
Title Fault tolerant decentralized H∞ control for symmetric composite
systems

Author(s) Huang, S; Lam, J; Yang, GH; Zhang, S

Citation Ieee Transactions On Automatic Control, 1999, v. 44 n. 11, p.
2108-2114

Issued Date 1999

URL http://hdl.handle.net/10722/43031

Rights

©1999 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37882338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2108 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 11, NOVEMBER 1999

Fault Tolerant Decentralized Control
for Symmetric Composite Systems

Shoudong Huang, James Lam, Guang-Hong Yang, and Siying Zhang

Abstract—This note discusses a class of large-scale systems composed
of symmetrically interconnected identical subsystems. We consider the
decentralizedHHH111 control design problem and study the fault tolerance
of the resulting system. By exploiting the special structure of the systems,
a sufficient condition for the existence of a decentralizedHHH111 controller
is derived. Moreover, for the nominal case as well as for contingent
situations characterized by control channel failures, the poles and the
HHH111-norm of the closed-loop system can be calculated easily based on
certain systems of reduced dimensions. Consequently, the tolerance to
actuator failure can be easily tested.

Index Terms— Decentralized control, fault tolerance, HHH111 control,
large-scale systems.

I. INTRODUCTION

In the last decade, a great deal of attention has been paid to theH1
control of dynamic systems, and some important design procedures
have been established (e.g., [1]–[3]). Unfortunately, these control
designs may result in unsatisfactory performance or even unexpected
instability in the event of control component failures (e.g., actuator
failures and sensor failures). Since failures of control components do
occur in real world applications, they should be taken into account
when a practical control system is designed.

Recently, Veilletteet al. [4] studied the design of reliable control
systems. The resulting control systems provide guaranteed stability
and satisfy anH1-norm disturbance attenuation bound not only when
all control components are operational, but also in case of actuator or
sensor outages in the systems. The reliable control using redundant
controllers was studied in [5].

This note considers a special kind of large-scale
system—symmetric composite systems. Symmetric composite
systems are composed of identical subsystems which are
symmetrically interconnected. These systems are encountered
in electric power systems, industrial manipulators, computer
networks, etc. (see [6]–[8] for other examples and references). Many
analyzes and design problems for symmetric composite systems
can be simplified because of the special structure of the system.
For example, Lunze [6] discussed the stability, controllability, and
observability for such systems. The output regulation problem is
investigated in [9]. Hovd and Skogestad [7] studied theH2 and
H1 control problems using centralized controllers. Lam and Yang
[10] studied the balanced model reduction of such systems. Yang
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et al. [11] considered the primary contingency case of reliableH1
controller design problem.

For the decentralized control of symmetric composite systems,
Lunze [6] proved that the system has no decentralized fixed modes if
and only if it is completely controllable and observable. Sundareshan
and Elbanna [8] presented a sufficient condition for such systems to
be decentralized stabilized, but they did not consider the performance
of the closed-loop systems.

This note is concerned with the fault tolerant decentralizedH1
control for symmetric composite systems. Differing from [4], we only
study the tolerance to actuator failure. Moreover, the method used
here is distinct from that of [4]. In [4], the method was to design
directly a controller which is reliable in case outages occur within a
prespecified subset of control components. In this work, the controller
is first designed and tested against its tolerance to actuator failure
exactly by calculating the poles and theH1-norm of the closed-
loop system. It will be shown that the effort of these computations
can be significantly reduced by exploiting the special structure of the
system. The note is organized as follows. Section II gives the state-
space model of the system and the problem statement. In Section III, a
sufficient condition for the existence of a decentralizedH1 controller
is derived. In Section IV, a new methodology to test the tolerance
to actuator failure is presented. In order to clearly demonstrate the
methodology proposed, a possible design procedure and an example
are given in Section V. Finally, a conclusion is given in Section VI.

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

Consider a large-scale system composed ofN subsystems, theith
subsystem is given by

_xi =A1xi +

N

k=1; k 6=i

A2xk +B1ui +G1wi +

N

k=1; k 6=i

G2wk

zi =C1xi +D1ui

wherei = 1; 2; � � � ; N andxi 2 IRn; ui 2 IRm; wi 2 IRr; zi 2 IRs

(i = 1; � � � ; N) are then-, m-, r-, ands-dimensional state, control
input, exogenous input, and penalty, respectively.A1; A2 2 IRn�n;

B1 2 IRn�m; G1; G2 2 IRn�r; C1 2 IRs�n; D1 2 IRs�m. Then
the state-space model of the overall system is

_x =Ax +Bu+Gw

z =Cx+Du
(1)

where x = (xT1 ; � � � ; x
T
N)

T
; u = (uT1 ; � � � ; u

T
N )

T
; w =

(wT
1 ; � � � ; w

T
N )

T
; z = (zT1 ; � � � ; z

T
N)

T
, and A 2 IRNn�Nn;

B 2 IRNn�Nm; G 2 IRNn�Nr; C 2 IRNs�Nn; D 2 IRNs�Nm

have the structure

A =

A1 A2 � � � A2

A2 A1 � � � A2

...
...

...
A2 A2 � � � A1

; G =

G1 G2 � � � G2

G2 G1 � � � G2

...
...

...
G2 G2 � � � G1

B =diag[B1; � � � ; B1]; C = diag[C1; � � � ; C1]

D =diag[D1; � � � ; D1]:

Remark 1: Just as in [6] and [9], we shall hereafter refer system
(1) to as asymmetric composite system. In [7], Hovd and Skogestad
called a system with this structure a parallel system, whereas in
Sundareshan and Elbanna [8], it was a symmetrically interconnected
system.

0018–9286/99$10.00 1999 IEEE
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For a symmetric composite system (1), the decentralizedH1
control problem under consideration is to design a decentralized state
feedback control law

ui = K1xi; i = 1; � � � ; N (2)

such that

S1) spec(A + BK) � C�; (K = diag[K1; � � � ; K1]), where
C� denotes the open left-half plane.

S2) The transfer matrixT (s) of the closed-loop system

_x =(A+BK)x+Gw

z =(C +DK)x
(3)

satisfieskTk1 � � for some prescribed� > 0.

Remark 2: Since all the subsystems in system (1) are identical,
it is an intuitive idea to use decentralized controller of the form
(2). Although it had been pointed out in [7], [12], and [13] that
decentralized control with identical local controllers is not optimal
for all cases, we may still prefer the decentralized controller of the
form (2) because of practical reasons, such as easier maintenance and
tuning [12].

III. D ECENTRALIZED H1 CONTROL

In the rest of this note, we denote

As =A1 � A2; Ao = A1 + (N � 1)A2

Gs =G1 �G2; Go = G1 + (N � 1)G2:

The following theorem gives a sufficient condition for the existence
of a decentralizedH1 controller of the form (2).

Theorem 1: Suppose that system (1) satisfies the following two
assumptions:

H1) R1 = DT
1 D1 is nonsingular;

H2) for every real number!;

rank
As � j!I B1

C1 D1
=n+m

rank
Ao � j!I B1

C1 D1
=n+m (j =

p�1):

Let � be a positive constant. Suppose that there exists a symmetric
definite positive matrixP1 such that the following two Riccati
algebraic inequalities hold:

As �B1R
�1
1 DT

1 C1

T

P1 + P1 As �B1R
�1
1 DT

1 C1

+ P1
1

�2
GsG

T
s �B1R

�1
1 BT

1 P1

+ CT
1 I �D1R

�1
1 DT

1 C1 < 0 (4)

Ao �B1R
�1
1 DT

1 C1

T

P1 + P1 Ao �B1R
�1
1 DT

1 C1

+ P1
1

�2
GoG

T
o �B1R

�1
1 BT

1 P1

+ CT
1 I �D1R

�1
1 DT

1 C1 < 0 (5)

then the decentralized state feedback control law

ui = K1xi = �R�11 BT
1 P1 +DT

1 C1 xi; i = 1; � � � ; N

stabilizes system (1), and the closed-loop transfer matrix satisfies
kTk1 � �.

The proof of Theorem 1 is based on the following notations and
results.

For a positive integerp, we denote

mk = 1 vk v2k � � � vp�1k

T
; k = 1; 2; � � � ; p

wherevk = exp(2�(k � 1)j=p); k = 1; 2; � � � ; p, i.e., vk is a root
of the equationvp = 1.

Let t = (p+ 1)=2 if p is odd,t = p=2 if p is even. Denoter1 =
m1 = [1 1 � � � 1]T ; r(p=2)+1 = m(p=2)+1 if p is an even number,
ri = (1=

p
2)(mi + mp+2�i); rp+2�i = (j=

p
2)(mi � mp+2�i)

(i = 2; 3; � � � ; t). Define

Rp =
1p
p

[r1 r2 � � � rp]: (6)

Then from the results in [7],Rp is a real orthogonal matrix, and the
following lemma holds.

Lemma 1 [7]: For a positive integerp � 2, let

Dp =

a b � � � b
b a � � � b
...

...
...

b b � � � a

2 IRp�p

wherea; b are two arbitrarily given numbers. Then we have

R�1p DpRp = diag[a+ (p� 1)b; a� b; � � � ; a� b] 2 IRp�p:

In this note, we further denote

Tpi = Rp 
 Ii (7)

whereIi is the i � i identity matrix and
 denotes the Kronecker
product. Then from Lemma 1 we have

T�1NnATNn = diag[Ao; As; � � � ; As]

T�1NnGTNr = diag[Go; Gs; � � � ; Gs]

T�1NnBTNm = diag[B1; � � � ; B1]

T�1NsCTNn = diag[C1; � � � ; C1]

T�1NsDTNm = diag[D1; � � � ; D1]:

(8)

From [2, Theorem 2.4.1], the following lemma holds.
Lemma 2 [2]: Consider system (1); suppose

i) R = DTD is nonsingular;
ii) for every real number!;

rank
A � j!I B

C D
= Nn+Nm:

Let � be a given positive constant. If there exists a symmetric
definite positive matrixP such that the following Riccati algebraic
inequality holds:

(A�BR�1DTC)TP + P (A�BR�1DTC)

+ P
1

�2
GGT �BR�1BT P

+ CT (I �DR�1DT )C < 0 (9)

then the state feedback control lawu = Kx = �R�1(BTP +
DTC)x stabilizes the system (1) and the closed-loop transfer matrix
satisfieskTk1 � �.
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Proof of Theorem 1:From H1), R = DTD is nonsingular.
From H2) and (8), we have

rank
A� j!I B

C D

= rank
T�1
Nn

0

0 T�1
Ns

A� j!I B

C D

TNn 0

0 TNm

= rank
T�1
Nn

(A� j!I)TNn T�1
Nn
BTNm

T�1
Ns
CTNn T�1

Ns
DTNm

= rank
Ao � j!I B1

C1 D1

+ (N � 1) rank
As � j!I B1

C1 D1

= (n+m) + (N � 1)(n+m)

= Nn+Nm:

Thus, i) and ii) in Lemma 2 hold.
Suppose (4) and (5) hold; let

P = diag[P1; � � � ; P1]:

Noting thatT�1
Nn

= T TNn, from (8), we have

T
T

Nn (A�BR
�1
D
T
C)TP + P (A�BR

�1
D
T
C)

+ P
1

�2
GG

T �BR
�1
B
T

P

+ C
T (I �DR

�1
D
T )C TNn

= T
T

Nn(A�BR
�1
D
T
C)TTNnT

�1

NnPTNn

+ T
�1

NnPTNnT
�1

Nn(A�BR
�1
D
T
C)TNn

+
1

�2
T
�1

Nn
PTNnT

�1

Nn
GTNrT

�1

Nr
G
T
TNnT

�1

Nn
PTNn

� T
�1

Nn
PBR

�1
B
T
PTNn + T

�1

Nn
C
T (I �DR

�1
D
T )CTNn

= diag Ao �B1R
�1

1 D
T

1 C1

T

; As �B1R
�1

1 D
T

1 C1

T

;

� � � ; As �B1R
�1

1 D
T

1 C1

T

diag[P1; P1; � � � ; P1]

+ diag[P1; P1; � � � ; P1] diag Ao �B1R
�1

1 D
T

1 C1 ;

As �B1R
�1

1 D
T

1 C1 ; � � � ; As �B1R
�1

1 D
T

1 C1

+ diag[P1; � � � ; P1] diag
1

�2
GoG

T

o �B1R
�1

1 B
T

1 ;

1

�2
GsG

T

s �B1R
�1

1 B
T

1 ; � � � ;
1

�2
GsG

T

s �B1R
�1

1 B
T

1

� diag[P1; � � � ; P1] + diag C
T

1 I �D1R
�1

1 D
T

1 C1;

C
T

1 I �D1R
�1

1 D
T

1 C1; � � � ; C
T

1 I �D1R
�1

1 D
T

1 C1 :

From (4) and (5),

T
T

Nn (A�BR
�1
D
T
C)TP + P (A�BR

�1
D
T
C)

+ P
1

�2
GG

T �BR
�1
B
T

P

+ C
T (I �DR

�1
D
T )C TNn < 0:

Thus (9) holds.

From Lemma 2, the state feedback control lawu = Kx =
�R�1(BTP + DTC)x stabilizes system (1) and the closed-loop
transfer matrix satisfieskTk1 � �. SinceP = diag[P1; � � � ; P1],
henceK = diag[K1; � � � ; K1] where K1 = �R�1

1
(BT

1 P1 +
DT

1 C1). The proof is completed.
The following theorem shows that the poles and theH1-norm of

the closed-loop system (3) can be calculated easily.
Theorem 2: The set of poles of the closed-loop system (3) is

spec(Ac) = spec(Ao +B1K1) [ spec(As +B1K1): (10)

TheH1-norm of the closed-loop transfer matrix is

kTk1 = maxfkTock1; kTsck1g (11)

where

Toc(s) = (C1 +D1K1)[sI � (Ao +B1K1)]
�1
Go

Tsc(s) = (C1 +D1K1)[sI � (As +B1K1)]
�1
Gs:

(12)

Proof: Noting that

Ac =A+BK = A+ diag[B1K1; � � � ; B1K1]

T (s) = (C +DK)[sI � (A+BK)]�1G

and

spec(Ac) = specT�1NnAcTNn ; kTk1 = T
�1

NsT (s)TNr
1

from (8), we can easily prove this theorem.
Remark 3: Sundareshan and Elbanna [8] also proved (10), but

they did not consider theH1-norm disturbance attenuation of the
closed-loop system.

Remark 4: Theorem 2 shows that the design of a decentralized
H1 controller of the form (2) for system (1) is equivalent to finding
a gain matrixK1 that provides stability andH1 attenuation for the
systems

_x =(Ao +B1K1)x+Gow

z =(C1 +D1K1)x (13)

and

_x =(As +B1K1)x+Gsw

z =(C1 +D1K1)x (14)

simultaneously. IfH1 disturbance attenuation is not considered,
the methods for simultaneous control design (e.g., [14]) can be
employed to solve this problem. But ifH1 disturbance attenuation is
considered, there is no systematic simultaneous control design method
to apply.

Since Theorem 1 gives only a sufficient condition, when inequal-
ities (4) and (5) do not hold simultaneously, it does not imply the
nonexistence of the controller of the form (2) to guarantee stability
and satisfy theH1 disturbance attenuation conditionkTk1 � �.
However, from Theorem 2, for any givenK1, the poles and the
H1-norm of the closed-loop system can be determined easily, thus
allowing the designer to know whether the controllerui = K1xi
satisfies the specifications or not. In other words, Theorem 2 is also
very useful for designing the decentralized controller.

In this section, we studied the design of decentralizedH1 con-
troller of the form (2). However, when actuator failures occur in the
closed-loop system, the resulting system may become unstable. In
the next section, we will study the tolerance to actuator failure of the
decentralized controller (2).
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IV. TOLERANCE TO ACTUATOR FAILURE

This section studies the tolerance to actuator failure of the decen-
tralized controller (2). For a given
 > 0, we want to find the integer
l0 which corresponds to the smallest number of failures that make
the closed-loop system unstable or cause the closed-loop system to
violate the disturbance attenuation bound
. It will be shown thatl0
can be obtained easily as a result of the special structure of system (1).
The main results of this section are given by the following theorems.

Theorem 3: Consider the closed-loop system (3), when only one
of the subsystem controllers fails, the set of poles of the resulting
closed-loop system is

spec(Ac1)

= spec(As +B1K1)

[ spec
A1

p
N � 1A2p

N � 1A2 A1 + (N � 2)A2 +B1K1

:

Moreover, in this case, theH1-norm of the resulting closed-loop
transfer matrix is

kT1k1 = maxfkT1ck1; kTsck1g

where

T1c(s) =
C1 0
0 C1 +D1K1

� sI � A1

p
N � 1A2p

N � 1A2 A1 + (N � 2)A2 +B1K1

�1

� G1

p
N � 1G2p

N � 1G2 G1 + (N � 2)G2

and Tsc(s) is defined in (12).
Theorem 4: Consider the closed-loop system (3), for positive

integer l (2 � l � N � 2), when l of the subsystem controllers
fail, the set of poles of the resulting closed-loop system is

spec(Acl)

= spec(As) [ spec(As +B1K1)

[ spec
A1 + (l� 1)A2 l(N � l)A2

l(N � l)A2 A1 + (N � l� 1)A2 +B1K1

:

(15)

Moreover, in this case, theH1-norm of the resulting closed-loop
transfer matrix is

kTlk1 = maxfkTlck1; kTsk1; kTsck1g (16)

where as shown in (17) at the bottom of the page, and

Ts(s) = C1(sI � As)
�1
Gs (18)

and Tsc(s) is defined in (12).

Remark 5: Whenl (2 � l � N � 2) of the subsystem controllers
fail, the resulting closed-loop system can be regarded as composed
of two symmetric composite systems: one is anln-dimensional
“open-loop system” (with noK1 in it), another is an(N � l)n-
dimensional “closed-loop system” (withK1 in every subsystems).
In (15), spec(As) is part of the poles of the “open-loop system,”
spec(As + B1K1) is part of the poles of the “closed-loop system,”
and

spec
A1 + (l� 1)A2 l(N � l)A2

l(N � l)A2 A1 + (N � l� 1)A2 +B1K1

is the rest of the poles. TheH1-norm result can be explained
similarly.

Theorem 5: Consider the closed-loop system (3), whenN � 1

of the subsystem controllers fail, the set of poles of the resulting
closed-loop system is

specAc(N�1)

= spec(As) [ spec
A1 + (N � 2)A2

p
N � 1A2p

N � 1A2 A1 +B1K1

:

Moreover, in this case, theH1-norm of the resulting closed-loop
transfer matrix is

kTN�1k1 = maxfkT(N�1)ck1; kTsk1g

where

T(N�1)c(s) =
C1 0
0 C1 +D1K1

� sI � A1 + (N � 2)A2

p
N � 1A2p

N � 1A2 A1 +B1K1

�1

� G1 + (N � 2)G2

p
N � 1G2p

N � 1G2 G1

and Ts(s) is defined in (18).
Remark 6: Theorems 4 and 5 show that the part of the poles of the

open-loop system (1), given by spec(As), cannot be changed when
more than two controllers failures occur. Hence, spec(As) � C� is a
necessary condition for the closed-loop system to tolerate more than
two controllers failure.

The proofs of Theorems 3–5 require the following lemma.
Lemma 3: For positive integersp � 2 andq � 2, let

Epq =

1 1 � � � 1
1 1 � � � 1
...

...
...

1 1 � � � 1

2 IRp�q
:

Tlc(s) =
C1 0
0 C1 +D1K1

sI �
A1 + (l� 1)A2 l(N � l)A2

l(N � l)A2 A1 + (N � l� 1)A2 +B1K1

�1
G1 + (l� 1)G2 l(N � l)G2

l(N � l)G2 G1 + (N � l� 1)G2

(17)



2112 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 11, NOVEMBER 1999

Then the following equality holds:

R
�1

p EpqRq =

p
pq 0 � � � 0
0 0 � � � 0
...

...
...

0 0 � � � 0

2 IRp�q

whereRp andRq are defined by (6).
Proof: The lemma can be established through straightforward

algebraic manipulations.
For Theorems 3–5, we only prove Theorem 4. The proofs of

Theorems 3 and 5 are similar and thus omitted.
Proof of Theorem 4:Consider the closed-loop system (3), since

the subsystems of system (1) are symmetrically interconnected,
without loss of generality, we can assume that the firstl of the
subsystem controllers fail. In this case, the decentralized controller
becomes

ui =0;

ui =K1xi;

i =1; � � � ; l
i = l+ 1; � � � ; N:

Thus, the resulting closed-loop system matrix becomes as shown in
(18a) at the bottom of the page.

DenoteW1 = A1 + (l � 1)A2; W2 = l(N � l)A2; W3 =

A1 +(N � l� 1)A2+B1K1. Then from Lemmas 1 and 3, we have

spec(Acl) = spec
T�1
ln 0

0 T�1
(N�l)n

Acl
Tln 0
0 T(N�l)n

whereTln andT(N�l)n are defined in (7) as shown in (18b) at the
bottom of the page. Thus (15) holds.

Moreover, the resulting closed-loop transfer matrix becomes

Tl(s) = diag[C1; � � � ; C1; C1 +D1K1; � � � ; C1 +D1K1]

� (sI �Acl)
�1
G:

Since premultiplication or postmultiplication ofTl(s) by orthogonal
matrices will leave theH1-norm unchanged, hence we have

kTlk1 =
T�1
ls 0

0 T�1
(N�l)s

Tl(s)
Tlr 0
0 T(N�l)r

1

= diag[C1; C1 +D1K1; C1; � � � ; C1; C1 +D1K1;

� � � ; C1 +D1K1] diag sI � W1 W2

W2 W3

�1

;

(sI �As)
�1
; � � � ; (sI �As)

�1
;

[sI � (As +B1K1)]
�1
; � � � ; [sI � (As +B1K1)]

�1

� diag
G1 + (l� 1)G2 l(N � l)G2

l(N � l)G2 G1 + (N � l� 1)G2

;

[Gs; � � � ; Gs]

1

= maxfkTlck1; kTsk1; kTsck1g:

Thus (16) holds.
From Theorems 3–5, the poles and theH1-norm of the resulting

closed-loop system can be easily computed when arbitrary controller
failures occur. Thus, after decentralized controller (2) (the gain matrix
K1) is obtained, the fault tolerance of the controller(l0) can be

Acl =

A1 A2 � � � A2 A2 A2 � � � A2

A2 A1 � � � A2 A2 A2 � � � A2
...

...
...

...
...

...
A2 A2 � � � A1 A2 A2 � � � A2

A2 A2 � � � A2 A1 +B1K1 A2 � � � A2

A2 A2 � � � A2 A2 A1 +B1K1 � � � A2
...

...
...

...
...

...
A2 A2 � � � A2 A2 A2 � � � A1 +B1K1

(18a)

= spec

W1 W2

As

. . .
As

W2 W3

As +B1K1

. . .
As +B1K1

= spec diag
W1 W2

W2 W3
; As; � � � ; As; As +B1K1; � � � ; As +B1K1

= spec(As) [ spec(As +B1K1) [ spec
W1 W2

W2 W3
: (18b)
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assessed by computing the poles and theH1-norm of different
actuator failure cases. In next section, we shall provide a possible
design procedure and an example to illustrate the details.

V. A POSSIBLE DESIGN PROCEDURE AND EXAMPLE

Using Theorems 1–5, for a given
 > 0, a design scheme for
a decentralizedH1 controller is suggested and its fault tolerance
properties are tested for the symmetric composite system (1) as
follows.

A. Possible DesignProcedure

Step 1) Select� and �, (0 < � < 
; � > 0, for example,
� = 
=2) solve Riccati equations

As �B1R
�1
1 DT

1 C1

T

Ps + Ps As �B1R
�1
1 DT

1 C1

+ Ps
1

�2
GsG

T
s �B1R

�1
1 BT

1 Ps

+ CT
1 I �D1R

�1
1 DT

1 C1 + �I = 0 (19)

and

Ao �B1R
�1
1 DT

1 C1

T

Po + Po Ao �B1R
�1
1 DT

1 C1

+ Po
1

�2
GoG

T
o �B1R

�1
1 BT

1 Po

+ CT
1 I �D1R

�1
1 DT

1 C1 + �I = 0 (20)

to obtainPs andPo.
Step 2) Test Riccati inequality

As �B1R
�1
1 DT

1 C1

T

Po + Po As �B1R
�1
1 DT

1 C1

+ Po
1

�2
GsG

T
s �B1R

�1
1 BT

1 Po

+ CT
1 I �D1R

�1
1 DT

1 C1 < 0: (21)

If (21) holds, then letP1 = Po, go to Step 7.
Step 3) Test Riccati inequality

Ao �B1R
�1
1 DT

1 C1

T

Ps + Ps Ao �B1R
�1
1 DT

1 C1

+ Ps
1

�2
GoG

T
o �B1R

�1
1 BT

1 Ps

+ CT
1 I �D1R

�1
1 DT

1 C1 < 0: (22)

If (22) holds, then letP1 = Ps, go to Step 7.
Step 4) Let K1 = �R�1

1
(BT

1 Po + DT
1 C1) (or let K1 =

�R�1
1

(BT
1 Ps + DT

1 C1)).
Step 5) Compute spec(Ac) and kTk1 (using Theorem 2). If

spec(Ac) � C� andkTk1 � 
, then go to Step 8.
Step 6) Go back to Step 1, select� and � again (decrease�

and/or increase�).
Step 7) Let K1 = �R�1

1
(BT

1 P1 + DT
1 C1).

Step 8) The decentralizedH1 control law can be chosen as
ui = K1xi; i = 1; � � � ; N:

Step 9) Let l = 1.
Step 10) Compute spec(Acl) andkTlk1 (using Theorems 3–5).

Step 11) If spec(Acl) � C� andkTlk1 � 
, then letl = l+ 1,
go back to Step 10.

Step 12) Let l0 = l, and one can conclude that the closed-loop
system will maintain its stability withkTk1 � 
 when
less thanl0 of the subsystem controllers fail.

Remark 7: If for some� and�, (21) or (22) holds, then the above
algorithm will converge, and we can obtain both the decentralized
H1 controller and its tolerance level to actuator failure. If (21) and
(22) do not hold, we suggest choosingK1 as in Step 4 and using Step
5 to test its stabilization and disturbance attenuation properties. This
choice very often works in our numerical examples. Up till now, a
systematic method for choosingK1 to ensure spec(Ac) � C� and
kTk1 � 
 is not available.

Remark 8: Before starting the design procedure, we should first
compute spec(A) = spec(Ao) [ spec(As) and theH1-norm of the
open-loop transfer matrix

kTk1 = maxfkTok1; kTsk1g

whereTo(s) = C1(sI � Ao)
�1Go andTs(s) is defined in (18). If

spec(A) � C� andkTk1 � 
, then we do not need to design the
controller. On the other hand, if we need to design the controller,
this computation will also simplify the computation of spec(Acl) and
kTlk1 in Step 10.

In the following, we use an example to illustrate the design
procedure stated above. AllH1-computations in the example are
performed with the�-Analysis and Synthesis Toolbox for MATLAB.

Example: Consider the voltage/reactive power behavior of a mul-
timachine power system, the overall system consists of several
synchronous machines including their PI-voltage controller, which
feed the load through a distribution net [6]. The system can be
modeled by

_xi =
�2:51 �0:16
2:55 0

xi +

N

k=1; k 6=i

�0:065 0
�0:0027 0

xk

+
0:9
�1

ui +
0:2
0:1

wi +

N

k=1; k 6=i

0:1
0:1

wk

zi = [2:54 0 ]xi + ui; i = 1; 2; � � � ; N:

SupposeN = 20, computing directly, we have

As =
�2:445 �0:16
2:5527 0

Ao =
�3:745 �0:16
2:4987 0

Gs =
0:1
0

Go =
2:1
2

:

Suppose
 = 0:8, we choose� = 0:4; � = 0:0002, solving the
Riccati equations (19) and (20), we have

Po =
0:001 0:0011
0:0011 0:0014

Ps =
0:000694 0:000625
0:000625 0:0006025

:
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TABLE I
SUMMARY OF RESULTS

By testing, we know that inequalities (21) and (22) do not hold, we
try by choosing

K1 = �R�11 B
T

1 Po +D
T

1 C1

and obtainK1 = [�2:5397; 0:0003]. From Theorem 2, we get
spec(Ac) = f�4:552; �0:179; �5:8942; �0:1368g � C� and
kTk1 = 0:0083 < 
. Thus the decentralizedH1 control law can
be chosen as

ui = K1xi = [�2:5397; 0:0003]xi; i = 1; � � � ; N:

For l = 1; 2; 3; 4, Theorems 3 and 4 are used to compute spec(Acl)
andkTlk1. The results are summarized in Table I.

Since for l = 1; 2; 3; spec(Acl) � C� and kTlk1 < 
, but
kT4k1 > 
, hencel0 = 4. As a result, the closed-loop system will
maintain its stability and the transfer matrix will satisfykTk1 � 


when less than four subsystem controllers fail.

VI. CONCLUSION

In this note, we studied the state feedback decentralizedH1
control for symmetric composite systems. First, we gave a sufficient
condition for the existence of a decentralizedH1 controller. Second,
we proved that the poles and theH1-norm of the closed-loop system
can be computed easily, even when some actuator faults eliminate the
state feedback in some of the subsystems. Using these results, we then
know the tolerance to actuator failure as soon as the decentralized
state feedback controller is designed.

Since only a sufficient condition for the existence of a state
feedback decentralizedH1 controller is obtained, further work is
still needed before a complete design framework can be established.
Moreover, the fault tolerant decentralizedH1 control for symmetric
composite systems via output feedback is also a further research
problem.

It should be noted that the special structure of symmetric composite
systems allows us to use the methodology presented in this note. The
methodology is not suitable for general large-scale systems, since the
computation of the poles and theH1-norm is computationally more
demanding.
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