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An Approximate Approach to
Optimal Model Reduction

Wei-Yong Yan and James Lam,Senior Member, IEEE

Abstract—This paper deals with the problem of computing an
HHH2 optimal reduced-order model for a given stable multivariable
linear system. By way of orthogonal projection, the problem
is formulated as that of minimizing the HHH2 model-reduction
cost over the Stiefel manifold so that the stability constraint
on reduced-order models is automatically satisfied and thus
totally avoided in the new problem formulation. The closed
form expression for the gradient of the cost over the manifold
is derived, from which a gradient flow results as an ordinary
differential equation (ODE). A number of nice properties about
such a flow are established. Furthermore, two explicit iterative
convergent algorithms are developed from the flow; one has a
constant step-size and the other has a varying step-size and is
much more efficient. Both of them inherit the properties that the
iterates remain on the manifold starting from any orthogonal
initial point and that the model reduction cost is decreasing
to minima along the iterates. A procedure for closing the gap
between the original and modified problem is proposed. In the
symmetric case, the two problems are shown to be equivalent.
Numerical examples are presented to illustrate the effectiveness
of the proposed algorithms as well as convergence.

Index Terms—Linear systems, model reduction, optimization,
system approximation.

I. INTRODUCTION

A LOWER order approximation to a high-order system is
often desirable and used in practice. Among many devel-

oped methods for order reduction are the balanced truncation
method [1], [2] and the Hankel norm approximation method
[3] with the former extended to the case of second-order form
linear systems by Meyer and Srinivasan [4] most recently. Also
quite recently, Zhou [5] has proposed a new method based on
these two methods for norm model reduction with some

error bounds derived. However, the problem of finding an
optimal reduced-order model in the or sense is still
largely open.

The present paper is concerned with minimizing the
(also called ) norm of the model mismatch between a given
model and a reduced-order one. This minimization problem
has received a great deal of attention over the past several
decades. The importance of the problem stems from the fact
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that the norm of a system is the expected root-mean-square
(rms) value of the output when the input is a unit variance
white noise process.

However, rigorous and convergent algorithms have re-
mained to be found in the general multi-input/multi-output
(MIMO) case. So far, the most commonly taken approach
to -optimal model reduction problem is to work with
first-order necessary conditions for optimality, which were
developed and simplified in one way or another by Meier
and Luenberger [6], Wilson [7], Hyland and Bernstein [8],
Halevi [9], Bryson and Carrier [10], Baratchartet al. [11], and
more recently Spanoset al. [12]. Accordingly, they proposed
their respective algorithms to seek a solution satisfying the
conditions expressed in terms of nonlinear matrix equations.
Many of the algorithms lack the proof of convergence and
mathematical rigor, and some of them may even become diver-
gent for certain initial conditions or converge to a maximum.
Though Baratchartet al. [11] and Spanoset al. [12] established
the convergence of their respective algorithms under certain
conditions, the algorithms are only applicable to the single-
input/single-output (SISO) case.

So far, it is unclear whether the global minimum of the
cost exists or not in the continuous-time MIMO case, though
the answer to this question in the discrete-time case was
positive according to Baratchart [13]. This issue inevitably
sheds some doubt on the theoretic basis of the above approach.
Moreover, as pointed out by Spanoset al. [12], there are two
technical difficulties associated with the approach; one is the
stability constraint on reduced-order models and the other is
the unboundedness of the level sets of thecost functional. It
goes without saying that the first one is fundamentally intricate
to accommodate and thus represents a major obstacle to the
effectiveness of any algorithm based on that approach. We
believe that this difficulty is due to direct parameterizations of
all the reduced-order models in one form or another.

In this paper, we take a different approach to the-
optimal model-reduction problem in the continuous-time case.
The main idea is to treat the minimization problem over a
subclass of stable reduced-order models parameterized by a
projection matrix instead of the whole class of all the reduced-
order models. The restriction to this subclass enables one to
avoid the stability constraint entirely and leads to a tractable
minimization problem over the Stiefel manifold, which is
compact. In addition, the global minimum is guaranteed to
exist over the subclass. Our main purpose is to develop
both continuous and iterative convergent algorithms which are
rigorous and universally applicable.

0018–9286/99$10.00 1999 IEEE
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Even though it is theoretically unclear about the exact
mismatch between the original problem and the approximation
at this point, the problem approximation proposed in the paper
appears to be appealing and promising due to several reasons
in addition to tractability and the ability to allow algorithms
with proven convergence. First, any solution to the modified
problem has the property that it is most compatible with the
original model in the sense that the commutative diagram
formed by them is least incompatible, a property which seems
desirable on system-theoretic grounds. Second, an extensive
numerical investigation reveals that the global optimum asso-
ciated with the modified problem is consistently close, if not
identical, to that associated with the original problem for a
variety of examples treated in other papers, which indicates
that the problem simplification may not sacrifice the global
optimality in any significant way. Moreover, any possible
conservativeness due to the approximation is limited by an
a priori error bound derived in the paper. Third, the original
and approximate problems turn out to be equivalent in the
symmetric case involving relaxation systems. Finally, a high
level procedure can be proposed to bridge the gap between the
two problems by converting a minimum of the approximate
problem into a minimum of the original problem.

The paper is briefly outlined as follows. In the next section,
we modify the -optimal model-reduction problem as an
unconstrained minimization problem over the Stiefel manifold.
Section III centers on the development of the gradient flow of
the model-reduction cost and establishment of its associated
properties including convergence by using differential mani-
fold techniques. In Section IV, we turn to derive two recursive
algorithms with detailed convergence analysis. In Section V,
an upper bound on a minimum of the problem is derived,
the symmetric case is treated, and a complete algorithm is
described. In Section VI, we test our algorithms on a number
of well-known examples and compare our results with those
obtained by other methods. The last section contains some
conclusions.

II. PROBLEM FORMULATION

Consider a linear time-invariant stable system with
the realization

(1)

(2)

where , , . An admissible
reduced-order model is defined to be of the form

(3)

(4)

where , , with a
stable matrix. The mismatch between the full-order and
reduced-order will be measured by the square of the

norm of their difference , i.e.,

which is often termed the quadratic model-reduction cost.

The so-called or quadratically optimal model-reduction
problem is to minimize the above cost over all the admissible
reduced-order models . Note that one realization ,

, of the error model is given by

Then, it is a standard fact that the cost can be conveniently
expressed in terms of the controllability gramian and
observability gramian of this realization. Namely, there
holds

(5)

with

(6)

(7)

Remark 2.1:For a certain purpose which will become
clearer, we need to stress that , , is not defined
to be the model-reduction cost. Rather, it is defined in terms
of the gramians and . One easily overlooked difference
between , , and is that they do not
share the same domain of definition though they are equal for
any admissible reduced-order model. An implication of this in
relation to the issue of stability will be explained shortly.

It is known from [7] and [8] that any minimizing solution
, , must be of the form

(8)

where and satisfy

(9)

Hence, the original model-reduction problem amounts to mini-
mizing , , with respect to

subject to the two constraints

1) and 2) is stable

This is essentially a nonlinear optimization problem subject
to both equality and inequality constraints as the stability
constraint can be expressed in terms of inequalities by the
Hurwitz criterion. Though it may be possible to use some
constrained optimization techniques to find a local minimum,
the computation involved could be formidable. To our best
knowledge, no convergent and generally applicable algorithm
for solving the problem has been found by now.

To formulate a more tractable problem, we observe that
given by

(10)

and given by

(11)
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satisfy constraint (9) for any of full column rank and any
of full row rank, respectively. It is therefore interesting to

consider the following modified problem:

minimize

over

subject to stability of

Remark 2.2:Admittedly, the modified problem represents
an approximation to the original problem as the new set of
reduced-order models over which the model-reduction cost
is minimized is a subset of the original set. Nevertheless,
the numerical results to be given later on suggest that the
approximation tends to be sufficient for the purpose of finding
the global minimum. This does not seem surprising because
any minimizing solution to the original problem falls into the
new model set associated with a certain realization. In fact, the
necessary condition (9) for the optimality apparently implies
the existence of a similarity transformation such that

and

Consequently, the minimizing solution , , be-
comes the truncation of the new realization , ,

for the original system. This fact will be exploited in
Section V.

Also, the above modification can be motivated from a
geometric point of view. To see this, we decompose the state
space into

That is, any state is expressed as

with and . Here, is the
orthogonal projection of the state onto the subspace .
By rewriting the state equation as

and appealing to the fact that is minimized at
for any given , one sees that the best

approximate to given is in the sense
that has the minimal effect. Removing from the output
equation naturally results in a reduced-order model

(12)

(13)

As such, the above-modified minimization problem may well
be thought of as finding a dominant state subspace of dimen-
sion , which is spanned by the columns of. As a matter
of fact, such a projection idea shares the same underlying
principle with the method of aggregation [14]–[16].

In order to provide a system-theoretic interpretation of
the replacement (11), let us consider an arbitrary state-space
realization , , on the subspace resulting from the
projection . Obviously, if happens to be a similarity

Fig. 1. Commutative diagram.

transformation, the triple , , is uniquely determined
as follows by the commutative diagram in Fig. 1:

More precisely, commutativity of the diagram is equivalent to
the requirement that the two minimal realizations represent the
same system if they are of the same order. In the other case
where the two realizations do not have the same order, the
above diagram will no longer be commutative. Accordingly,
the two realizations will not be compatible. Logically, the
extent to which the diagram is not commutative reflects the
degree of incompatibility between the two realizations. It
obviously makes sense to measure the former by three matrix
spectral norms

Since these norms are simultaneously minimized by the unique
triple

given the projection , the corresponding realization could be
regarded as least incompatible with the original one. Hence,
(11) is nothing but to restrict the minimization to being over
all the low-order models least incompatible with the full-order
system in the above sense.

Perhaps it is also interesting and relevant to note that the
model-reduction cost can be expressed as

(14)

This implies that the cost only depends on the product
and contains as one factor whose norm is minimized
at as a function of .

Another crucial implication of the above observation is
that the modified problem is equivalent to the minimization
problem over a much smaller set. To see this, note that

(15)

with due to

Thus, the minimal model-reduction cost over the reduced-order
model set

and is stable (16)
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is exactly equal to that over

and is stable (17)

where is the so-called Stiefel manifold defined by

Since the latter model set is much smaller than the former one
and is actually a compact set, the minimization over such a
set is likely to lead to the global minimum more quickly and
the associated computation may be less expensive.

Quite evidently, the stability constraint computationally
hinders the search for local minima though narrowing the set
to be searched. We notice that Spanoset al. [12] impose a
certain line search condition on their algorithms in order to
maintain the stability of the iterates.

To overcome this difficulty, we observe that the stability
constraint becomes superfluous when the original realization

, , is such that is negative definite since
remains negative definite for any on the

Stiefel manifold. Therefore, in this case one is led to the
minimization problem over the following set:

(18)

Moreover, this problem is guaranteed to have the global mini-
mum because the set in (18) is compact, and it is equivalent to
the minimization problem over the much larger reduced-order
model set in (16). Furthermore, the choice of a realization with

turns out to be very simple. In fact, since is
stable, for any symmetric matrix there exists an infinite
number of nonsingular matrix such that

i.e.,

(19)

From this, it is plain that the use of any suchas a similarity
transformation will result in a new realization with the required
property.

Remark 2.3:Note that the property is nothing
but the strict dissipativity of the realization. In addition, a
realization in modal form is also strictly dissipative.

Based on and motivated by the above discussion, we now
formally pose the following approximate model-reduction
problem.

Given a realization (1) and (2) with , minimize

(20)

over the Stiefel manifold .

III. GRADIENT FLOW ON MANIFOLD

In this section, we aim to solve the approximate problem
posed in the last section using the gradient flow approach.
Recall that an optimal solution to this problem exists. So the
question is really how to find one. Also, recall that there is

no loss of generality in assuming that is negative
definite for the original realization (1) and (2), which will be
our standing assumption throughout. In addition, we adopt the
convention that means the spectral norm of a matrix, i.e.,
the maximum singular value while means the Frobenius
norm.

Let us first obtain a more explicit formula for . To
do this, partition the solutions and to the Lyapunov
equations (6) and (7) as

and (21)

As a result, the Lyapunov equations (6) and (7) become
equivalent to

(22)

(23)

(24)

(25)

(26)

(27)

and the cost can be rewritten as

(28)

(29)

Quite obviously, is a smooth function on the manifold
. From [18] or [19], its tangent space at a given

is known to be

By endowing with the inner product defined by

for

becomes a Riemannian manifold. Also, note that
the derivative of at is a linear
functional on the tangent space and that the
gradient of at is a tangent vector
in such that

The explicit expression of is now given in the follow-
ing lemma.

Lemma 3.1:For any , there holds

where

(30)
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Proof: See Appendix B.
At this point, it is worth pointing out that the above gradient

is different from the gradient of as a usual function
defined on .

As an immediate consequence of the above lemma, it
follows from advanced calculus that any minimum point of

in must satisfy

and (31)

since any solution in is a critical point of . So
(31) expresses a first-order necessary condition for a minimum
point. However, solving such an equation does not seem to be a
sensible or effective way to go about finding a minimum point
as it may be very difficult to solve and may have multiple
solutions.

Remark 3.1: It can be verified that is always a sym-
metric matrix for any , which is instrumental in
constructing iterative algorithms later. In fact, there holds

Therefore, the first equation of (31) can be expressed as

Now with the formula for available, we can form
the following gradient flow:

(32)

as a basis for solving the problem of minimizing the model-
reduction cost. Regarding this ordinary differential equation,
it is natural to inquire questions such as whether a solution
to the ordinary differential equation (ODE) always exists and
lies on the manifold on the whole time interval for
any given initial value in , how the model-reduction
cost evolves along a solution, and whether the solution can
converge to a critical point of on . The answers
to these questions are crucial in order for the ODE to be
able to serve as a continuous-time algorithm for computing
an optimal reduced-order model. We now address the raised
issues by stating the following theorem, which summarizes the
main features of the gradient flow.

Theorem 3.1:Let the initial condition of (32) be given by

Then, we have the following.

1) The ODE (32) has a unique solution defined for
all .

2) The solution stays in for all .
3) The cost is nonincreasing along with

4) There holds

5) The solution converges to a connected component
of the set of critical points of .

6) There exists a time sequence with

and

such that the corresponding sequence converges
to a critical point of .

Proof: The first two statements follow from the com-
pactness properties of the Stiefel manifold. In fact, it is
straightforward to verify that the derivative of is
identically zero for all . Statement 3) is immediately
obtained by noting that the derivative of is equal to

Statement 4) is due to the two facts—finiteness of the integral
and uniform continuity of on

. Finally, the last two statements are typical properties
of a gradient flow on a Riemannian manifold.

The above summarized properties of the gradient flow
(32) give us confidence in finding a minimum of by
integrating the differential equation, which can be done using
any numerical ODE package, e.g., in Matlab. Since the model-
reduction cost is getting smaller and smaller as the iteration
goes on and no finite escape time will occur, one can keep
on solving the ODE until a satisfactory suboptimal solution
is reached. Moreover, the last two statements suggest that a
minimum point could be found from the solution history. In
particular, it is guaranteed that if the cost has only isolated
minimum points, the solution is bound to converge to
one of them.

Remark 3.2: It should be pointed out that if the initial
does not happen to be a critical point, then the cost
is actually strictly decreasing along the ODE solution ,
which is because of the uniqueness of solutions to an ODE.

Remark 3.3:Note that the assumption has
only been used to guarantee that the ODE (32) has no finite
escape time. Without this assumption, the solution still exists
for at least some finite time provided the initial condition
is such that is stable.

IV. I TERATIVE GRADIENT FLOW

In this section, we will consider discretizing the gradient
flow (32), which is necessary or desirable in order to take
full advantage of digital computers as far as computation is
concerned. In other words, we will seek iterative algorithms
which can produce a sequence of iterates whose corresponding
model-reduction costs are decreasing to its minimum. Recall
that the projection matrix is required to be orthogonal. This
restriction makes it difficult if not impossible to apply common
discretizing techniques such as Runge–Kutta methods to derive
an efficient iterative algorithm.

In what follows, a general form of iterative algorithm will
first be suggested which automatically guarantees that all the
iterates generated evolve on the manifold for an
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arbitrary step-size. Two schemes for selecting the step-size will
then be developed—one is constant and the other is varying
and more effective.

We start by noting that the gradient flow can be rewritten as

(33)

because of Remark 3.1, whereis defined by

(34)

In addition, it is trivial but vital to observe that is skew-
symmetric. As a result, the matrix exponential is orthogo-
nal for any real scalar. With this observation and the special
structure of the gradient flow, it seems natural to propose the
algorithm of the following form:

(35)

where is associated with via (30) and (34), and is
the th step-size to be determined. One nice thing about this
algorithm is its ability to generate a sequence of orthogonal
matrices from any starting orthogonal for any step-size,
and another is its simplicity in form in spite of the involved
calculation of the matrix exponential. Of course, for such an
algorithm to work, it remains to develop a mechanism for
selecting the step-size so that the algorithm can converge
to an orthogonal at which the model-reduction cost is
minimum. As will be determined, a certain constant step-size
can be chosen for this purpose.

Understandably, a workable step-size should consistently
reduce the model-reduction cost as the iteration goes on.
With this in mind, we proceed by establishing the following
auxiliary lemma before coming up with a scheme for choosing
a constant step-size.

Lemma 4.1: Consider (22)–(27). Let be any
differentiable function of with the derivative , and let
be defined by (30) accordingly. Then and its derivative
satisfy

(36)

(37)

where

(38)

(39)

and denotes the minimum eigenvalue of .
Proof: See Appendix C.

Theorem 4.1:Consider the iterative algorithm (35) with
and

(40)

where and are defined as in Lemma 4.1. Then there
holds

Moreover, the equality holds if and only if becomes a
critical point of .

Proof: Set

and let be the corresponding defined via (30). Then
it is clear that and . By the Taylor
expansion, there exists somebetween zero and such that

It is obvious from (B1) that

(41)

(42)

which imply that

(43)

(44)

Furthermore, it follows by Lemma 4.1 that

Consequently, there results

(45)

As is skew-symmetric, all its eigenvalues must be on the
imaginary axis, and thus the multiplicity of every nonzero
singular value is at least two, which implies that

. Therefore, it is true that for
any with

and that the equality holds if and only if .
Two important remarks are in order.
Remark 4.1:Quite clearly, the model-reduction cost

is convergent as .
Remark 4.2:With the inequality (40), note from (45) that

As a result, when in addition is chosen to be greater than
a positive constant, there holds

which implies that generated by the algorithm will ap-
proach the critical points satisfying the first-order necessary
conditions (31) for optimality as .

Since the step-size condition (40) is independent of the
current iterates, the step-size tends to be small and conservative
and the associated algorithm may have a poor convergence
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rate. The remainder of this section will be devoted to develop-
ing a more effective step-size selection scheme which makes
use of the information available at each iteration. To this end, it
is useful to establish a local upper bound on the third derivative
of the model-reduction cost. For notational convenience, we
introduce the following Lie bracket operations:

(46)

(47)

and let , , , , , be recursively defined by

(48)

(49)

(50)

(51)

(52)

(53)

Lemma 4.2: Let where is orthogonal
and is skew-symmetric, and let denote the unique
positive root of the polynomial

where is defined as in Lemma 4.1. Then for any given
with , the third derivative of the

model-reduction cost with respect to obeys

(54)

as shown in (55) and (56) at the bottom of the page.
Proof: See Appendix D.

Remark 4.3: In the above lemma, should be understood
to be when equals zero, in which case a local minimum
is reached.

Remark 4.4:From the definition of , it is easily seen that
must be greater than some positive constant, which

implies that

If in particular is defined by through (34), then
is bounded by a constant due to (36), and thusis greater
than some positive constant.

From the proof of Lemma 4.2, it can be seen that the smaller
the , the tighter the upper bound of on the
interval , . On the other hand, from Remark 4.4 we
know that can be allowed to be very large when is close
to a critical point. Therefore, it is natural to query whether
the upper bound will become too conservative as is
large. The following lemma answers this question by giving a
bound on , which will be used to establish the convergence
to critical points of the iterative algorithm with a varying step-
size. This bound is not only uniform but converges to zero as
fast as .

Lemma 4.3:Adopt the same hypotheses and notation as in
Lemma 4.2. Let

(57)

(55)

(56)
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where . Then there exists a constantindependent
of such that

(58)

Proof: See Appendix E.
With the above preparations, we are now in a position to

come up with a scheme for choosing a varying step-size for
the iterative algorithm (35).

Theorem 4.2:Let and be defined as in Lemma 4.2
with , and

(59)

(60)

Then given any step-size satisfying

(61)

the iterative gradient flow (35) generates a sequence of matri-
ces in the Stiefel manifold satisfying

(62)

from any initial . Moreover, if

and (63)

then there holds

(64)

where and are any two fixed constants between zero
and one.

Proof: Let be defined as in Lemma 4.2. Then from
the proofs of Theorems 4.1 and 4.2, it is seen that

and

By the Taylor expansion and Lemma 4.2, it follows that for
any with

(65)

Hence, there holds for any with

In particular, it follows that , i.e., (62).
Now with the selection (63), one has

(66)

In view of Remark 4.4, there is a constant such that
for all . In addition, by Lemma 4.3 and

the fact that is a bounded sequence, there is a constant
such that

As a consequence, one obtains

if ,

else.

This together with (65) and (66) implies that at least one of
the two inequalities

and

must hold. In this way, (64) immediately follows from the
convergence of .

Corollary 4.1: Adopt the same notation as in Theorem 4.2
and assume that the step-size scheme (63) is implemented.
Then there holds

(67)

Corollary 4.2: Adopt the same notation as in Theorem 4.2
and assume that the step-size condition (61) is satisfied. Then
there exists a constant such that

(68)
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Proof: From the proof of Theorem 4.1, it is true that

for some constant . This together with (61) results in

which leads to (68) because of the boundedness of .
Remark 4.5:Corollary 4.2 implies that the step-size given

by (63) is always greater than some positive number.
Remark 4.6:The implementation of the step-size selection

(63) involves solving eight Lyapunov equations (26), (27), and
(48)–(53). These equations can be grouped into the following
four subgroups:

(26) (27) (33) (49) (50) (51)–(53)

which are obviously decoupled from each other.

V. ERROR BOUND, SYMMETRIC

CASE, AND COMPLETE ALGORITHM

The objective of this section is threefold. First, an upper
bound on the global minimum of the approximate minimiza-
tion over the Stiefel manifold will be derived in terms of
the Hankel singular values of the original system. Second, it
will be shown that the approximate problem becomes exactly
equivalent to the original problem if the full-order system is
symmetric and the symmetry constraint is imposed on reduced-
order models. Finally, a complete algorithm will be proposed
for bridging the gap between the original and approximate
problems.

Our first result reveals an explicit way in which the last
Hankel singular values affect the model-reduction error.
This is reminiscent of two well-known error bounds [3],
[20].

Lemma 5.1: Consider an th-order stable balanced realiza-
tion , , . Let , , , and the controllability gramian

be compatibly partitioned as

where with . Assume that is stable.
Then there holds

(69)

where is the lower submatrix of , the unique
matrix solution to the equation

(70)

Proof: Denote the right-hand side of (69) by. Then it
follows from (28) that

where is the solution to the equation

Note that

because of . Thus, by subtraction one
obtains

(71)

Since can be rewritten as

(72)

(73)

(74)

making use of Lemma A.1 yields

where is the unique solution to (70). Quite obviously, this
is equivalent to (69). The proof is completed.

The following result being a consequence of Lemma 5.1
gives ana priori upper bound on the global minimum of
the proposed approximate problem. This error bound provides
a simple way to predetermine a lower order so as to avoid
incurring a large model-reduction error before invoking
any optimization algorithm.

Theorem 5.1:Assume that is a balanced real-
ization with distinct Hankel singular values , , , .
Let be the model-reduction cost as defined in (20) and
let denote the set of all the ordered subsets of the set

with cardinality . Then there holds

where is the diagonal matrix with diagonal elements ,
, , , is the matrix consisting of the th,

th, , th columns of , is the submatrix
of resulting from deleting those columns whose index is
not and those rows whose index is not in, and is
the lower submatrix of , the unique matrix
solution to the equation

when , , , .
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Proof: The proof follows from Lemma 5.1 and the fact
that each model truncation associated with can be
realized with a corresponding .

Remark 5.1: Interestingly, Gloveret al. [21] gave a dif-
ferent error bound on the truncation error for infinite-
dimensional systems of nuclear type with an output normal
realization. An example there shows that the bound decreases
quite slowly as the reduced-order increases.

Now we come to address the question as to whether there is
any special case in which the original problem can be exactly
reduced to the approximate problem. As is identified below,
the symmetric case is one such case.

Theorem 5.2:Let be a given th-order real-
ization with and . There holds

(75)

if the global minimum over exists, where

Proof: Let the cost function attain the global
minimum over at . Then the gradient
of over and the gradient over both must
vanish at . Denote the Fŕechet derivative
of with respect to and the Fr´echet
derivative with respect to at by
and , respectively. Then it is a routine exercise to find
them as follows:

where is the controllability gramian of the error
system

The derivation of the above formulas has made use of the fact
that is the observability gramian of the same error
system, which is in turn due to the assumption that both the
full and reduced-order realizations are symmetric. Since the
tangent space of is the set of all symmetric matrices,
it follows from the necessary conditions for optimality that

(76)

(77)

implying

and (78)

Since and satisfy

(79)

(80)

premultiplying (79) by and subtracting leads to

i.e., (81)

From this and (78), (75) is concluded.
Remark 5.2: In [22], physical systems with a symmetric

realization and without poles in the open right-half plane
are called relaxation systems, of which RC or RL electrical
networks and chemical reactions are typical examples.

Since the gradient flow algorithm or its iterative version
for solving the approximate problem may sometimes lead to
local minima, a more complete algorithm is needed in order
to overcome or alleviate this problem. But first, let us describe
the construction of a new full-order realization from any given
full-order realization , , and any given th-order
realization , , . To this end, assume that and

are the controllability and observability gramians of the
model error and partitioned as in (21). Set

and

It is known from [23, Th. 6.2.5] that an invertible
can be constructed so that

and

With as a similarity transformation, we obtain the new
full-order realization

(82)

For ease of reference, this realization will be called an induced
realization from , , and , , . An important
fact about the induced realization , , is that if ,

, is an optimal reduced-order model, then it coincides
with the th-order truncation of , , ; see [8]. Put
another way, any optimal reduced-order model is the direct
truncation of an induced realization from the full-order model
and itself.

We are now in a position to propose a complete algorithm
for circumventing the case where the balanced realization and
truncation fails to lead to the global minimum via the gradient
flow alone. This algorithm employs the gradient flow as a core
ingredient. The underlying idea is to switch to an induced
full-order realization and its truncation based on the current
full-order realization and the obtained locally optimal reduced-
order model. As will be illustrated through simulation, this idea
turns out to work very well in getting out of a local minimum
toward the global minimum.

Algorithm for Computing Optimal Reduced-Order Mod-
els:

Step 1: Choose a balanced realization of the full-order
model and an initial projection matrix .

Step 2: Solve the ODE (32) or the recursive equation (35)
with as the starting point to get a suboptimal
reduced-order model.

Step 3: Construct an induced realization from the current
full-order realization and the reduced-order realiza-
tion.



YAN AND LAM: APPROXIMATE APPROACH TO OPTIMAL MODEL 1351

TABLE I
THE COMPARISON OF RELATIVE ERRORS AMONG FIVE METHODS

Step 4: If the direct truncation of the induced realization
achieves the same cost as the reduced-order model
or is unstable, stop; otherwise, go back to Step 2
with the induced realization and .

VI. NUMERICAL INVESTIGATION

In this section, we shall discuss a number of examples for
illustrating the effectiveness and power of our approach to
solving the optimal model-reduction problem. In particular,
the following three issues will be looked at in relation to the
proposed technique:

• overall performance;
• applicability to the multivariable case;
• possible conservativeness.

A. Overall Performance

For a comprehensive comparison, we consider the following
well-known examples, in all of which no single method has
reportedly been tested previously:

Model 1: the second-order model in [8, Example 6.3] as
well as from [24];

Model 2: the second-order model in [8, Example 6.2];
Model 3: the fourth-order model in [8, Example 6.1];
Model 4: the sixth-order four-disc model from [25];
Model 5: the seventh-order model from [26];
Model 6: the fourth-order model in [12, Example 1];
Model 7: the second-order model in [12, Example 2];
Model 8: the sixth-order model of the flexible structure in

[12, Example 3].

The focus of our comparison is on the five methods:

• the currently proposed gradient flow (GF) method;
• the orthogonal projection (OP) method proposed in [8];
• the balanced truncation (BT) method;
• the method proposed in [12] (SMM);
• the method proposed in [26] (LPMV).

We now summarize our obtained relative errors (i.e.,
) in Table I as well as their upper bounds

(UB) calculated by using the formula in Theorem 5.1.
Those obtained by using the other methods are also included
where available. Examining the table manifests the consistent
success of the proposed technique in solving theoptimal
model-reduction and the tightness of the derived error bound.

Remark 6.1:The results shown in Table I obtained by the
gradient flow algorithm are based on initial guesses cor-
responding to balanced truncations. An alternative way to
initialize the proposed algorithm is to use a truncation of a
realization in modal form.

Remark 6.2:The superscript in the table means that
the complete algorithm described in the previous section is
invoked. Without appealing to this procedure, the relative
errors will be 0.998 44, 2.448-3, 0.1229, and 0.2709 as
opposed to 0.970 80, 2.132-3, 0.1171, and 0.2443, which
shows the ability of the algorithm to avoid getting stuck at
a local minimum close to the global minimum. For example,
in the case of Model 6, the convergence of the relative error
to the global minimum is depicted in Fig. 2, where it is seen
that the gradient flow is solved three times with the starting
points approximately corresponding to the respective iteration
numbers 1, 28, and 49.

B. Multivariable Case

To verify the applicability of our algorithm to the multivari-
able case, let us consider the automobile gas turbine model
with 2 inputs, 2 outputs, and 12 states from [3] and [27].
With the gradient flow algorithm initialized with a balanced
truncation, the relative errors in the respective cases of fifth-
and sixth-order reductions are depicted in Fig. 3 along time.
The final results of the relative errors are shown in Table II
against their respective initial relative errors resulting from
balanced truncation. Once again, this illustrates that the
model-reduction error can be substantially reduced by starting
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Fig. 2. Evolution of relative error.

Fig. 3. Variation of relative errors over time.

TABLE II
FINAL RELATIVE ERRORS AGAINST INITIAL ONES

with a balanced truncation. We note that the optimal projection
method of Hyland and Bernstein fails to give a converging
solution for this MIMO example.

C. On Possible Conservativeness

Recall that the proposed algorithm is guaranteed to produce
a local minimum for any initial condition. Obviously, how
close the resulting local minimum is to the global minimum
depends on the choice of an initial condition. In other words,
the performance of the algorithm may be influenced by the
chosen initial condition. In this subsection, we examine if the
majority of a large number of given starting points can lead
to the global minimum with the algorithm. For this purpose, it
is convenient to consider the first-order reduction of a second-
order SISO system and of a third-order SISO system. In both

cases, the model-reduction cost is a function of two scalar
variables which uniquely determine a first-order model, and
thus it is possible to find the global minimum through an
extensive search over the set of all stable reduced-order models
together with simple necessary conditions for extremality. That
is why the two cases are taken.

As a matter of fact, it can be established in the SISO case
that

for a full-order system and a reduced-order
model . Clearly, finding a globally optimal stable
reduced-order model amounts to finding a global minimum
point of the cost function over the region

. Further, the necessary conditions for extremality
can be derived as

(83)

(84)

which will be used to determine the global minimum for the
following examples.

Example 6.1: Let a full-order system be given by

with randomly generated numerator coefficients. Then the
globally optimal first-order model can be found to be

with

(85)

which gives the optimal cost of 0.0046.
Note that in this case the Stiefel manifold reduces to the unit

circle and that any point on it can be parameterized as follows:

and that the cost apparently assumes the same global minimum
over the upper half circle as over the whole circle. Then with
each of the 40 regularly spaced points on the upper half circle
corresponding to

as an initial condition, the algorithm arrives at 40 suboptimal
model-reduction costs. The relative deviations of the obtained
costs from the global minimum of 0.0046 are depicted in
Fig. 4, which verifies the closeness between the obtained costs
and the optimal one. It takes about 3 min to complete the
40 simulations on an HP workstation, which means that on
average the algorithm takes less than 5 s to get to the near
global minimum for each of the specified initial conditions.
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Fig. 4. Relative deviations between achieved costs and the optimum for
Example 6.1.

VII. CONCLUSIONS

The optimal model-reduction problem has approxi-
mately been formulated as an unconstrained minimization
problem over the Stiefel manifold. The two problems have
been proved to be equivalent in the symmetric case. Using
the differential techniques, we have derived explicit formulas
for the gradient of the model-reduction cost function over the
manifold. Several convergent algorithms have been proposed.
The first one is given in terms of an ordinary differential
equation formed by the gradient flow, and concerning this
algorithm a number of nice theoretical properties are obtained.
For example, the cost is always decreasing along the solution
to the ODE evolving on the Stiefel manifold until a minimum
point is reached. Based on this gradient flow algorithm, an it-
erative algorithm in closed form has been generated, for which
it has been shown that a fixed step-size is adequate to ensure
that the cost is decreasing to a minimum. However, an adaptive
scheme derived for choosing the step-size tends to achieve a
greater convergence rate. All the proposed algorithms are well
applicable to the MIMO case. Numerical tests have indicated
the reliability of the algorithms as well as the convergence to
a minimum.

Developed in this paper, the techniques have since been
applied to solving several related problems such as frequency-
weighted model reduction as well as filter reduction [28],
[29].

APPENDIX A
AUXILIARY LEMMAS

Lemma A.1: If and satisfy

and

then there holds

(A1)

Proof: The lemma follows directly from the respective
substitution of and for and

into the both sides of (A1).

Lemma A.2: Suppose two matrices and
are given with denoting the maximum eigenvalue

of for . Assume that is the unique
solution to the Lyapunov equation

with . If , then there hold

and

Proof: It is not difficult to establish that

from which it follows that

and

(A2)

Since , the above in turn implies that

Again from (A2), the lemma is concluded.
Lemma A.3: Let be a differentiable matrix

function of on the interval containing zero inside.
Then there holds

(A3)
Proof: Let be an arbitrary positive scalar. Then

is a differentiable scalar function ofon . Therefore,
has the following Taylor expansion

where is between zero and. This implies that

But, one has

Hence, it follows that

As is arbitrary, and this immediately results in (A3).
Lemma A.4: Let be given. Assume that

is positive definite. Then, there exists some constantsuch
that for any skew-symmetric there holds
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Proof: Choose an orthogonal so that

Note that is still skew-symmetric and

which means that the -element of is equal to that
of times . Thus, there results

Setting

completes the proof.

APPENDIX B
PROOF OF LEMMA 3.1

First it is straightforward to compute the Fréchet derivative
of as follows:

By differentiating the both sides of (23) and (24), it follows
that and satisfy

with

Hence by Lemma A.1, one obtains

(B1)

The gradient is the uniquely determined vector field on
which satisfies the two conditions:

1)

2)

Due to (B1), condition 2) is equivalent to

(B2)

Since

(B3)

(B2) together with condition 1) gives

(B4)

APPENDIX C
PROOF OF LEMMA 4.1

By Lemma A.2, one has

(C1)

(C2)

(C3)

(C4)

From the first two inequalities, (36) follows immediately by
recalling the definition of in Lemma 3.1. To prove (37),
differentiate the both sides of (23) to yield

Again by Lemma A.2, one obtains

(C5)

In the same way, it can be established that

(C6)

(C7)

(C8)
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Since

it follows that

as required.

APPENDIX D
PROOF OF LEMMA 4.2

Set

where and are defined by (23) and (24) with
. Then, is obviously a smooth function of and

satisfies

(D1)

where

Moreover, by successive differentiation of the above, one can
reach the relations

(D2)

(D3)

(D4)

In particular, with

it follows that

Therefore, making use of Lemma A.2 yields

(D5)
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Since the matrix on the right-hand side equalsat and
has the following derivative:

applying Lemma A.3 to the right-hand side of (D5) gives rise
to

(D6)

In the meantime, by Lemma A.3 one has

(D7)

(D8)

(D9)

Due to

it is not difficult to see that the inequalities (D6)–(D9) can
be combined into the compact form as shown in (D10) at the
bottom of the page.

On the other hand, recall that can be expressed as

where is the controllability gramian of the full-order
system, i.e., the solution to (22). Then it is routine to compute
the following derivatives with respect to:

(D10)

(D11)
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(E4)

(E5)

By noting that , it is easily deduced that

This together with (D10) leads to (54).

APPENDIX E
PROOF OF LEMMA 4.3

First, it is easy to see that

(E1)

where is a constant independent of . Because of ,
it is true that . By Lemma A.4, this leads
to

(E2)

where is a constant independent of . Hence, by
successively applying Lemma A.2 to (D1)–(D3), it is not
difficult to establish the following inequality:

(E3)

for some constant independent of . Since all the elements
of the inverse in (55) are nonnegative, combining (E1) with
(E3) yields (E4), as shown at the top of the page, where
denotes the -element of the adjoint of as shown in
(D11), at the bottom of the previous page. By close inspection,
it follows from (E2) that there exists a positive constant
independent of and such that

if

else.

Consequently, again from (E2) we have (E5), shown at the
top of the page. The proof is thus completed.
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