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Fault Tolerant Decentralized H,, Control et al. [11] considered the primary contingency case of reliaBile
for Symmetric Composite Systems controller design problem.
For the decentralized control of symmetric composite systems,
Shoudong Huang, James Lam, Guang-Hong Yang, and Siying Zhangze [6] proved that the system has no decentralized fixed modes if
and only if it is completely controllable and observable. Sundareshan
and Elbanna [8] presented a sufficient condition for such systems to
. . g v . He decentralized stabilized, but they did not consider the performance
of symmetrically interconnected identical subsystems. We consider the
decentralized H, control design problem and study the fault tolerance ©f the closed-loop systems.
of the resulting system. By exploiting the special structure of the systems, ~ This note is concerned with the fault tolerant decentralized
a sufficient condition for the existence of a decentralizedd » controller  control for symmetric composite systems. Differing from [4], we only
is derived. Moreover, for the nominal case as well as for contingent sydy the tolerance to actuator failure. Moreover, the method used
situations characterized by control channel failures, the poles and the here is distinct from that of [4]. In [4], the method was to design

H.-norm of the closed-loop system can be calculated easily based on' o . . e
certain systems of reduced dimensions. Consequently, the tolerance todirectly a controller which is reliable in case outages occur within a

Abstract—This note discusses a class of large-scale systems compose

actuator failure can be easily tested. prespecified subset of control components. In this work, the controller
Index Terms— Decentralized control. fault tolerance. H... control is first designed and tested against its tolerance to actuator failure
large-scale systems. ' B " exactly by calculating the poles and ti&..-norm of the closed-

loop system. It will be shown that the effort of these computations
can be significantly reduced by exploiting the special structure of the
I. INTRODUCTION system. The note is organized as follows. Section Il gives the state-
In the last decade, a great deal of attention has been paid fb.the space model of the system and the problem statement. In Section lll, a
control of dynamic systems, and some important design proceduggdficient condition for the existence of a decentralized controller
have been established (e.g., [1]-[3]). Unfortunately, these contiglderived. In Section IV, a new methodology to test the tolerance
designs may result in unsatisfactory performance or even unexped@d@ctuator failure is presented. In order to clearly demonstrate the
instability in the event of control component failures (e.g., actuatépethodology proposed, a possible design procedure and an example
failures and sensor failures). Since failures of control components @ given in Section V. Finally, a conclusion is given in Section VI.
occur in real world applications, they should be taken into account
when a practical control system is designed. Il. SYSTEM DESCRIPTION AND PROBLEM STATEMENT
Recently, Velllette(_at al. [4] studied the deS|gn of reliable control__ Consider a large-scale system composed/afubsystems, thih
systems. The resulting control systems provide guaranteed Stab'g%system is given by
and satisfy arf .-norm disturbance attenuation bound not only when
all control components are operational, but also in case of actuator or,
sensor outages in the systems. The reliable control using redundant’ =

N N
Ave; + Z Aoz + Biu; + Giw; + Z Gawy

controllers was studied in [5]. k=1 ke =tk

This note considers a special kind of large-scale =Chzi + Dyu;
system—symmetric composite systems. Symmetric compos{@ere; = 1,2, ---, N andz; € R™, u; € R™, w; € R", z; € R*
systems are composed of identical subsystems which afe— 1 ... N) are then-, m-, r-, ands-dimensional state, control

symmetrically interconnected. These systems are encountey@&tl exogenous input, and penalty, respectively, A> € IR™*",
in electric power systems, industrial manipulators, computgf . R™ ™, Gy, G» € R™ ", C; € R**", D, € R**™. Then

networks, etc. (see [6]-{8] for other examples and references). Mapy state-space model of the overall system is
analyzes and design problems for symmetric composite systems

can be simplified because of the special structure of the system. @ =Ax+ Bu+ Gw 1)

For example, Lunze [6] discussed the stability, controllability, and :=Cxz+ Du

observability for such systems. The output regulation problem is o _

investigated in [9]. Hovd and Skogestad [7] studied tHe and where 2 = (zf,---,2%) , « = (uf, - ud), v =

H,. control problems using centralized controllers. Lam and Yanguy, - -, /LLV?\})T, o= (=, o and 4 € RV

[10] studied the balanced model reduction of such systems. Yapge IRY™*N™ G ¢ RN™*N7 ¢ ¢ RY**Nn, D e RVs*Nm
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For a symmetric composite system (1), the decentraliZed then the decentralized state feedback control law
control problem under consideration is to design a decentralized state

feedback control law w; = Kia; = —R;t (BfPl + DfCl).ri, i=1,---, N
i = Ky, i=1---, N (2)  stabilizes system (1), and the closed-loop transfer matrix satisfies
ITlloe < o
such that The proof of Theorem 1 is based on the following notations and
S1) spe¢A + BK) C C™, (K = diag[Ky, ---, K1]), where results.
C~ denotes the open left-half plane. For a positive integep, we denote
S2) The transfer matrif'(s) of the closed-loop system 9 p—17T .
my = [1 I ] , k=12 ---,p
=(A+ BK)x + Guw 3 wherev, = exp(2n(k — 1)j/p), k = 1,2, ---, p, i.e., v is a root
:=(C'+ DK)x ©) of the equationw” = 1.
Lett = (p+1)/2if pis odd,t = p/2 if p is even. Denote; =
T , Lo
satisfies|| 7|« < o for some prescribed > 0. my=[1 1 - 11 v 241 = /a4 if pis an even number,

Remark 2: Since all the subsystems in system (1) are |dent|c2: - 2(1?{\/5)(”;; _Ere']fi”nngi)“ rova-i = (G/V2)(mi = mprai)
it is an intuitive idea to use decentralized controller of the for T

(2). Although it had been pointed out in [7], [12], and [13] that R — L[n re e 1. (6)
decentralized control with identical local controllers is not optimal v VP - v

for all cases, we may still prefer the decentralized controller of thﬁn

from the results in [7]1R, is a real orthogonal matrix, and the
form (2) because of practical reasons, such as easier malntenancef(:i\irtgi:wng lemma holds.

tuning [12]. Lemma 1 [7]: For a positive integep > 2, let
a b - b
b a --- b

Dp — : : : c R])Xh

b b -+ a

wherea, b are two arbitrarily given numbers. Then we have

I1l. DECENTRALIZED H., CONTROL

In the rest of this note, we denote
R, 'DyR, = diagla + (p — 1)bya — b, ---, a — b] € R"*".
A = A — Ao, Ao = A+ (N —1)A4, _
G. =G — Go. Gy = Gh + (N — 1)Ga. In this note, we further denote

Tyi= R, ®I; (7)
The following theorem gives a sufficient condition for the existence

of a decentralized?.., controller of the form (2).
Theorem 1: Suppose that system (1) satisfies the following tw

where I; is thei x 7 identity matrix ands denotes the Kronecker
Broduct. Then from Lemma 1 we have

assumptions: Ty) ATN, = diag[d,, A, -+, AJ]
H1) R, = D{ D, is nonsingular; TilGTne = diag[Go, Ge. -+ -, G
H2) for every real numbew; " ’
TxwBTnm = diag[Bi, -+, Bi] (8)
ran{As ; jwI gl} —ntm TN COTwnn = diag[Ch, -+, C4]
1 1 TNs DTxny = d1ag[D1 L, D]]-
AO - ]L()I Bl _ . \/—
ran Cy D, | =" t+m (U =v-1. From [2, Theorem 2.4.1], the following lemma holds.

Lemma 2 [2]: Consider system (1); suppose
Let o be a positive constant. Suppose that there exists a symmetrici) R = D? D is nonsingular;

definite positive matrix” such that the following two Riccati i) for every real numbery;
algebraic inequalities hold: A—jol B . )
ran C D= Nn+ Nm.

.
A, - B.R'DIC ) P+ P (AS — BR'DIC ) _ " . .
( vt Prca ) A L Let o be a given positive constant. If there exists a symmetric

definite positive matrixP” such that the following Riccati algebraic

1 T —1 T
i <§ oG = Bl B )Pl inequality holds:

+Cf (I - DIRTID}’)Cl <0 (4) (A— BR'DTC)'P+ P(A— BR'DTC)
T +P< GG* BR’IBT>P
(4 ~ B Rl_1D1TC1) P+ P, (Ao — B\R}" DIG)
) +c"(I-DR'D"C <0 (9)
P —G,GE — BRI "Bl | P
+ 1<a2 GoGo = Buly 1) ! then the state feedback control law= K+ = —R™Y(BTP +

D7)z stabilizes the system (1) and the closed-loop transfer matrix

T _ —1 T
+a (I Dty Dl)cl <0 ©) satisfies||T]|. < a.
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Proof of Theorem 1:From H1), R = D7D is nonsingular.
From H2) and (8), we have

A=l B
C D

5 0 J[A—jwl B)|[Inn 0

=ran .

0 Ty c D 0 Tym

T;i (A - jLUI)T\777 T,\iiBT]Vnz

=ran

711\_7 _51, OT]\’n T]; ; D er
. A, —jwl B . As —jwl B
= rank{ c. DJ +(N-1) rank{ c. D,
=(n+m)+(N-1(n+m)
= Nn+ Nm.

Thus, i) and ii) in Lemma 2 hold.
Suppose (4) and (5) hold; let

P = diag[P1, ---. P\].
Noting thatTx. = TF,, from (8), we have
T, {(A —-BR 'D'C)'P+P(A-BR'D'C)
+ P<é GG - BR_IBT)P

+ T - DR*DT)C} Tn

=TL. (A= BR'D"C) Tnn TN} PTn
+ Txn PTnuTyp(A = BR™'D'C) T
+ aiz Tt PTn, TN GTn TR G T TR PTn,
— TN PBR™'B" PTn, + Ty CT(I - DR™'D")CTw

P

.
- diag{(Ao - Blelpfcl) , (AS - BlRlefcl) .,
1~ r .
(AS — BiRy'D! Cl> } diag[P1, P21, -, P1]
. . LT
+ diag[P, P, -+, Pl]dmg[(Au — B\R;'D! Cl>,
(4. - BiRT'DICY). -, (4, = BiR ' DI 1)
+ diag[P,, -+, P1] diag{(}% G,GY - ByR7'BY,
1 _ 1 _
= G.GT - B,R7'BT,---. OT2G5GZ — B\R; ‘BT}
x diag[Py, -+, P,] + diag [cf (1 - DlRlelT)Ol,

cr (1 - DlRlelT)Ol, ..cr (1 - Dlﬂflpf)cl].
From (4) and (5),
T, {(A —BR'D"C)"P+P(A-BR™'D"C)
+ P(aizGGT - BB’IBT)P
+ NI - DR_lDT)C} Tn < 0.

Thus (9) holds.

From Lemma 2, the state feedback control law= Kz =
—R™Y(B"P + D' )z stabilizes system (1) and the closed-loop

transfer matrix satisfie§7’||cc < «. SinceP = diag[P1, ---, P1],
hence ' = diag[K, ---, Ki] where K| = —R7YBIP +
DI Cy). The proof is completed. O

The following theorem shows that the poles and the -norm of
the closed-loop system (3) can be calculated easily.
Theorem 2: The set of poles of the closed-loop system (3) is

spec¢A.) = spe¢A, + B K)Uspe¢A, + B1Ky). (10)
The H..-norm of the closed-loop transfer matrix is
ITlloe = max{[|Toclloo. [ Tsclloo } (11)
where

T,e(s) = (Cy + DK )[sT — (A, + B/ K1) 7' G,
g (12)

Too(s) = (C1+ D1 K1)[s] — (As + B1K1)] 7' G,
Proof: Noting that

A, =A+ BK = A + diag[B| K/, ---, Bi K]
T(s) =(C'+ DK)[sI — (A+ BK)]"'G

and
spe¢A.) = spedTy, AcTwn), | Tllee = [ TR1T(8) e |,
from (8), we can easily prove this theorem. O

Remark 3: Sundareshan and Elbanna [8] also proved (10), but
they did not consider théf.-norm disturbance attenuation of the
closed-loop system. O

Remark 4: Theorem 2 shows that the design of a decentralized
H, controller of the form (2) for system (1) is equivalent to finding
a gain matrixX(; that provides stability and ., attenuation for the
systems

z=(A, 4+ B1 K1)z + Gow

2=(Cy + D\ Ky)z (13)
and

& =(As + B Ky)x + Gsw

z (01 + DII(I )T (14)
simultaneously. IfH., disturbance attenuation is not considered,
the methods for simultaneous control design (e.g., [14]) can be
employed to solve this problem. ButHf ., disturbance attenuation is
considered, there is no systematic simultaneous control design method
to apply. O

Since Theorem 1 gives only a sufficient condition, when inequal-
ities (4) and (5) do not hold simultaneously, it does not imply the
nonexistence of the controller of the form (2) to guarantee stability
and satisfy theH ., disturbance attenuation conditidfY’||cc < «.
However, from Theorem 2, for any givef’;, the poles and the
H..-norm of the closed-loop system can be determined easily, thus
allowing the designer to know whether the controller = K z;
satisfies the specifications or not. In other words, Theorem 2 is also
very useful for designing the decentralized controller.

In this section, we studied the design of decentralized con-
troller of the form (2). However, when actuator failures occur in the
closed-loop system, the resulting system may become unstable. In
the next section, we will study the tolerance to actuator failure of the
decentralized controller (2).
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IV. TOLERANCE TO ACTUATOR FAILURE Remark 5: When! (2 <1 < N — 2) of the subsystem controllers

This section studies the tolerance to actuator failure of the decddl, the resulting closed-loop system can be regarded as composed
tralized controller (2). For a given > 0, we want to find the integer Of two symmetric composite systems: one is arrdimensional
Iy which corresponds to the smallest number of failures that makepen-loop system” (with nol; in it), another is an(N — I)n-
the closed-loop system unstable or cause the closed-loop systenditoensional “closed-loop system” (with’; in every subsystems).
violate the disturbance attenuation boundt will be shown that, In (15), spe€A,) is part of the poles of the “open-loop system,”
can be obtained easily as a result of the special structure of system¢pp¢ A, + B, K1) is part of the poles of the “closed-loop system,”
The main results of this section are given by the following theoremgnd

Theorem 3: Consider the closed-loop system (3), when only one
Ar+(1-1)A, VIIN = 1) A,
VIIN -DA> A+ (N-1-1)A4>+ B1 K,
is the rest of the poles. Thé&l..-norm result can be explained

of the subsystem controllers fails, the set of poles of the resulting
closed-loop system is speo{

spe¢A.:)
= spe¢A. + B1 K1)

4 v 4 similarly. O
U spe 2 N =14, ) Theorem 5: Consider the closed-loop system (3), whan— 1
VN =14 A+ (N =2)As + B K, of the subsystem controllers fail, the set of poles of the resulting

closed-loop system is
Moreover, in this case, thé&..-norm of the resulting closed-loop

transfer matrix is
speddc(x 1))

A1+ (N =2)4y VN =14,
VN — 1A, A1+ B K,

1Tl = max{|ITicllcs 1 Tocll < } _ spec) U SpeC{

N cy 0 Moreover, in this case, thé&..-norm of the resulting closed-loop
Tic(s) = {0 Cy+ D1K1} transfer matrix is

where

-1
A N—14
" {SI_ JR—Tas A1t (V20 4 BiK } 1T oo = max{|Toyuelloos 1T 1
N =142 Ay N —2)A2 148
« Gy VN = 1G> where
VN =1G: Gi+ (N —2)Gs
e 0
’Tl —1l)c\* = i’
and T..(s) is defined in (12). (N=1e(#) {0 Cl +D1Ix1}

A+ (N —-2)42 VN — 14,
VN — 14, A + B K

Gi+ (N =2)G2 VN —1G»
VN - 1G> Gi

integer! (2 < 1 < N - 2), when! of the subsystem controllers

Theorem 4: Consider the closed-loop system (3), for positive
X ¢ sl —
fail, the set of poles of the resulting closed-loop system is {

!

specA.) X

= spec¢A,)Uspe¢Ad, + B1 K1)
A+ (1 - 1)A; VN = 1) A
U spec{ p )42 A2
(15) open-loop system (1), given by sgek ), cannot be changed when
more than two controllers failures occur. Hence, $pe¢ C C'~ is a

\/I(J\’Y - I)Az A.l + (.ZV — l — 1)/—12 + B1IX/'1
Moreover, in this case, thél..-norm of the resulting closed-loop Necessary condition for the closed-loop system to tolerate more than

and 7T, (s) is defined in (18).
' Remark 6: Theorems 4 and 5 show that the part of the poles of the

transfer matrix is two controllers failure. O
The proofs of Theorems 3-5 require the following lemma.
(1T1]|co = max{||Tic|loos | Tslloos | Tsclloo } (16) Lemma 3: For positive integerp > 2 andq > 2, let
where as shown in (17) at the bottom of the page, and 11 1
11
T.(s) = Ci (s — A,)"'G, (18) Epg=|. . e R,
and T;.(s) is defined in (12). r1r .- 1

A+ (I—1)A, VIIN = 1) As
VIIN =1JAs A+ (N =1 —1)As + Bi K,

Gi+ (1-1)Gs VIIN = 1)Gs
VIIN =1)G2 G+ (N —1-1)Gs

7

:

e 0
Ti(s) = CI+D1K1H31_
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Then the following equality holds: Moreover, the resulting closed-loop transfer matrix becomes
'\/(1;_‘1 3 8 Ti(s) = diag[Ch, -+, C1.Cy + D1 Ky, -, Cy + D1 K]
Ry'EyRy=| . . | emrre x (s —Aq)"'G
0 0 0

Since premultiplication or postmultiplication @f(s) by orthogonal

where R, and R, are defined by (6) matrices will leave thé?..-norm unchanged, hence we have
P q "
Proof: The lemma can be established through straightforward
algebraic manipulations.
N 0
For Theorems 3-5, we only prove Theorem 4. The proofs il = Ti(s) 0 Tn_n
Tiv—s B P

Theorems 3 and 5 are similar and thus omitted.
Proof of Theorem 4:Consider the closed-loop system (3), since

X N = diag[Cl,Cl—l—DlKl,Cl,-~-,Cl,Cl—|—D1B"1,
the subsystems of system (1) are symmetrically interconnected,

without loss of generality, we can assume that the firgtf the w1\ !
subsystem controllers fail. In this case, the decentralized controller -+, C1 4+ D K] diag <sI - {Wl WQD ;
becomes 2

(sT— A" ooy (sT— A7,

w; =0, i=1,---,1 ) 1 s
[.S'I— (As —|—B1K1)] PR [bI— (445 +B1K1)]

G + (] — I)GQ \/I(A/Y — ])GQ
Thus, the resulting closed-loop system matrix becomes as shown in VIIN =0Gs  Gi1+ (N =-1-1)G
(18a) at the bottom of the page.

DenoteW, = A4, + (l - 1):42, Wy = \/l(i’\r - l)flg, Ws = [G_q, G,q]:|
A1+ (N —1—1)As + B1 K. Then from Lemmas 1 and 3, we have

u; = Kyx;, i=1+1,---, N.

x diag

oo

= max{||Zic||ocs || Ts || 5>

Tscll> }-
1 0

in

0 T

(N—=l)n

spe¢A.) = spez{

4 Tin 0
el Tin—tm Thus (16) holds. O
From Theorems 3-5, the poles and tHe,-norm of the resulting
closed-loop system can be easily computed when arbitrary controller
whereT;, andTix_;), are defined in (7) as shown in (18b) at thefailures occur. Thus, after decentralized controller (2) (the gain matrix

bottom of the page. Thus (15) holds. K,) is obtained, the fault tolerance of the controligs) can be
B 41 AQ .. .42 ;42 Ag L 442 7
A A - Ao Ao Ao ‘.- Ao
) Ay Ay - A Ay Ay Ao
Aet = A Ay -+ Ay A+ B, Az e As (182)
Ay As - Ao Ao A+ B K, --- Ao
LAs  As - Ao Ao Ao o A+ BiKy
_V[fl VVQ -
As
= speq As
= 5PE9 |, W
A.+ DB K,
L As + B1 K, 1)

- spec{diag{ m/; g/i } JAg, o Ay Ay + B1 Ky, A+ BII(I} }

=specA;)Uspe¢A; + B 1)U spec{ R; ! 3‘) } } (18b)
V3
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assessed by computing the poles and fhig-norm of different

actuator failure cases. In next section, we shall provide a possible

design procedure and an example to illustrate the details.

V. A PossIBLE DESIGN PROCEDURE AND EXAMPLE

Using Theorems 1-5, for a given > 0, a design scheme for
a decentralizedd .. controller is suggested and its fault toleranc
properties are tested for the symmetric composite system (1) ‘a%®

follows.

A. Possible DesignProcedure

Step 1) Selecta ande, 0 < o < v, € > 0, for example,
a = v/2) solve Riccati equations

T
(As - BlRlelTCl) P, + P, (AS - BlRflpfcl)
+ P, <i G.GT - BIBlelT>PS
=
+ct (z - DIRTID’{')Q fel=0 (19)

and

) 1T T 1T
(A(,—B]R1 D! a) R,+R,(A(,—B]R1 D! 01)
1 ) _
+ Po<—2 G.GT — B\R; ‘BI)PO
(8%

e (I—Dlﬂflpf)cl tel=0 (20)

to obtain P, and I,.
Step 2) Test Riccati inequality

. T
(AS — B.R; D! Ol) P, + P, (4 — B.R;'D! cl)
+ P, <é GGt - BlRle}[)Po

+C (I - DlRlef)Cn <0. (1)

If (21) holds, then letP?, = P,, go to Step 7.
Step 3) Test Riccati inequality

- T -
(4= BiRT'DICY) P+ P4, - BiRT'DIC)
+ P, <i2 G.G! — B, R;‘BT)R
(a3
+cf (1= bR Dl )y <. (22)

If (22) holds, then letP, = Ps, go to Step 7.

Step4) Let Ky = —R7Y(B{P, + DTC)) (or let K, =
—R;Y(B{ P, + D{ C1)).

Step 5) Compute spegcd.) and | 7|~ (using Theorem 2). If
spe¢A.) C C~ and||T||- < v, then go to Step 8.

Step 6) Go back to Step 1, seleet and ¢ again (decrease
and/or increasex).

Step7) Let Ky = —R7 (BT P + DT Ch).

Step 8) The decentralizedd ., control law can be chosen as
w, = Kywyy i =1,---, N.

Step 9) Letl = 1.

Step 10) Compute spgcd.;) and||7i||- (using Theorems 3-5).

2113

Step 11) If speq4,) C C~ and||Ti||« < v, then letl =1+ 1,

go back to Step 10.

Step 12) Let I, = I, and one can conclude that the closed-loop
system will maintain its stability with|7'||. < v when
less tharly of the subsystem controllers fail.

Remark 7: If for some« ande, (21) or (22) holds, then the above

glgorithm will converge, and we can obtain both the decentralized

controller and its tolerance level to actuator failure. If (21) and
(22) do not hold, we suggest choosiAg as in Step 4 and using Step
5 to test its stabilization and disturbance attenuation properties. This
choice very often works in our numerical examples. Up till now, a
systematic method for choosinfg; to ensure spéet.) C ¢~ and
|T||l« < + is not available.

Remark 8: Before starting the design procedure, we should first
compute spgcd) = specA.) U spe¢A;) and theH.-norm of the
open-loop transfer matrix

1Tl = max{[|Toloc, [|Ts [lo }

whereT,(s) = C1(sI — A,) 'G, andTs(s) is defined in (18). If
spe¢A) C C~ and||T|| < 7, then we do not need to design the
controller. On the other hand, if we need to design the controller,
this computation will also simplify the computation of spde;) and
[|T1]]o in Step 10. |

In the following, we use an example to illustrate the design
procedure stated above. AH..-computations in the example are
performed with the:-Analysis and Synthesis Toolbox for MATLAB.

Example: Consider the voltage/reactive power behavior of a mul-
timachine power system, the overall system consists of several
synchronous machines including their Pl-voltage controller, which
feed the load through a distribution net [6]. The system can be
modeled by

2.55 —-0.0027 0

0.1
0.1 "k

, N.

. {—2.51
€r; =

~ A,\’
_0.5.6 :| _— Z

k=1, k#i

N
0.9 0.2
+ { 1 }ul' + |:0.1:|71r’i + Z

E=1, ki
1=1,2,---

{ —0.065 0}
Tk

z; =[2.54 0]z + us,

SupposeN = 20, computing directly, we have

As = I _22.;54257 _0'36}
G = _0(.]1}
G, = _Qﬂ.
Supposey = 0.8, we choosen = 0.4,¢ = 0.0002, solving the

Riccati equations (19) and (20), we have

p _ [0.001 0.0011
°~10.0011 0.0014

p _ [0:000694  0.000625
* = [0.000625 0.0006025 |°
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TABLE |
SUMMARY OF RESULTS
spec(Aa) ”Tl“oo
—4.552, —0.179, —5.8517, —2.3089, —0.1802, ~0.1352 0.4501

—4.552, —0.179, —2.2646, —0.1804, —5.8082, —2.3541, —0.1801, —0.1336 | 0.6368

—4.552, —0.179, —2.2646, —0.1804, —5.7635,

—2.4005, —0.18, —0.1321 | 0.7803

wa | o no| =] e

—4.552, —0.179, —2.2646, --0.1804, —5.7176, —2.448, —0.1799, —0.1305 | 0.9014

(open-loop system || T = 2.0331)

By testing, we know that inequalities (21) and (22) do not hold, we[3]
try by choosing ]

K, = —R]" (B{R, 4 D{a) -

and obtainK; = [-2.5397, 0.0003]. From Theorem 2, we get
spe¢d,) = {—4.552, —0.179, —5.8942, —0.1368} C C~ and 18]
[|[T]|e = 0.0083 < ~. Thus the decentralizeff. control law can 7]
be chosen as
[8]
u; = Kya; =[—2.5397,0.0003];, i=1,---, N.

Forl =1, 2, 3, 4, Theorems 3 and 4 are used to compute 6pe0 [e]

and||7i||s. The results are summarized in Table I. [10]
Since forl = 1, 2, 3, spe¢A,) C €~ and [|Til|« < 7, but

[|T4||s= > =, hencely = 4. As a result, the closed-loop system will[11]

maintain its stability and the transfer matrix will satigff||« < v

when less than four subsystem controllers fail.

[12]

VI. CONCLUSION
In this note, we studied the state feedback decentralided [13]
control for symmetric composite systems. First, we gave a sufficient

condition for the existence of a decentralizEd, controller. Second, [14]
we proved that the poles and the, -norm of the closed-loop system
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state feedback in some of the subsystems. Using these results, we then

know the tolerance to actuator failure as soon as the decentralized
state feedback controller is designed.

Since only a sufficient condition for the existence of a state
feedback decentralizedl ., controller is obtained, further work is
still needed before a complete design framework can be established.
Moreover, the fault tolerant decentralizékl., control for symmetric
composite systems via output feedback is also a further research
problem.

It should be noted that the special structure of symmetric composite
systems allows us to use the methodology presented in this note. The
methodology is not suitable for general large-scale systems, since the
computation of the poles and tlé.,-norm is computationally more
demanding.
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