!1u3

2~x!u1
2~y!. ~A8!

Differentiating Eqs.~A7! and ~A8! with respect toy and
settingy50 yield

Dx
2u3~x!•u3~x!5

2u29~0!u3
2~x!

u2~0!
12u3

2~0!u4
2~0!u4

2~x!,

Dx
2u4~x!•u4~x!52u3

2~0!u4
2~0!u3

2~x!1
2u29~0!u4

2~x!

u2~0!
.

Hence formulas forDxum•un , Dx
2um•un can be developed

for m,n integers@16#. Derivatives for products of theta func
tions can be obtained by repeated use of identities such

Dxab•cd5bdDxa•c1acDxb•d,

Dx
2ab•cd5bdDx

2a•c1acDx
2b•d12~Dxa•c!~Dxb•d!.

Typical results for the purpose of the present discussion

Dx
2u4

5~ax!•u4
5~ax!55a2u4

8~ax!S 2u3
2~u!u4

2~0!u3
2~ax!

1
2u29~0!u4

2~ax!

u2~0!
D ,

Dx
2u4

6~ax!•u4
6~ax!56a2u4

10~ax!S 2u3
2~0!u4

2~0!u3
2~ax!

1
2u29~0!u4

2~ax!

u2~0!
D ,

Dx
2u1~ax!u2~ax!u3

3~ax!•u4
5~ax!

5a2u1~ax!u2~ax!u3~ax!u4
3~ax!

3F220u3
2~0!u4

2~0!u3
4~ax!1S 2u29~0!

u2~0!
1

4u39~0!

u3~0!

1
4u49~0!

u4~0!
112u3

4~0!112u4
4~0! D u3

2~ax!u4
2~ax!

26u3
2~0!u4

2~0!u4
4~ax!G ,

Dx
2u3

4~ax!u1~ax!•u4
5~ax!

5a2u1~ax!u3
2~ax!u4

3~ax!F220u3
2~0!u4

2~0!u3
4~ax!

1S u29~0!

u2~0!
1

5u39~0!

u3~0!
1

4u49~0!

u4~0!
112u3

4~0!

120u4
4~0! D u3

2~ax!u4
2~ax!212u3

2~0!u4
2~0!u4

4~ax!G ,
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Dx
2u3

5~ax!u1~ax!•u4
6~ax!

5a2u1~ax!u3
3~ax!u4

4~ax!F230u3
2~0!u4

2~ax!

3~0!u3
4~ax!1S u29~0!

u2~0!
1

6u39~0!

u3~0!
1

5u49~0!

u4~0!
s.

02661
120u3
4~0!130u4

4~0!u3
2~ax!u4

2~ax!

220u3
2~0!u4

2~0!u4
4~ax!.

Similar results are obtained for the Hirota derivatives
other polynomials of theta functions of degree five or six, b
details will be omitted here for brevity.
.
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