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Transcritical, or resonant, flow of a stratified fluid over an obstacle is studied using a forced
extended Korteweg–de Vries model. This model is particularly relevant for a two-layer fluid when
the layer depths are near critical, but can also be useful in other similar circumstances. Both
quadratic and cubic nonlinearities are present and they are balanced by third-order dispersion. We
consider both possible signs for the cubic nonlinear term but emphasize the less-studied case when
the cubic nonlinear term and the dispersion term have the same-signed coefficients. In this case, our
numerical computations show that two kinds of solitary waves are found in certain parameter
regimes. One kind is similar to those of the well-known forced Korteweg–de Vries model and
occurs when the cubic nonlinear term is rather small, while the other kind is irregularly generated
waves of variable amplitude, which may continually interact. To explain this phenomenon, we
develop a hydraulic theory in which the dispersion term in the model is omitted. This theory can
predict the occurrence of upstream and downstream undular bores, and these predictions are found
to agree quite well with the numerical computations. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1429962#
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I. INTRODUCTION

The evolution of weakly nonlinear long waves, in bo
homogeneous and density-stratified fluid environments, i
great interest in many branches of fluid mechanics, nota
in oceanographic applications. When the leading balanc
between quadratic nonlinearity and dispersion, the dynam
is typically governed by the well-known Korteweg–de Vri
~KdV! equation. For larger waves, or for certain special c
figurations in stratified fluids, it has been found useful
include cubic nonlinearity, leading to the extended Kd
~eKdV! equation. Such model systems have been derive
the literature for stratified fluids, and the localized solita
waves have been identified~see, for instance, the review a
ticle by Grimshaw,1 as well as the recent more specializ
works by Hollowayet al.,2 Michalet and Barthelemy,3 and
Grimshawet al.4!

In many geophysical and marine applications it is n
essary to include a forcing term; typical examples are w
the waves are generated by moving ships, or by flow o
bottom topography. Previous studies2–8 have identified some
interesting features of the forced eKdV equation. These
clude undular bores propagating upstream in the subcri
regime, and monotonic bores in the transcritical regime; s
bores may remain stationary. These features differ sha
from the solution of the forced KdV equation, where in t
transcritical regime solitary waves are generated continu
and propagate upstream. Locally steady flow is observed
sufficiently large Froude numbers in the supercritical ran
of such eKdV systems, while stationary lee waves
7551070-6631/2002/14(2)/755/20/$19.00
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formed for sufficiently low Froude numbers in the subcritic
regime. For the forced KdV equation Grimshaw and Smy8

~GS! showed that the upstream and downstream wave tr
could be well described by the modulation theory for t
KdV equation, which, in turn, is a development from th
hydraulic approximation in which the dispersive term is n
glected. However, it seems that the modulation theory for
eKdV equation is not fully available, except for sufficient
small-amplitude waves.6

Further, numerical simulations of the full equations f
stratified flow over topography have been performed fo
two-layer stratification and for a linearly stratified Bous
inesq fluid.7–12Flows past an obstacle in a horizontal chann
will reach criticality if the linear long wave speed of on
mode is equal to the upstream flow speed. The energy of
waves excited by the obstacle cannot propagate away f
it, and hence a strongly nonlinear response occurs. Inde
is this feature that leads to the necessity for such nonlin
theoretical models as those provided by the forced KdV a
eKdV equations. These full numerical simulations broad
support the behavior types seen in the model equations.
ther, we note that a forced eKdV equation has been discu
in the context of the generation of capillary-gravity waves
a two-layer fluid;11 also, a set of coupled forced KdV equa
tions have been discussed for surface waves, with a view
retaining a ~weak! interaction with the nonresonant wav
mode.9

It is known that the solutions of the eKdV equation w
depend on the relative signs of the coefficient of the cu
nonlinear and dispersive terms. Most studies of the for
© 2002 American Institute of Physics
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FIG. 1. The interfacial displacement att560 with D50, f m51.0, andj50.3 for b.0.
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757Phys. Fluids, Vol. 14, No. 2, February 2002 Transcritical flow of a stratified fluid
eKdV equation mentioned above, with one exception,11 deal
with the case where these terms are of opposite sign. In
case the eKdV equation supports a single family of solit
waves, whose polarity is determined by the relative signs
the coefficient of the quadratic nonlinear and dispers
terms, which for small amplitudes resemble those of the K
equation, but for large amplitudes become ‘‘thick’’ solita
waves with a limiting amplitude.1 On the other hand, when
the cubic nonlinear and dispersive terms have the sa
signed coefficients, the eKdV equation supports two fami
of solitary waves; one resembles the KdV solitary waves
small amplitudes, but the other, with opposite polarity, c
exist only for large amplitudes. Since the coefficient of t
cubic nonlinear term in the eKdV equation can have eit
sign for various layered and stratified fluids,10,11 our objec-
tive in the present work is to study waves generated by
forced eKdV for both signs of the cubic nonlinear term, w
a particular emphasis on the less-studied case when the c
nonlinear and dispersive terms have the same sign. As
procedure for deriving such a forced eKdV equation
standard,1,5,6 and well known, we shall proceed directly wit
a study of a nondimensional forced eKdV equation. Form
and signs for this forced eKdV will conform as far as po
sible with the forms used in earlier studies.

The strategy will be a combined analytical and comp
tational study. First, based on the usefulness of the hydra
approximation used by GS8 in their study of the forced KdV
equation, an analogous hydraulic approximation for
forced eKdV equation will be developed here and used
study the transcritical regime. Second, the forced eK
equation will be solved numerically, and the results co
pared with the hydraulic approximation. The most interest
result is that two kinds of solitary waves can be emitted a
travel upstream in certain parameter regimes. The first typ
generated at regular intervals when the cubic nonlinear t
is relatively unimportant, while the second type is produc
irregularly and occurs when the cubic nonlinear term play
crucial role.

FIG. 2. Heref m vs u for D50.
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II. FORCED EXTENDED KORTEWEG-de VRIES
EQUATION

We begin the analytical formulation by considering t
forced eKdV equation for an appropriate field variab
u(x,t),

]u

]t
1D

]u

]x
2au

]u

]x
2bu2

]u

]x
2

]3u

]x3 5
] f

]x
. ~1!

For instance, in a two-layer fluid,u is the interfacial
displacement.1 HereD measures the deviation from the lon
wave phase speed, and is the parameter that controls the
regime; f (x) is the representation of the localized top
graphic forcing;a andb are the coefficients of the quadrat
and cubic nonlinear terms, respectively, and can be de
mined explicitly in terms of the basic state of the stratifi
fluid.1,5,7,8,10 For an initial condition, we setu(x,0)50,
which corresponds to turning on the basic flow at the init
time. The forcing function used in our numerical simulatio
is

f 5 f m exp~2j2x2!, ~2!

FIG. 3. Here f m2 f 1g(D) vs u for DÞ0, for D,0. The caseD.0 is
similar.

FIG. 4. Configuration for a stationary downstream shock.



ith

758 Phys. Fluids, Vol. 14, No. 2, February 2002 Grimshaw, Chan, and Chow
FIG. 5. The numerical solution withD523.0, b51.4, f m51.0, andj50.3.

FIG. 6. ~a! The numerical solution withD521.0, b51.4, f m51.0, andj50.3. ~b! The characteristics configuration for the hydraulic approximation w
D521.0, b51.4, f m51.0, andj50.3. ~c! The interfacial displacement of the flow att560 with D521.0, f m51.0, andj50.3 for b.0.
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FIG. 6. ~Continued.!
.
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760 Phys. Fluids, Vol. 14, No. 2, February 2002 Grimshaw, Chan, and Chow
wherej is a shape parameter. In general, we assume thf
has a single maximum and decays rapidly in the farfie
Only positive forcing is considered in this study,@i.e., f m

.0 in Eq.~2!# anda is kept constant~equal to 2 without loss
of generality! for all the numerical computations. Howeve
we vary the coefficientb and allow it to be both positive an
negative. A typical sequence of numerical computations
D50, f m51 is shown in Fig. 1 forb.0.

III. HYDRAULIC APPROXIMATION

To explain the features shown in Fig. 1 and all our oth
numerical computations, we follow the approach of GS8 and
consider here the hydraulic approximation. Formally this
valid for broad forcings@j→0 in Eq. ~2!#, and can be ex-
pected to lead to a combination of locally steady-state s
t
.

r

r

s

-

tions together with shocks. As in GS, we expect the shock
be indicative of the presence of wave trains in the full eq
tions ~1!, although, as far as we aware, there is currently
counterpart for the eKdV equation to the modulation theo
for the KdV equation used by GS. On omission of the d
persive term, Eq.~1! becomes

]u

]t
1D

]u

]x
2au

]u

]x
2bu2

]u

]x
5

] f

]x
. ~3!

Equation~3! can be solved by the method of characteristi
These are given by

dx

dt
5D2au2bu2,

du

dt
5

] f

]x
, ~4!
FIG. 7. ~a! The numerical solution withD50, b51.4, f m51.0, andj50.3. ~b! The mass fluctuations withD50, f m51.0, andj50.3 ~only M front is shown!.
~c! The characteristics configuration for the hydraulic approximation withD50, b51.4, f m51.0, andj50.3.
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FIG. 7. ~Continued.!
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where on a given characteristic att50, x5x0 , u50. Herex0

is a parameter defining each characteristic. Equations~4! are
readily solved numerically, although we note that analy
cally the solution can be written in the form

Du2 1
2 au22 1

3 bu35 f ~x!2 f ~x0!, ~5!

which givesu in terms ofx andx0 . Substitution into the first
of Eqs.~4! then givesx5x(x0 ,t), and the subsequent elim
nation ofx0 then yields the solution of Eq.~3!. However, if
the characteristics intersect, then a shock much be inse
The shock speedV can be determined by integrating Eq.~3!
across the shock, and is

V5D2 1
2a~ua1ub!2 1

3b~ua
21uaub1ub

2!, ~6!

where ua,b are the values ofu on each side of the shock
However, in our numerical solutions of Eqs.~4! we allow the
characteristics to intersect, and the shocks are inserted
schematically, i.e., we determine numerically the points~X!
where characteristics first intersect, and sketch a curve~solid
line! whose slope at the initial intersection point is given
Eq. ~6!.

Next, to determine the criteria for a steady hydrau
solution, we ignore the unsteady term in Eq.~3! which then
becomes

D
]u

]x
2au

]u

]x
2bu2

]u

]x
5

] f

]x
. ~7!

We shall assume thata.0 without loss of generality, and
also in the subsequent discussion, we shall assume thb
.0. The caseb,0 can be recovered by the transformati
u→2u, D→2D. At the local maximum of the forcing
located atx50, f (0)5 f m , f x50 and we letu5um . Then
Eq. ~7! shows that eitherux50, or that

D5aum1bum
2 , i.e., bum52

a

2
6H a2

4
1DbJ 1/2

.

~8!
-

d.

nly

Since we are interested only in asymmetric steady hydra
solutions, we assume here thatuxÞ0 atx50, and so Eq.~8!
holds; later we will show that only the upper sign in Eq.~8!
is relevant. In the farfield, wheref→0 we letu→u6 , where
u2 and u1 represent the upstream (x→2`) and down-
stream (x→1`) values, respectively, and we will requir
that u1Þu2 . Later we will show thatu2.u1 . Integrating
Eq. ~7! with respect tox gives

Du2
au2

2
2

bu3

2
2 f 5C, ~9!

whereC can be determined by the farfield conditions, or
the condition atx50, so that

C5Du62
a

2
u6

2 2
b

3
u6

3 5Dum2
aum

2

2
2

bum
3

3
2 f m .

~10!

Further, sinceu2Þu1 , we obtain

D5
a

2
~u11u2!1

b

3
~u1

2 1u1u21u2
2 !. ~11!

First, for simplicity, letD50. In this case, Eq.~8! im-
plies thatum50, orum52a/b. If um50, thenC52 f m and
the solution of Eq.~9! becomes

f m2 f 5 1
2au21 1

3bu3,

which is plotted in Fig. 2. Clearly,

a

2
u6

2 1
b

3
u6

3 5 f m,
a3

6b2 ~12!

must hold for this solution to exist and, furthermore,

a

2b
.u2.0.u1.2

a

b
.

In the other case, ifum52a/b, it can be shown that there i
no solution, most obviously by again using Fig. 2.
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FIG. 8. ~a! The interfacial displacement att560 with D51.0, f m51.0, andj50.3 for b.0. ~b! The numerical solution withD51.0, b54.2, f m51.0, and
j50.3. ~c! The interfacial displacement att560 with D52.0, f m51.0, andj50.3 for b.0. ~d! The numerical solution withD53.0, b51.4, f m51.0, and
j50.3.
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FIG. 8. ~Continued.!
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Then, in the general case, we considerDÞ0 for a.0,
b.0. First Eq.~8! shows thatum will not exist unless

D.2
a2

4b
. ~13!

Sinceum50 whenD50, we chooseum by the upper sign in
Eq. ~8!. Equations~9! and ~10! then give

f m2 f 1g~D!52Du1
au2

2
1

bu3

3
, ~14!

where

g~D!52Dum1
a

2
um

2 1
b

3
um

3 , or

g~D!5
aD

2b
1

a3

12b22
2

3b2 H a2

4
1DbJ 3/2

.

We now plot f m2 f 1g(D) as a function ofu in Fig. 3, and
see that there are two turning points:

u5um , um52
a

2b
1

1

b H a2

4
1DbJ 1/2

~a local minimum!, ~15!

u5um8 , um8 52
a

2b
2

1

b H a2

4
1DbJ 1/2

,

~a local maximum!. ~16!

Thus, a solution withu2.um.u1 exists until f m reaches a
value, such that
f m52D~um8 2um!1
a

2
~um8

22um
2 !1

b

3
~um8

32um
3 !

52g~D!2Dum8 1
a

2
um8

21
b

3
um8

3. ~17!

From Eqs.~15! and ~16!,

um8 2um52
2

b H a2

4
1DbJ 1/2

, um8 1um52
a

b
,

and we find that this hydraulic solution exists, provided th

f m<
4

3b2 H a2

4
1DbJ 3/2

. ~18!

Note here that

g~D!5
a3

12b2 F11
6Db

a2 2S 11
4Db

a2 D 3/2G<0, ~19!

holds for all D in the allowed range,D.2a2/4b and
g(D)50 at D50.

The shock velocities upstream (V2) and downstream
(V1) are found from Eq.~6! with ua,b5(0,u2) and (0,u1),
respectively, so that

V65D2
au6

2
2

bu6
2

3
5

2@ f m1g~D!#

u6
.

Since we require thatV1.0.V2 , it follows that u2.0
.u1 and that~see Fig. 3!

f m.2g~D!, ~20!

which defines the transcritical regime. The results Eq.~18!
and Eq.~20! are the main conclusion from this study of th
steady hydraulic solutions. Equation~18! is the condition for
the existence of the downstream steady stateu1 , while Eq.
~20!, together with Eq.~13!, define the range ofD for which
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FIG. 8. ~Continued.!
.
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FIG. 8. ~Continued.!
.

ei

ov
ro
t

q.
-

th
lv

ce
is
to

th

om-
so-

n

s.
de-
and
w,

ass
id.

ind
wo

ed,

n.

ere
the
-
ol-
is
ant
this asymmetric hydraulic solution can be obtained. We r
erate that when both Eq.~18! and Eq.~20! are satisfied we
anticipate that in the full equation~1! the shocksu6 are
replaced by wave trains, as in GS.

The case

f m.
4

3b2 S a2

4
1Db D 3/2

, ~21!

requires a different treatment. Instead of the treatment ab
we assume now that a stationary shock forms over the f
face of the forcing atx5xm8 ~Fig. 4!. The structure to the lef
of this shock is similar to that described above:

f~u!52Du1
au2

2
1

bu3

3
52C2 f , x,xm8 ,

where

2C5 f m1g~D!, g~D!5f~um!. ~22!

Then asx5xm8 , it is clear from Fig. 3 thatu5um8 @see Eq.
~16!#, and this is sufficient to also determinexm8 . Then since
the shock speed is now zero, one hasf(um8 )5f(um9 ), which
determinesum9 . Downstream of the shock (x.xm8 ) one seeks
a steady solution whereu→u18 as x→`, and u→um9 as x
→xm8 1. It is readily shown that this is also given by E
~22!, so that, in fact,u18 5u2 , i.e., the downstream steady
state level is identical to that upstream. However, in
downstream case, this is not a shock, and instead is reso
by a rarefaction wave.

IV. NUMERICAL COMPUTATIONS

We now discuss some numerical studies of the for
eKdV equation for various flow regimes. A numerical code
developed using the Adams–Bashforth–Moulton predic
and corrector method to integrate Eq.~1! forward in time,
and central finite difference formulas are employed in
t-

e,
nt

e
ed

d

r

e

spatial discretization process. The code is validated by c
paring the numerical result with the exact solitary wave
lutions of the eKdV equation.

The localized forcing is switched on impulsively whe
the time integration starts. We keepa constant (a52), and
fix the forcing to be given by Eq.~2! for all simulations.
ThenD andb are varied to generate different flow regime
In a subsequent discussion, the ‘‘mass’’ of the system is
fined to be the area between the interfacial displacement
the undisturbed mean position. For two-dimensional flo
this volume, or area per unit depth, will represent the m
except for a constant factor equal to the density of the flu
In order to study the mass fluctuation in front of and beh
the forcing, we split the mass of the whole system into t
parts, namely, 2`,x,0 (M front) and 0<x,1`
3(Mbehind). As the total mass of the system is conserv
M front1Mbehind5M total50 since the null initial condition is
used here.

A. Part 1, forced eKdV, bÌ0

1. Case (A): DË0

The transcritical range forD is defined by Eq.~20!,
which depends onf m , a, andb. One particular value ofb,
namely,b51.4, will be chosen for the purpose of discussio
The transcritical range is then given by20.71,D,2.35.

We first consider a large negative value ofD (D523)
that is outside the transcritical regime. Figure 5~a! shows a
typical solution of Eq.~1! with j50.3, andf m51. The criti-
cal value ofb found from Eq.~18! is given bybc50.28, and
so there is no steady hydraulic solution available, since h
b.bc . Nevertheless, this case is quite similar to that of
usual forced KdV equation.8 A localized stationary depres
sion is observed just downstream of the forcing region f
lowed by a stationary lee wavetrain. A solitary wavetrain
generated in the upstream direction with one very domin
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FIG. 9. ~a! The interfacial displacement att560 with D523.0, f m51.0, andj50.3 for b,0. ~b! The numerical solution withD523.0, b521.4, f m

51.0, andj50.3.
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FIG. 9. ~Continued.!
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leading wave. The upstream solitary wave, formed at a v
early stage, attains a mass of six units very soon after
integration starts. The total mass of the system is conse
and stays equal to zero steadily as time proceeds. Outsid
transcritical regime, the introduction of the cubic nonline
ity does not generate any dramatic influence on the solut
as compared with the usual forced KdV model.

Next, we consider a case closer to the transcritical
gime, D521, but still with j50.3 andb51.4 @Fig. 6~a!#.
There is now an undular bore upstream, although the os
latory wave train downstream is the dominant feature. T
critical value ofb given by Eq.~18! here isbc50.59, and
also b.bc . It is therefore not surprising that there is n
stationary depression just downstream of the forcing reg
Instead, there is a downstream wavetrain, which is hig
oscillatory. The characteristics obtained from Eqs.~4! are
shown in Fig. 6~b!. There are two shocks formed, one u
stream that leads to the observed undular bore in Fig. 6~a!,
while the other is over the forcing and leads to the unste
ness of the downstream wave train. Figure 6~c! shows the
interfacial displacement att560, revealing the regime tran
sitions asb is increased. Atb50.3, well below bc , the
solution is similar to that for the usual forced KdV equatio
with an upstream undular bore, a depression just behind
obstacle, followed by a modulated wave train. This behav
persists untilb.bc , and forb50.6 we see some variability
in the downstream wave train, possibly indicative of a r
efaction type of modulation. On further increasing the va
of b beyondbc , the irregular oscillatory wave train become
the dominant feature downstream while the number of
stream waves in the undular bore decreases.

2. Case (B): DÄ0

We now consider the resonant case ofD50, j50.3 and
f m51, where the critical valuebc51.15. Forb.bc , our
numerical computations show good agreement with the
draulic approximation in that there is an upstream undu
ry
e

ed
the
-
n,

-

il-
e

n.
y

i-

,
he
r

-
e

-

y-
r

bore composed of solitary waves of nearly uniform amp
tude, a stationary downstream depression terminated b
modulated wave train. The scenario is analogous to that
scribed by GS for the forced KdV equation. Figure 1 sho
the interfacial displacement att560 for different values of
b. When b is only slightly greater than the critical valu
(b51.2), the downstream depressed region ceases to e
and instead a localized minimum develops. There are
regularly generated solitary waves upstream, and a mo
lated downstream wave train remains. On further increas
the value ofb, two systems of upstream solitary waves a
observed. They are regular ones, which are generated a
early stage and irregular ones, which are apparently ge
ated in accordance with the fluctuations in the depression
in the lee of the forcing region. These irregular solita
waves, and the accompanying irregularly downstream wa
are the most striking results of the present work, and di
drastically from the forced KdV model.

When the cutoff criterion@Eq. ~18!# is exceeded~i.e.,
b.bc!, one can construct another steady hydraulic soluti
This new solution has a stationary shock on the downstre
side of the forcing, and is followed by a transition to a ra
efaction. In the full equation~1! we interpret the presence o
the stationary shock with the fluctuations seen just in the
of the forcing, leading to the irregular generation of t
higher-amplitude solitary waves~HASW! observed in the
numerical computations, while the rarefaction become
rather weak downstream wave train. In this regime, we fi
that the hydraulic approximation is again useful in predicti
the criterion for the presence of a steady lee depress
which is directly related to the structure of the upstream s
tary waves. Forb51.4, five regular and two irregula
HASWs are generated att560. The time development in th
numerical computation forb51.4 is shown in Fig. 7~a!. The
first HASW, generated att'30.5, travels faster than th
regularly generated solitary waves and interacts with the
We are proposing that the generation of this kind of HAS
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FIG. 10. ~a! The interfacial displacement att560 with D521.0, f m51.0, andj50.3 for b,0. ~b! The numerical solution withD521.0, b523.2, f m

51.0, andj50.3.
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is due to the presence of a stationary shock on the do
stream side of the forcing in the hydraulic approximatio
Simultaneously, an oscillatory wave train is sent dow
stream. Once the localized depressed region posse
enough negative mass, it is apparently pushed upstream
undergoes a transformation. Simultaneously, one can re
nize several fluctuations of mass in the upstream region@Fig.
7~b!#, i.e., M front , is no longer a straight line. If these loca
ized and large negative disturbances near the forcing re
have insufficient mass, they will decay into radiation and
sent back downstream. Figure 7~c! illustrates the character
istics for the case ofb51.4, which shows evidence to sup
port these interpretations. Some characteristics curves,
the downstream side of the forcing region, bend toward
upstream direction, and have more than one turning po
When we increase the value ofb to 1.6 ~Fig. 1!, the number
of regularly generated solitary waves drops to three. Fob
53.6, only one regular solitary wave is formed at an ea
stage. Consequently, we infer that increasing the cubic n
linearity hinders the generation of the regular solitary wav
and at the same time triggers the formation of the HASW

3. Case (C): DÌ0

Figure 8~a! shows the interfacial displacement att560
for different values ofb with D51, j50.3, andf m51. This
is still in the transcritical regime, whilebc53.67. For the
fixed time period chosen the number of solitary waves g
erated is proportional to the value ofb before it reaches the
cutoff criterion of 3.67. Whenb exceeds the critical value
the depression cannot be maintained, and according to
hydraulic approximation, a stationary shock is formed b
hind the forcing region. Some HASWs are also observed
the case ofb54.2. Figure 8~b! shows the time history of the
case b54.2. Shocks will be needed if the characteris
curves intersect. Stationary shocks develop just behind
forcing region, and they form upstream advancing HASW
n-
.
-
ses
nd
g-

on
e

m
e
t.

y
n-
s,
.

-

ur
-
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Finally, consider the caseD52, j50.3, and f m51,
which is also in the transcritical regime, whilebc50.38.
This case shown in Fig. 8~c!, illustrates the nonlinear char
acter of the solitary wave formation. The generation per
decreases and the number of the solitary waves increas
we choose a larger value ofb @Fig. 8~c!#, but are all still the
irregular regime. However, the amplitudes of the solita
waves generated decrease from about 3.2 atb51.2 to about
2.4 atb53.6.

For an example outside the transcritical range, letD
53, b51.4, j50.3, andf m51. A locally stationary eleva-
tion forms over the forcing region, and a downstream mo
lated wave train is obtained@Fig. 8~d!#.

B. Part 2, eKdV, bË0

1. Case (A): DË0

We first considerD523, j50.3, andf m51. Figure 9~a!
shows a series of interfacial displacements att560. The cut-
off criterion for this case isbc'248.99, so that we mus
haveubu,ubcu to have a steady hydraulic solution. Only on
upstream solitary wave is generated and a depression d
ops in the forcing region. These results are quite similar
those of the forced KdV equation, and indeed Fig. 9~b!
shows the time history of the caseb521.4, which is very
similar to the result of the caseb511.4 ~Fig. 5!.

For D521, there is a transition from the undular bo
solution to the monotonic bore solution asubu is increased.
Figure 10~a! shows quite dramatically a series of pictur
representing this transition. The undular bore solution is
tained forb521.0 and the monotonic bore solution is foun
for b523.2; herebc'23.67 and soubu,ubcu implies that
the steady hydraulic solutions hold. But, asubu increases, the
resolution of the upstream shock into an undular bore
comes instead resolution into a monotonic bore. Even w
ubu.ubcu, e.g.,b524.2, the monotonic bore solution ca
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FIG. 11. ~a! The interfacial displacement att560 with D50, f m51.0, andj50.3 for b,0. ~b! The numerical solution withD50, b521.4, f m51.0, and
j50.3.
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still be observed. The undular and monotonic bore soluti
are globally unsteady, but do ultimately give new loca
steady conditions immediately upstream of the forc
region.5 Earlier work in the literature1,5,6 shows that the
qualitative form of the solution depends on the Froude nu
ber ~D in our case! and the strength of the forcing. We fin
here that it also depends on the strength of the cubic non
earity. The time history for a particular value ofb,
b'23.2, is shown in Fig. 10~b!.

2. Case (B): DÄ0

This case is shown in Figs. 11~a! and 11~b!, where now
bc521.15. However, even forubu.ubcu ~say b522.0 or
b523.6!, a monotonic bore solution is still found. A tran
sition similar to that for the caseD521 is also obtained in
this regime, in that asubu decreases, the upstream monoto
bore becomes an undular bore, e.g., an undular bore is
served atb520.6. But note that the structure of the u
stream monotonic bore changes near the forcing, once
cutoff criterion is reached@Fig. 11~a!#. The hydraulic ap-
proximation is highly effective and precise in predicting t
transition point in this case. Figure 11~b! shows the time
history of the monotonic bore solution withb521.4.

3. Case (C): DÌ0

In Fig. 12 we considerD51, which is within the tran-
scritical regime, whilebc520.59. Forb520.3 ~below the
cutoff criterion!, three well-developed upstream solita
waves are emitted. A stable depression just behind the f
ing is found. Further increasingubu results in a stable solution
of elevation at the forcing. The amplitude of the elevati
continues to decrease as one increases the numerical v
b ~Fig. 12!. The time history for the caseD51 and
b521.4 shows one single, localized elevation stationary
the location of the forcing.
s

-

n-

c
b-

he

c-

ues

t

For D53, a steady supercritical solution is obtained f
all the simulations within and outside of the steady depr
sion regime~Figs. 13!, as the value ofD considered in this
case is outside the transcritical range. A localized elevatio
generated and located at the forcing with constant amplit
~'0.35! for the different values ofb considered. The ampli-
tude of the elevation is quite insensitive to changes inb, in
marked contrast with the previous case.

V. CONCLUSIONS

Transcritical flows of a stratified fluid over topograph
are considered using a forced extended Korteweg–de V
model ~eKdV!. In the present paper we extend the earl
studies by allowing the cubic nonlinear and dispersive ter
to have the same sign for their coefficients. A hydraulic a
proximation ~HA! is developed by ignoring the dispersio
term. This simplified model of the dynamics is shown
agree remarkably well with independent, direct numeri
computations~DNC! of the full forced eKdV over most pa
rameter regimes. A very interesting result is that two kinds
solitary waves are emitted in certain parameter regimes.
sides the regularly generated ones similar to those in
forced KdV model, there are irregularly generated solita
waves of variable amplitudes. The velocities of the two typ
of waves are different, and interactions among them are
served.

A further contribution of the present work is to unit
these two approaches~HA and DNC! to enhance the under
standing of the underlying fluid physics. More precisely, t
hydraulic approximation computes a cutoff criterion for t
absence of a downstream depression, a lower bound forD for
any such hydraulic solution, and a determination of the tr
scritical regime. Indeed, we claim that once this cutoff cri
rion is exceeded, one can construct another steady hydra
solution. This new steady solution has a stationary shock
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FIG. 12. The interfacial displacement att560 with D51.0, f m51.0, andj50.3 for b,0.



773Phys. Fluids, Vol. 14, No. 2, February 2002 Transcritical flow of a stratified fluid
FIG. 13. The interfacial displacement att560 with D53.0, f m51.0, andj50.3 for b,0.
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the downstream side of the forcing, and is followed by
transition to a rarefaction. The stationary shock is associa
with the irregular, large waves observed in the numeri
results, while the rarefaction becomes a rather weak do
stream wave train. Otherwise the upstream propaga
shock that terminates the upstream steady hydraulic solu
becomes the observed upstream train of solitary waves,
likewise downstream when the hydraulic solution exten
downstream.

We consider briefly the more usual case where the cu
and dispersive terms have opposite signs, and the hydra
approximation are demonstrated to work there as well. O
positive forcing has been considered here. The effects
negative forcing will be reported in a future work.
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