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An Approximate Approach to
H? Optimal Model Reduction

Wei-Yong Yan and James Lansenior Member, IEEE

Abstract—This paper deals with the problem of computing an that theH> norm of a system is the expected root-mean-square
H optimal reduced-order model for a given stable multivariable  (rms) value of the output when the input is a unit variance
linear system. By way of orthogonal projection, the problem white noise process.

is formulated as that of minimizing the H> model-reduction H . d lqorith h

cost over the Stiefel manifold so that the stability constraint .owever, rlgorous.an convergent a_g.orlt ms _ave re-
on reduced-order models is automatically satisfied and thus Mained to be found in the general multi-input/multi-output
totally avoided in the new problem formulation. The closed (MIMO) case. So far, the most commonly taken approach
form expression for the gradient of the cost over the manifold to H,-optimal model reduction problem is to work with

is derived, from which a gradient flow results as an ordinary ¢ . e - :
differential equation (ODE). A number of nice properties about first-order necessary conditions for optimality, which were

such a flow are established. Furthermore, two explicit iterative developed and simplified in one way or another by Meier
convergent algorithms are developed from the flow; one has a and Luenberger [6], Wilson [7], Hyland and Bernstein [8],
constant step-size and the other has a varying step-size and isHalevi [9], Bryson and Carrier [10], Baratchatal.[11], and
ot e, St f e ner e proeris L. mor reenty Spancs 121, Accordngy ey proposed
initial point and that the model reduct?on cost |); decrgasing thelr-rlespectlve algorlthms to seek a.solutlon s.atlsfylng. the
to minima along the iterates. A procedure for closing the gap conditions expressed in terms of nonlinear matrix equations.
between the original and modified problem is proposed. In the Many of the algorithms lack the proof of convergence and
symmetric case, the two problems are shown to be equivalent. mathematical rigor, and some of them may even become diver-
yf“trﬁg”cr"z‘)' ﬁiﬁ?'ﬂff} rifm%r‘zzewgﬁ’ atg g'(;‘r?\t/rearteeahcee effectiveness gent for certain initial conditions or converge to a maximum.
prop 9 9 ' Though Baratchast al.[11] and Spanost al.[12] established
Index Terms—Linear systems, model reduction, optimization, the convergence of their respective algorithms under certain
System approximation. conditions, the algorithms are only applicable to the single-
input/single-output (SISO) case.
|. INTRODUCTION So far, it is unclear whether the global minimum of the

LOWER order approximation to a high-order system icost exists or not in the continuous-time MIMO case, though
Y ﬁ1e answer to this question in the discrete-time case was

often desirable and used in practice. Among many devel-" . ° . L L
oped methods for order reduction are the balanced truncatP%S'tlve according to Baratchart [13]. This issue inevitably

method [1], [2] and the Hankel norm approximation metho eds some doubt on the theoretic basis of the above approach.

[3] with the former extended to the case of second-order for; oreover, as pointed out by Spanesal. [12], there are two

linear systems by Meyer and Srinivasan [4] most recently. AI%SChr'_'Cal d'ﬁ'cu'_“es associated with the approach; one is th_e
quite recently, Zhou [5] has proposed a new method basedséﬁb'“ty constraint on reduced-order models and t_he other is
these two methods fak., norm model reduction with somet € unb_oundedn(-_zss of the Iev_el sets quog funct|on_a|. I.t

L., error bounds derived. However, the problem of finding Joes without saying that the first one is fundamentally intricate
optimal reduced-order model in thé, or H.. sense is still to acgommodate and thus_represents a major obstacle to the
largely open. effectiveness of any algorithm based on that approach. We

The present paper is concerned with minimizing tHe believe that this difficulty is due to direct parameterizations of

(also calledl.;) norm of the model mismatch between a giveﬁllllthehreduced-order mI(()deIs ('jr_‘ﬁ"”e form or anr?ther;[H
model and a reduced-order one. This minimization problem n this paper, we'ta ead grent approac to. e
has received a great deal of attention over the past sevé’rB‘i'mal model-reduction problem in the continuous-time case.

decades. The importance of the problem stems from the fa—&e main idea is to treat the minimization problem_over a
subclass of stable reduced-order models parameterized by a

Manuscript received July 21, 1995 revised July 8, 1996, July 23, 19gRrojection matrix instead of the whole class of all the reduced-
and August 28, 1998. Recommended by Associate Editor, A. Vicino. Th@rder models. The restriction to this subclass enables one to
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ol rant ’ minimization problem over the Stiefel manifold, which is
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Even though it is theoretically unclear about the exact The so-calledd, or quadratically optimal model-reduction
mismatch between the original problem and the approximatipnoblem is to minimize the above cost over all the admissible
at this point, the problem approximation proposed in the papeduced-order model&,,,(s). Note that one realizatio(A.,
appears to be appealing and promising due to several reasBpsC.) of the error modelG,.(s) is given by
in addition to tractability and the ability to allow algorithms
with proven convergence. First, any solution to the modified (4., B,, C.) = <[z(‘)l AO } [B } c —Cm]>.
problem has the property that it is most compatible with the m

original model in the sense that the commutative diagrafhen, it is a standard fact that the cost can be conveniently
formed by them is least incompatible, a property which seegpressed in terms of the controllability gramidn and

desirable on system-theoretic grounds. Second, an extengjygervability gramian, of this realization. Namely, there
numerical investigation reveals that the global optimum assgs|qs

ciated with the modified problem is consistently close, if not
identical, to that associated with the original problem for a |Ge()]13 =T (Am, B, C)
variety of examples treated in other papers, which indicates A trace(C I CT)
that the problem simplification may not sacrifice the global eeTe
optimality in any significant way. Moreover, any possible :trace(BeTLoBe) ()
conservativeness due to the approximation is limited by an
a priori error bound derived in the paper. Third, the origina‘f"th
and approximate problems turn out to be equivalent in the A.L.+ LAT + B.BT =0 (6)
symmetric case involving relaxation systems. Finally, a high T ' T
level procedure can be proposed to bridge the gap between the Ac Lo+ Lode + G Ce =0. (7)
two problems by converting a minimum of the approximate Remark 2.1:For a certain purpose which will become
problem into a minimum of the original problem. clearer, we need to stress thitd,,, B.., C,) is not defined
The paper is briefly outlined as follows. In the next sectiofly he the model-reduction cost. Rather, it is defined in terms
we modify the H»-optimal model-reduction problem as arnuf the gramians.. and L,. One easily overlooked difference
unconstrained minimization problem over the Stiefel ma”'fO"ﬂ)etweenJ(Am, Bum, C) and||Ge(s)||3 is that they do not
Section 1l centers on the development of the gradient flow @hare the same domain of definition though they are equal for
the model-reduction cost and establishment of its associaigf}, admissible reduced-order model. An implication of this in

properties including convergence by using differential manjajation to the issue of stability will be explained shortly.
fold techniques. In Section IV, we turn to derive two recursive |; is known from [7] and [8] that any minimizing solution

algorithms with detailed convergence analysis. In_Secti(_)n KA’"’ Bum, Cyn) must be of the form

an upper bound on a minimum of the problem is derived,

the symmetric case is treated, and a complete algorithm is (Am, Bm, C) = (TAV, TB, CV) (8)
described. In Section VI, we test our algorithms on a number . e

of well-known examples and compare our results with tho¥dereV € IR andT € R satisfy

obtameq by other methods. The last section contains some TV = I. ©)
conclusions.

m

Hence, the original model-reduction problem amounts to mini-
[I. PROBLEM FORMULATION mizing J(T AV, TB, CV) with respect tq T, V) € R™*" x

nXxXm H .
Consider a linear time-invariant stable systéiis) with 1R~ subject to the two constraints

the realization 1) TV =1 and 2)TAV is stable
& =Ar+ Bu (1) This is essentially a nonlinear optimization problem subject
y=0Cx (2) to both equality and inequality constraints as the stability
where A € R™™ B € R™ C ¢ R™". An admissible constraint can be expressed in terms of inequalities by the

reduced-order mode¥,,,(s) is defined to be of the form Hurwitz criterion. _Th(_)ugh It may be pqssmle to use some
constrained optimization techniques to find a local minimum,

T = AmZm + Bt (3) the computation involved could be formidable. To our best

4) knowledge, no convergent and generally applicable algorithm
for solving the problem has been found by now.

whereA,, € R™*™, B,, € R™*?, C,, € R with 4,, a To formulate a more tractable problem, we observe fhat

stable matrix. The mismatch between the full-ordés) and given by

reduced-ordel7,,,(s) will be measured by the square of the t T

H, norm of their differenceZ.(s), i.e., r=vH= (V V)

Ypr = Crn, Tm

tyT (10)

IGe()I3 and V' given by

which is often termed the quadratic model-reduction cost. v=rt=17 (TTT)_1 (11)
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satisfy constraint (9) for any” of full column rank and any
T of full row rank, respectively. It is therefore interesting to B X o

X
consider the following modified problem: / \
| \T T/ Py
B ¥ c

minimize J(V) 2 J(VTAV, vis, Cv)

overV € R™™

bl

subject to stability of TAV. Fig. 1. Commutative diagram.

Remark 2.2: Admittedly, the modified problem represents o
an approximation to the original problem as the new set §gnsformation, the triplé4, B, C) is uniquely determined
reduced-order models over which the model-reduction cc follows by the commutative diagram in Fig. 1:
is minimized is a subset of the original set. Nevertheless, A=TAT !, B=TB, O=o07!
the numerical results to be given later on suggest that the
approximation tends to be sufficient for the purpose of findifgore precisely, commutativity of the diagram is equivalent to
the global minimum. This does not seem surprising becaue requirement that the two minimal realizations represent the
any minimizing solution to the original problem falls into thesame system if they are of the same order. In the other case
new model set associated with a certain realization. In fact, taere the two realizations do not have the same order, the
necessary condition (9) for the optimality apparently implieabove diagram will no longer be commutative. Accordingly,

the existence of a similarity transformatiéh such that the two realizations will not be compatible. Logically, the
7 extent to which the diagram is not commutative reflects the
T=[ 0] and V=067 [0} degree of incompatibility between the two realizations. It

obviously makes sense to measure the former by three matrix
Consequently, the minimizing solutiofd,,,, B,., C,,) be- spectral norms

comes the truncation of the new realizati@A©~!, ©B, AT — TA| B - 18| cr - C|.
C©~1) for the original system. This fact will be exploited in ’ ’
Section V. Since these norms are simultaneously minimized by the unique

Also, the above modification can be motivated from tiple
geometric point of view. To see this, we decompose the state

spaceR" into (4, B, C)= (TATT, TB, CTT)

R"™ = range(V) 4 range(V)*. given the projectiory’, the corresponding realization could be
_ _ regarded as least incompatible with the original one. Hence,
That is, any stater € IR" is expressed as (11) is nothing but to restrict the minimization to being over

all the low-order models least incompatible with the full-order
system in the above sense.

with w € R™ and ¢ € range(V)L. Here, Vw is the Perhaps it is also interesting and relevant to note that the
orthogonal projection of the state onto the subspaage(1’). model-reduction cost can be expressed as

By rewriting the state equation as J(TAV, TB, CV)

z=Vw+e

Vi — (AVw + Bu) = Ae — ¢ = ||sC(sI = VT A" (VT — I)(sI — A)7'B|[s.  (14)

and appealing to the fact thdi’z — s||» is minimized at This implies that the cost only depends on the proddt

2 = Vs for any givens € IR", one sees that the bestand contains as one factbt?’ — I whose norm is minimized
approximate tow given w is VT(AVw + Bu) in the sense at7T" = v1 as a function off.

that ¢ has the minimal effect. Removing from the output  Another crucial implication of the above observation is
equation naturally results in a reduced-order model that the modified problem is equivalent to the minimization

problem over a much smaller set. To see this, note that
i =V AVw + vIBu (12) | | . .
Y=V, 13) J(V av, viB, OV) = J(UTAU, UTB, CU)  (15)

As such, the above-modified minimization problem may weWith U = V(VTV)~1/2 due to
be thought of as finding a dominant state subspace of dimen- T Tl t
sion m, which is spanned by the columns Bf As a matter vUT = V(V V) vi=Vvvl
of fact, such a projection idea shares the same underlyimpus, the minimal model-reduction cost over the reduced-order
principle with the method of aggregation [14]-[16]. model set

In order to provide a system-theoretic interpretation of t t nxm
the replacement (11), let us consider an arbitrary state—spacé(Amv B, Cp) = (V AV, V1B, CV) ‘ VeR
realization(A, B, C) on the subspac& resulting from the foav
projection 7. Obviously, if 7" happens to be a similarity and VAV is stabl% (16)
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is exactly equal to that over no loss of generality in assuming that+ A? is negative
definite for the original realization (1) and (2), which will be
{(Am, B, ) = (UTAU, UTB, CU)|U € St(m, n) o standing assumption throughout. In addition, we adopt the
andU”T AU is stablg (17) convention that| - || means the spectral norm of a matrix, i.e.,
the maximum singular value whilg- || » means the Frobenius
norm.
St(m, n) = {U e R™™|UTU = I}. Let us first obtain a more explicit formula fd¥(U). To
do this, partition the solutiond.. and L, to the Lyapunov
Since the latter model set is much smaller than the former ogguations (6) and (7) as
and is actually a compact set, the minimization over such a
set is likely to lead to the global minimum more quickly and I - {Ec X} and L. — {
the associated computation may be less expensive. cT|XT p o
Quite evidently, the stability constraint computationally
hinders the search for local minima though narrowing the s&s a result, the Lyapunov equations (6) and (7) become
to be searched. We notice that Spamdsal. [12] impose a equivalent to
certain line search condition on their algorithms in order to

where St(m, n) is the so-called Stiefel manifold defined by

2, Y} 21)

YT Q@

maintain the stability of the iterates. AY,. + 3. AT + BBT =0 (22)

To overcome this difficulty, we observe that the stability AX + XUTATU + BBTU =0 (23)
constraint becomes superfluous when the original realization T T AT A
(A, B, C) is such thatA + AT is negative definite since v AUP+PUTA v+u BBTU_O (24)
UT(A + AT)U remains negative definite for arly on the AT X+ 2,A+C7C =0 (25)
Stiefel manifold. Therefore, in this case one is led to the ATY +yUut AU - Cc*¥cUu =0 (26)
minimization problem over the following set: UTATUQ + QUT AU + UTCTCU =0 27)
{(Am, Bm, C) = (UTAU, U"B, CU)|U € St(m, n)}. ,

(18) and the cos{j(U) can be rewritten as

Moreover, this problem is guaranteed to have the global mini- J(U) =trace[CTC(E. + UPUT —2XUT)]  (28)
mum because the set in (18) is compact, and it is equivalent to =trace[BB" (S, + UQUT +2YU™)]. (29)

the minimization problem over the much larger reduced-order

model set in (16). Furthermore, the choice of a realization withuite obviously,J(U) is a smooth function on the manifold
A+ AT < 0 turns out to be very simple. In fact, sinceis St(m, n). From [18] or [19], its tangent space at a given
stable, for any symmetric matri > 0 there exists an infinite 7 € St(m, ») is known to be

number of nonsingular matrig’ such that

_ nxm|71l’ Tr7

I.€., By endowingZy, St(m, n) with the inner product defined by
TUAT + (T7P AT =17'Q(T™)". (19
A T
From this, it is plain that the use of any suéhas a similarity (0, §) = 2urace(n”€),  forn, & € TySt(m, n).
transformation will result in a new realization with the require
property.

Remark 2.3:Note that the propertyl + A7 < 0 is nothing
but the strict dissipativity of the realization. In addition,
realization in modal form is also strictly dissipative.

Based on and motivated by the above discussion, we n
formally pose the following approximate model-reduction
problem.

Given a realization (1) and (2) witd + A7 < 0, minimize

%'t(m, n) becomes a Riemannian manifold. Also, note that
the derivativeDJy of J(U/) at U € St(m, n) is a linear
a{unctional on the tangent spacg;St(m, n) and that the
gradientvV3(U) of J(U) atU € St(m, n) is a tangent vector
j)l’\lNTUSt(m, n) such that

DIy(Il) = (VI(U), 1),  VII € TySt(m, n).

The explicit expression oVJ(U) is now given in the follow-
J(U) 2 J(UT AU, UTB, OU) (20) ing lemma.
Lemma 3.1:For anyU € St(m, n), there holds
over the Stiefel manifoldSt(m, n).
VIWU)=(I-UU")R
[ll. GRADIENT FLOW ON MANIFOLD

In this section, we aim to solve the approximate probleMfhere
posed in the last section using the gradient flow approach. - ToT - -
Recall that an optimal solution to this problem exists. So thé® = (-CTC+ATUYT)X + (CTCU + ATUQ) P
question is really how to find one. Also, recall that there is + (BBT + AUX")Y + (BB"U+ AUP)Q.  (30)
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Proof. See Appendix B. 5) The solutionl/(¢) converges to a connected component
At this point, it is worth pointing out that the above gradient of the set of critical points off(U).
is different from the gradient off(U/) as a usual function 6) There exists a time sequen{s, } with
defined onlR™*™.
As an immediate consequence of the above lemma, it
follows from advanced calculus that any minimum point of
J(U) in St(m, n) must satisfy

s >0 and klim S = 00
such that the corresponding sequefigg;) converges
to a critical point of 3(U/).
(I— UUT)R =0 and UTU =1 (31) Proof: The first two statements follow from the com-
) o ) . ) pactness properties of the Stiefel manifold. In fact, it is
since any squt|on_ ir5t(m, n) is a critical po!qt ofJ(U). SO straightforward to verify that the derivative &fY'(t)U(t) is
(31) expresses a first-order necessary condition for a miNiMyRntically zero for allt > 0. Statement 3) is immediately

point_. However, s_oIving such an equati_on_does nc_>t_seem to _bSl:ﬁ‘ained by noting that the derivative §fU(¢)) is equal to
sensible or effective way to go about finding a minimum point

as it may be very difficult to solve and may have multiple JUE) =(V3U), U)

solutions. = — 2trace[R" (I — UUT)R]
Remark 3.1:1t can be verified that/Z R is always a sym- ™ 2

metric matrix for anyl/ € St(m, n), which is instrumental in = —2|(7 - VVT) R|f < 0.

constructing iterative algorithms later. In fact, there holds Statement 4) is due to the two facts—finiteness of the integral

T T T T T T T /(I = UUT)R||% dt and uniform continuity ofU(t) on
UTR =Y AX + QU AUP + X"ATY + PUTATUQ. [j& oo). Finally, the last two statements are typical properties
Therefore, the first equation of (31) can be expressed as Of @ gradient flow on a Riemannian manifold.

The above summarized properties of the gradient flow
R=UR"U. (32) give us confidence in finding a minimum §{{/) by
integrating the differential equation, which can be done using
any numerical ODE package, e.g., in Matlab. Since the model-
reduction cost is getting smaller and smaller as the iteration
7= WUt - I)R (32) 9oes on and no finite escape time will occur, one can keep
on solving the ODE until a satisfactory suboptimal solution
as a basis for solving the problem of minimizing the models reached. Moreover, the last two statements suggest that a
reduction cost. Regarding this ordinary differential equatiominimum point could be found from the solution history. In
it is natural to inquire questions such as whether a solutiparticular, it is guaranteed that if the cost has only isolated
to the ordinary differential equation (ODE) always exists anghinimum points, the solutiod/(¢) is bound to converge to
lies on the manifoldSt(m, n) on the whole time interval for one of them.
any given initial value inSt(m, n), how the model-reduction =~ Remark 3.2:1t should be pointed out that if the initidl,
cost evolves along a solution, and whether the solution céaes not happen to be a critical point, then the c@Et)
converge to a critical point df(U) on St(m, n). The answers is actually strictly decreasing along the ODE solutioit),
to these questions are crucial in order for the ODE to Wwhich is because of the uniqueness of solutions to an ODE.
able to serve as a continuous-time algorithm for computing Remark 3.3:Note that the assumptiod + A < 0 has
an optimal reduced-order model. We now address the raig@ly been used to guarantee that the ODE (32) has no finite
issues by stating the following theorem, which summarizes tR&cape time. Without this assumption, the solution still exists
main features of the gradient flow. for at least some finite time provided the initial conditibi
Theorem 3.1:Let the initial condition of (32) be given by is such thatl/g" AU, is stable.

Now with the formula forVJ(U) available, we can form
the following gradient flow:

U(0) = Up € St(m, n). IV. ITERATIVE GRADIENT FLOW

Then, we have the following. In this section, we will consider discretizing the gradient

1) The ODE (32) has a unique solutidn(t) defined for flow (32), which is necessary or desirable in order to take

all + > 0. full advantage of digital computers as far as computation is

2) The solutionl/(t) stays inSt(m., n) for all ¢ > 0. concerned. In other words, we will seek iterative algorithms
3) The costy(U) is nonincreasing along(t) with which can produce a sequence of iterates whose corresponding

model-reduction costs are decreasing to its minimum. Recall

J(U(s2)) — I(U(s1)) that the projection matriX/ is required to be orthogonal. This

restriction makes it difficult if not impossible to apply common

discretizing techniques such as Runge—Kutta methods to derive

an efficient iterative algorithm.

4) There holds In what follows, a general form of iterative algorithm will
lim U( #) = lim (UUT R_ R) —o. first be suggested which automatically guarantees that all the
t—o0 t—oo iterates generated evolve on the manifddm, n) for an

- —2/52 (I - UUT)R|%dt, Vs> 5 2 0.
51
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arbitrary step-size. Two schemes for selecting the step-size will Proof. Set
then be developed—one is constant and the other is varying Uity — T
and more effective. (t) ="+ Uy

We start by noting that the gradient flow can be rewritten ag, let &(t) be the corresponding defined via (30). Then
=10 (33) it is clear thatl/(0) = U, and R(0) = R;. By the Taylor

_ ] expansion, there exists sorfidbetween zero antlsuch that
because of Remark 3.1, whekeis defined by

L _URE - RUT, G AU -3 =)+ S 3wy,

In addition, it is trivial but vital to observe thdt is skew- |t is obvious from (B1) that
symmetric. As a result, the matrix exponent4l is orthogo- , - ,
nal for any real scalat. With this observation and the special 3 (U(t)) =2 trace[R (1)U (#)]

structure of the gradient flow, it seems natural to propose the =2 trace[R" () U(1)] (41)
algorithm of the following form: JUR) =2 trace[(R’)T(t)FkU(t) + RT(t)l—wiU(t)]
Upr = e*T+U (35) (42)

where[’; is associated withi/; via (30) and (34), andx is  \yhich imply that
the kth step-size to be determined. One nice thing about this
algorithm is its ability to generate a sequence of orthogonal J'(U(0)) =2trace(R; I'yUy) = —trace(IT:)  (43)
matrices from any starting orthogon&l, for any step-size, |3"(U(t))] S2(||R/(t)||F||Fk||F + HR(t)HFHFiHF)'
and another is its simplicity in form in spite of the involved (44)
calculation of the matrix exponential. Of course, for such an
algorithm to work, it remains to develop a mechanism faFurthermore, it follows by Lemma 4.1 that
selecting the step-siz, so that the algorithm can converge
to an orthogonall/ at which the model-reduction cost is U@ 52(a2||U/(t)||F||Fk||F"‘alHFiHF)
minimum. As will be determined, a certain constant step-size <2(co||Tkl% + cr|Tel [Tkl F)-
can be chosen for this purpose. onsequently, there results
Understandably, a workable step-size should consistently ’
reduce the model-reduction cost as the iteration goes on.J(U(¢)) — J(Ux)
Wltr_l_thls in mind, we proce_ed by e_stabllshlng the followmg < || % —|—t2(oe2||l“k||% + a0k ||Fk||F)~ (45)
auxiliary lemma before coming up with a scheme for choosing
a constant step-size. As I'y, is skew-symmetric, all its eigenvalues must be on the
Lemma 4.1: Consider (22)—(27). Let/ € St(m, n) be any imaginary axis, and thus the multiplicity of every nonzero
differentiable function oft with the derivativeU’, and letR singular value is at least two, which implies th#t,| <
be defined by (30) accordingly. Thek and its derivativeR’  ||['x||/+v/2. Therefore, it is true tha§(U(t)) < J(Us) for

satisfy any ¢ with
[B®O|F < (36) 0<t< V2
IR (BDllF < calU'®)]| 7 @37) a1+ V2ag
where and that the equality holds if and only If;, = 0.
A 4/m|B|P|C)2 (e + || Al Two important remarks are in order.
o = 2 (38)  Remark 4.1:Quite clearly, the model-reduction cdstUy)
4 BII2IICI2 (e + 2|l AlD(2ac + 3]| A is convergent ag — oo.
@ = IBITIOI a! X 141D (39)  Remark 4.2: With the inequality (40), note from (45) that
and o denotes the minimum eigenvalue ofA — A”. T < I(Uk) = 3(Us11)

2ty — 2ti (042 + 041/\/5) )

As a result, when in additioty, is chosen to be greater than
a positive constant, there holds

Proof: See Appendix C.
Theorem 4.1:Consider the iterative algorithm (35) with
Uy € St(m,n) and

V2
0 <t < ——— 40 lim I'y =0
» [ \/5042 ( ) kggo k
where oy and «, are defined as in Lemma 4.1. Then theravhich implies thatl;, generated by the algorithm will ap-
holds proach the critical points satisfying the first-order necessary

conditions (31) for optimality ag — co.

Since the step-size condition (40) is independent of the
Moreover, the equality holds if and only &, becomes a currentiterates, the step-size tends to be small and conservative
critical point of J(U). and the associated algorithm may have a poor convergence

IUks1) < J(Uy), VYk=0,1,2,---.
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rate. The remainder of this section will be devoted to develophere « is defined as in Lemma 4.1. Then for any given
ing a more effective step-size selection scheme which makgswith 0 < 7, < I, the third derivatived”'(U(¢)) of the
use of the information available at each iteration. To this endntodel-reduction cos¥(U(t)) with respect tat obeys

is useful to establish a local upper bound on the third derivative

of the model-reduction cost. For notational convenience, we

introduce the following Lie bracket operations:

L (X, Y)=£(X,Y)=XY -YX
Co(X,Y) =L, (X, Y)Y -V, 1(X,Y)

(46)
(47)

and letXy, X, Xz, P., Pi, P be recursively defined by

AXy + X UFATUL 4+ BBTU, =0 (48)
AXy + X UEATU, + BBTT U,

+ XUl &0 (AT, D) U, = 0 (49)
AXy + XRUFATU, + BBTT2U,

+ X UL L5 (AT, T Uy

+ 22X UL S (AT, TW) U = 0 (50)
UrAULP, + PUFAT UL+ UEBBT UL =0 (51)

UF AUPy + PLUT AU+ UF £, (BBY, Ty,) Uy,
+ UL L1(A, T)Un P + PUL £ (A", 1)U, =0

(52)
UL AULD, + PUE AT U + UE £ (BBY, Ty, U
+ UL L2(A, T)UR P + PUL £2 (AT, T3 Uy,
+ 22U £1(A, Th) Ui Py,
+ 2P UL S (AT, Ty ) U = 0. (53)

Lemma 4.2:Let U(t) = e'T«U; where Uy, is orthogonal

max [J(U(£))] < &

[t| <7 (54)
as shown in (55) and (56) at the bottom of the page.
Proof: See Appendix D.

Remark 4.3:In the above lemmd,, should be understood
to beoo whenI'y, equals zero, in which case a local minimum
is reached.

Remark 4.4:From the definition ofy, it is easily seen that
Ix||ITx]| must be greater than some positive constant, which
implies that

klggo||Fk|| =0 = klgrQlQ Iy, = oo.
If in particular I';. is defined byl/;, through (34), therj|['||
is bounded by a constant due to (36), and thuss greater
than some positive constant.

From the proof of Lemma 4.2, it can be seen that the smaller
the 74, the tighter the upper boung, of |J"/(l/(¢))| on the
interval [—7%, 7x]. On the other hand, from Remark 4.4 we
know thatr;, can be allowed to be very large whéf is close
to a critical point. Therefore, it is natural to query whether
the upper bound will become too conservative as. is
large. The following lemma answers this question by giving a
bound on¢;, which will be used to establish the convergence
to critical points of the iterative algorithm with a varying step-
size. This bound is not only uniform but converges to zero as

and I'y, is skew-symmetric, and let; denote the unique fast as||Tx |3

positive root of the polynomial

= 2/ L4(4, Tw)llI* - 8][La(A, Ti)|I°
= 121 €2(A, Tw)llI* — 6] £1(A, Tl +

Lemma 4.3: Adopt the same hypotheses and notation as in
Lemma 4.2. Let

T = ply (57)
[[2ricT e gs(CTe Tl 1"
. 2 [slriere scren),
3| [2reCTC £4(CTC, Th)]|| 5
va|[cte|,
B 1 — Tk 0 0 —1
« 0 1 —Th 0
0 0 1 —Tk
=273 ]| La(A, i)l =87l €3(A, Ti)|l  —127[|L£2(A, Ti)ll 0 — 67| £1(A, Tl
[ 1XE Al
XTI P,
) It Pl 55
|[xE 2|,
%l e + 72 || [TEBBY £4(BBY, Ih)]||
O 2 [~UITBBT  UF £3(BBT, Ty) U]
+ 3[[[E£Q(A, Fk)UkY{ l[E£Q(A7 Fk)[fkpk +Fkle£2(AT, Fk)lfk]
+ 3[UF L1(A, T1)UnXE UL L£1(A, T)Ui P + PUL £, (AT, T4 Up | (56)
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where0 < p < 1. Then there exists a constaptindependent Hence, there hold§(U(t)) < J(U(0)) for any ¢ with
of U such that

s 0<t<t.
& < YTkl % (58)
In particular, it follows that3(U(tz)) < J(U(0)), i.e., (62).
Proof: See Appendix E. Now with the selection (63), one has
With the above preparations, we are now in a position to

come up with a scheme for choosing a varying step-size for £ 2
the iterative algorithm (35). ti <—||1“k||% tg + &k E")
Theorem 4.2:Let & and{; be defined as in Lemma 4.2
with 0 < 73, < I, and _ &t 3+ V9 + 24601
==t + (tx — ¢n)
6 28k
77 2 trace{UE |:£2 (CTC, Fk)UkPk +2£ (CTC, Fk) 3k + \/9’}/’% + 24£k||1“k||% ¢ (t ¢ )
= k\tE — Pk
-5 £ 12
- UpPy + CYCULP, — 2207 O X,
o . 3 + V97 + 24 DA%
4 ADOTOX, — 20 cxk}} (59) < o (p2 = Ditxgu
A =37+ V92 F 246, TH 1% < (p2 = DIk F - (66)
o 2 2 : (60)
In view of Remark 4.4, there is a constant- 0 such that
Then given any step-size, satisfying 7. > c for all k& = 1, 2, ---. In addition, by Lemm_a 4.3 and
the fact that{~} is a bounded sequence, there is a constant
] A > 0 such that
tr < min(7y, o) (61)
o o 12]|Tw 13 o AL
the iterative gradient flow (35) generates a sequence of matri- ~ ¢x = 3+ \/9 T T 1Tk 7-
ces{U} in the Stiefel manifold satisfying Yk T KIS KILE
As a consequence, one obtains
_ ; _{TkEQ if 7% < pachi,
from any initial Uy € St(m, n). Moreover, if B pace > p2AITk|2,  else.
e = pilr  and ¢, = min(7g, paor) (63) This together with (65) and (66) implies that at least one of
the two inequalities
then there holds
lim [ =0 (64) (1~ p2)
k—oo and
J(Uk) — J(Us41)
where p; and p, are any two fixed constants between zero I < o1 =
p2(1 — p2)
and one.
Proof: Let U/(#) be defined as in Lemma 4.2. Then fronyy st hold. In this way, (64) immediately follows from the
the proofs of Theorems 4.1 and 4.2, it is seen that convergence off J(U/;)}.
Corollary 4.1: Adopt the same notation as in Theorem 4.2
JWU(0) = —|Tkll3 and J'(U(0)) = . and assume that the step-size scheme (63) is implemented.

Then there holds
By the Taylor expansion and Lemma 4.2, it follows that for

anyt with 0 < t < 7y klim & =0. (67)
JU () = I(U(0)) ) 5 Corollary 4.2: Adopt the same notation as in Theorem 4.2
t t d assume that the step-size condition (61) is satisfied. Then
< J(U0)t+ F"(U(0)) — ax [3"(UE)| = an P
< JUODE+I7U0) 2 +01§r{gk O 6 there exists a constamt> 0 such that
t t2
< t(-Iulp + o g+ ). (65)
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Proof: From the proof of Theorem 4.1, it is true that Proof: Denote the right-hand side of (69) l#. Then it

follows from (28) that
bl = WOl S callluliy VE=12, - @9

i ) i E? = trace(C’ECT + 18, 0F — 2C’ZC’?)
for some constant; > 0. This together with (61) results in
o 1204 [} e equs
3y 4 /972 + 246, |[T1]% AZ +ZA] +BB; =0.
S 2Tl % Note that

= Il + VE&ITkN

2

where Z is the solution to the equation

X } [A?IF } T
A +3 +BB; =0
+ . .
“ Il because ofAY + X AT + BBT = 0. Thus, by subtraction one
which leads to (68) because of the boundednesg|bf.||»}. obtains
Remark 4.5:Corollary 4.2 implies that the step-size given
. . El El T 0
by (63) is always greater than some positive number. AZ=1 )T 2= | A~ S
Remark 4.6: The implementation of the step-size selection
(63) involves solving eight Lyapunov equations (26), (27), arfSince E2 can be rewritten as

}AlTQ =0. (71)

48)—(53). These equations can be grouped into the followin r
]Sou? s(ub)groups: a grotp 9 E? =trace|CxCT + 1%, 0T — 20 [2(:)1 } cf

which are obviously decoupled from each other. - .
=trace| CoX0Cy — 2C<Z - { &Dc{} (73)

V. ERROR BOUND, SYMMETRIC -
CASE, AND COMPLETE ALGORITHM — trace CQTCQEQ — 201T0<Z — [El } )} (74)

The objective of this section is threefold. First, an upper - 0
bound on the global minimum of the approximate minimizaMaking use of Lemma A.1 yields
tion over the Stiefel manifold will be derived in terms of E? = trace(CTCys + 24150 %21D)
the Hankel singular values of the original system. Second, it
will be shown that the approximate problem becomes exactihere D is the unique solution to (70). Quite obviously, this
equivalent to the original problem if the full-order system iss equivalent to (69). The proof is completed.
symmetric and the symmetry constraint is imposed on reducedThe following result being a consequence of Lemma 5.1
order models. Finally, a complete algorithm will be proposegives ana priori upper bound on the global minimum of
for bridging the gap between the original and approximathe proposed approximate problem. This error bound provides
problems. a simple way to predetermine a lower order so as to avoid
Our first result reveals an explicit way in which the lasincurring a largeL., model-reduction error before invoking
Hankel singular values affect thH, model-reduction error. any optimization algorithm.
This is reminiscent of two well-knowi# ., error bounds [3], Theorem 5.1:Assume that(A, B, C) is a balanced real-
[20]. ization with distinct Hankel singular values, o3, ---, oy,.
Lemma 5.1: Consider amth-order stable balanced realizalet J(U) be the model-reduction cost as defined in (20) and
tion (4, B, C). Let A, B, C, and the controllability gramian let < denote the set of all the ordered subsets of the set

> be compatibly partitioned as N2 {1, 2, ---, n} with cardinalityn — m. Then there holds
A A B i U) < min trace[(CYC, + 20 ANy, 1) Sk
o I o, S < iy e )]
S, 0 whereX,; is the diagonal matrix with diagonal elements, ,
C=[C1 Cq], Y= {0 5 } Ohys "+ Ok, _,.,» Cr is the matrix consisting of the;th,
2 koth, ---, k, mth columns ofC, A, ., is the submatrix
where A; € R™*™ with m < n. Assume thatd, is stable. of A resulting from deleting those columns whose index is
Then there holds not x; and those rows whose index is notda, and A, is

the (n — m) x m lower submatrix ofD,, the unique matrix

—1 —1
[C(s] = A)"B — Ci(s] — A1) " Bi|z solution to the equation

= 4/tra CECy +2AA15)8 69 T
\/ mce[( 3 Co+ 12) 2] (69) AN\K,’ N\# AN\K,,K, DN+DHA]\T\K .
whereA is the (n —m) x m lower submatrix ofD, the unique Aw, N\r A w 7
n X m matrix solution to the equation +[Cnw CulTCpy =0

ATD + DA +CTCy =0. (70) whenk = {ki, k2, -+, kn—m}-
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Proof: The proof follows from Lemma 5.1 and the factpremultiplying (79) byU” and subtracting leads to
that each model truncation associated withe K can be r ) r
realized with a corresponding € St(m, n). UT AP — AP =0 i€, Ay =U" AU (81)
Remark 5.1:Interestingly, Gloveret al. [21] gave a dif- From this and (78), (75) is concluded.

ferent L, error bound on the truncation error for infinite- Remark 5.2:In [22], physical systems with a symmetric
dimensional systems of nuclear type with an output normal .= <10 lec], phy Sy asy
%Ilzauon and without poles in the open right-half plane

o [

realization. An example there shows that the bound decreaSe . . i

Qe siwly a5 e reducodorder norcases.
Now we come to address the question as to whether therd'& yp PIes.

. . : A, %ince the gradient flow algorithm or its iterative version
any special case in which the original problem can be exacpa/r solving the approximate problem may sometimes lead to
reduced to the approximate problem. As is identified belo

the symmetric case is one such case. %cal minima, a more com.plete algorithm is needed in orQer
Theorem 5.2:Let (4, B, BT) be a givennth-order real- to overcome or alleviate this problem. But flrst, let us despnbe
ization with A — AT < 0 and B € IR™*P. There holds the constructhn o_f a new full-order reahzaﬂqn from any given
full-order realization(A, B, C) and any givenmth-order
min _ S(A,B)= min SUYAU, U'B) (75) realization(A4,,, B, Cy). To this end, assume thdt. and
(A, B)cm vest(m, n) L, are the controllability and observability gramians of the
if the global minimum ove® exists, where model error and partitioned as in (21). Set

S(A,B) 2 | BY(sI - A)~™*B - B (s — A)"'B|

(A, B) €M It is known from [23, Th. 6.2.5] that an invertibie € R"*"
M 2 Ax R can be constructed so that

A mxXxm .. -
2= {AcR™™A =AY <0} Ap }qu and Q:@T[AQ 0}@.

2 5 A 1T A A —1yT
o P=XP"X* and Q=YQ -Y*.

P= (I)_l[ 0 8 0 0
Proof: Let the cost functionS(A, B) attain the global

minimum over M at (A,,, B,,) € 9. Then the gradient With ¢ as a similarity transformation, we obtain the new

of S(A, B) over 2 and the gradient ovelR™”*? both must full-order realization

vanish at(A, B) = (4,,,, B,»,). Denote the Fechet derivative N . .

of S(A, B) with respect toA € R™ ™ and the Fechet (A4, B, C) = (9497, B, CO71). (82)

derivative with respect tB € R™*? at(A,,, B,,) by DS,

andDSp_, respectively. Then it is a routine exercise to fin

them as follows:

gor ease of reference, this realization will be called an induced
realization from(4, B, C) and(A4,,, By, Cy,). An important
s fact about the induced realizatidoi, B, C) is that if (A,,,
DS, (n) =2trace[n’ (Py, — PlyPi2)], 7€ R B, C,,) is an optimal reduced-order model, then it coincides
DSg, (€) =4trace[¢T (PoB,, — PLB)],  ¢€R™? with the mth-order truncation of(4, B, C); see [8]. Put
another way, any optimal reduced-order model is the direct

where [%ﬂi 2] is the controllability gramian of the error truncation of an induced realization from the full-order model
system and itself.
A 0 B B 1" Wg are now in a position to propose a complete.alg_orithm
<[0 A }, [ }, {—B } ) for circumventing the case where the balanced realization and
™ m m truncation fails to lead to the global minimum via the gradient

The derivation of the above formulas has made use of the 4@ alone. This algorithm employs the gradient flow as a core
that[_ﬁlTl —?2] is the observability gramian of the same errofngredient. The gnderlylng idea is lto switch to an induced
12 22 I]‘1 [l-order realization and its truncation based on the current

system, which is in turn due to the assumption that both t o . .
y P i‘_l I-order realization and the obtained locally optimal reduced-

full and reduced-order realizations are symmetric. Since t 2 del. As will be illustrated th h simulation. this id
tangent space dll is the set of alln x m symmetric matrices, ordermodel. AS WITT be Hlustrated through simufation, this idea
turns out to work very well in getting out of a local minimum

it follows from the necessary conditions for optimality that 7
toward the global minimum.

P, —PLP,=0 (76)  Algorithm for ComputingL, Optimal Reduced-Order Mod-
Py B,, — PLB =0 (77) €ls:
) ) Step 1: Choose a balanced realization of the full-order
implying model and an initial projection matri&.

Step 2: Solve the ODE (32) or the recursive equation (35)

T A -1
Bn=U"B and U= Paly, €5t(m,n). (78) with U/, as the starting point to get a suboptimal

Since P1» and P»; satisfy reduced-order model.
- Step 3: Construct an induced realization from the current
APy + Pr2Ap, + BB, =0 (79) full-order realization and the reduced-order realiza-

AmPos + ProA,, + B BE =0 (80) tion.
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TABLE |
THE COMPARISON OF RELATIVE ERRORS AMONG FIVE METHODS

Model | Lower Order GF opP BT SMM | LPMV UB
1 1 0.17658 0.17658 0.52487 - - 0.38493
2 1 9.75633e-2 | 9.7533e-2 | 0.99504 - - 9.7533e-2
3 1.3107e-3 | 1.3047e-3 | 1.3107e-3 - - 1.3107e-3
3 2 3.9299¢-2 | 3.9290e-2 | 3.9378e-2 - - 3.9378e-2
1 0.42709 0.42683 0.43212 - - 0.43221
5 0.21431 | Divergent | 0.24037 - - 0.24037
4 0.21454 0.21454 0.22018 - 0.22018
4 3 0.51632 | Divergent | 0.58552 - - 0.53010
2 0.51670 0.51670 0.51674 - - 0.51674
1 0.97080* | Divergent | 1.14716 - - 0.99577
6 5.817e-5 | 5.817e-5 | 5.822e-5 - 2.864e-4 | 5.822e-5
5 5 2.132e-3" | Divergent | 2.452e-3 - 2.132e-3 | 2.452e-3
4 8.199e-3 | 8.199e-3 | 8.226¢-3 - 8.199¢-3 | 8.226¢-3
3 0.1171* | Divergent 0.2384 - 0.1171 0.1440
3 0.0598 0.0574 0.0599 | 0.0574 - 0.0599
6 2 0.2443* | Divergent | 0.3332 | 0.2443 - 0.3332
1 0.4818 0.4818 0.4848 0.4818 - 0.4848
7 1 0.0985 0.0985 0.9949 | 0.0985 - 0.0985
4 0.4005 Divergent 0.4175 0.4005 - 0.4175
8 2 0.6929 | Divergent | 0.8517 | 0.6929 - 0.6973

Step 4: If the direct truncation of the induced realization We now summarize our obtained relative errors (i.e.,
achieves the same cost as the reduced-order mo{iél.||2/||G|l2) in Table | as well as their upper bounds
or is unstable, stop; otherwise, go back to Step @B) calculated by using the formula in Theorem 5.1.
with the induced realization antd, = [I 0]*. Those obtained by using the other methods are also included

where available. Examining the table manifests the consistent

VI. NUMERICAL INVESTIGATION success of the proposed technique in solving Aheoptimal
model-reduction and the tightness of the derived error bound.

In this section, we shall discuss a number of examples forRemark 6.1: The results shown in Table | obtained by the
illustrating the effectiveness and power of our approach 3. jient flow algorithm are based on initial guesses cor-

solving the optimal>; model-reduction problem. In particular

'responding to balanced truncations. An alternative way to

the following three issues will be looked at in relation to the ... ii-e the proposed algorithm is to use a truncation of a

proposed technique:

realization in modal form.

* overall performance; Remark 6.2: The superscript« in the table means that
* applicability to the multivariable case; the complete algorithm described in the previous section is
* possible conservativeness. invoked. Without appealing to this procedure, the relative

errors will be 0.99844, 2.4483, 0.1229, and 0.2709 as

A. Overall Performance opposed to 0.97080, 2.133, 0.1171, and 0.2443, which

For a comprehensive comparison, we consider the followifjows the ability of the algorithm to avoid getting stuck at

well-known examples, in all of which no single method ha& local minimum close to the global minimum. For example,
reportedly been tested previously: in the case of Model 6, the convergence of the relative error

Model 1:

Model 2:
Model 3:
Model 4:
Model 5:
Model 6:
Model 7:
Model 8:

the global minimum is depicted in Fig. 2, where it is seen
at the gradient flow is solved three times with the starting
points approximately corresponding to the respective iteration
numbers 1, 28, and 49.

the second-order model in [8, Example 6.3] ai%
well as from [24];

the second-order model in [8, Example 6.2];
the fourth-order model in [8, Example 6.1];
the sixth-order four-disc model from [25];
the seventh-order model from [26]; B. Multivariable Case

the fourth-order model in [12, Example 1]; To verify the applicability of our algorithm to the multivari-
the second-order model in [12, Example 2];  gpje case, let us consider the automobile gas turbine model
the sixth-order model of the flexible structure g, o inputs, 2 outputs, and 12 states from [3] and [27].
[12, Example 3]. With the gradient flow algorithm initialized with a balanced

The focus of our comparison is on the five methods: truncation, the relative errors in the respective cases of fifth-
« the currently proposed gradient flow (GF) method,; and sixth-order reductions are depicted in Fig. 3 along @ime
« the orthogonal projection (OP) method proposed in [8];The final results of the relative errors are shown in Table Il
¢ the balanced truncation (BT) method; against their respective initial relative errors resulting from
« the method proposed in [12] (SMM); balanced truncation. Once again, this illustrates that Hhe

e the method proposed in [26] (LPMV). model-reduction error can be substantially reduced by starting
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cases, thed, model-reduction cost is a function of two scalar
variables which uniquely determine a first-order model, and
thus it is possible to find the global minimum through an

0.34

0.33}

0.22f 1  extensive search over the set of all stable reduced-order models
0} {  together with simple necessary conditions for extremality. That
0o | is why the two cases are taken.
§ As a matter of fact, it can be established in the SISO case
504 1 that
T g.28} J
oz7} 1 fla,b) 2| OG- A)B —b(s—a)7Y,
0.261 L 2 L b?
azsk =\/||C(sI —A)~'BJ|; + 20C(A+al)~1B — %
0.24 v L . - . L
° *© 2 Na. of kerations % 50 ™ for a full-order systemC(sI — A)~*B and a reduced-order

modelb(s — a)~*. Clearly, finding a globally optimal stable
reduced-order model amounts to finding a global minimum
point of the cost functionf(a, b) over the region(0, co) x
(—o0, o0). Further, the necessary conditions for extremality

Fig. 2. Evolution of relative error.

0.13 T T T r T T T A T
" can be derived as
N —— 6th order
0.12f ~oo - == 5th order
b=2aC(al +A)"'B (83)
0=C(al +A) %(al — A)B (84)

which will be used to determine the global minimum for the
following examples.
Example 6.1:Let a full-order system be given by

Relative error

T( ) 0.5129s + 0.4605
S) =
s2 4+ 3542

00— % s 8 10 a2 14 18 s 2 With randomly generated numerator coefficients. Then the

Time ® globally optimal first-order model can be found to fag/(s —
Fig. 3. Variation of relative errors over time. CLO) with
ABLE | (a0, bo) = (~2.1904, 0.5190) (85)

FINAL RELATIVE ERRORS AGAINST INITIAL ONES

which gives the optimald, cost of 0.0046.

Reduced Order GF BT

1 01351 1 0.3687 Note that in this case the Stiefel manifold reduces to the unit
3 0.0795 | 0.1295 circle and that any point on it can be parameterized as follows:
6 0.0541 | 0.1151

U = [cos(6) sin(6) ], 6 € [0, 2n]

with a balanced truncation. We note that the optimal projectiefhd that the cost apparently assumes the same global minimum

method of Hyland and Bernstein fails to give a convergingver the upper half circle as over the whole circle. Then with

solution for this MIMO example. each of the 40 regularly spaced points on the upper half circle
corresponding to

C. On Possible Conservativeness

Recall that the proposed algorithm is guaranteed to produce 0 = 0" i=1,---,40
a local minimum for any initial condition. Obviously, how
close the resulting local minimum is to the global minimunas an initial condition, the algorithm arrives at 40 suboptimal
depends on the choice of an initial condition. In other wordsjodel-reduction costs. The relative deviations of the obtained
the performance of the algorithm may be influenced by tlmsts from the global minimum of 0.0046 are depicted in
chosen initial condition. In this subsection, we examine if thig. 4, which verifies the closeness between the obtained costs
majority of a large number of given starting points can leaahd the optimal one. It takes about 3 min to complete the
to the global minimum with the algorithm. For this purpose, #0 simulations on an HP workstation, which means that on
is convenient to consider the first-order reduction of a secorairerage the algorithm takes less than 5 s to get to the near
order SISO system and of a third-order SISO system. In bajfobal minimum for each of the specified initial conditions.
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Lemma A.2: Suppose two matriced; € IR**™ and A, €

1.8 T T T " T \ - R™*™ are given withy; denoting the maximum eigenvalue
of (A; + AF)/2 for i = 1, 2. Assume thatP is the unique
solution to the Lyapunov equation

AP+ PA+Z=0

-
T

with Z € R™ ™. If py + e < 0, then there hold
[

p1 + 2

Proof: It is not difficult to establish that

Relative deviation
o
™

|l r

Z
- T Ll L
p1 + 2

e < e, i=1,2

. " n " " "
[+ 5 10 15 20 25 30 35 40
Index

from which it follows that

Fig. 4. Relative deviations between achieved costs and the optimum for At rr Aot (p1+u2)t
Example 6.1. He Y Ze™ |F <||Z||pettrTHe

and
VIl. CONCLUSIONS et Zett|| <[] 2|l bt (A2)

The H, optimal model-reduction problem has approxisince“1 + p2 < 0, the above in turn implies that
mately been formulated as an unconstrained minimization

problem over the Stiefel manifold. The two problems have P= /Oo gt zoAet gy
been proved to be equivalent in the symmetric case. Using 0

the differential techniques, we have derived explicit formula)§9ain from (A2), the lemma is concluded.

for the gradient of the model-reduction cost function over the Lemma A.3:Let F(f) be a differentiablep x ¢ matrix
manifold. Several convergent algorithms have been prOposﬁgnction of t on the intervalla, b] containing zero inside.
The first one is given in terms of an ordinary differenti.';\ll-hen there holds ’
equation formed by the gradient flow, and concerning this

algorithm a number of nice theoretical properties are obtainefF'(¢)||» < [|[F(0)||F + |t| max ||F'(¥)|r, vVt € [a, b].
For example, the cost is always decreasing along the solution astsb (A3)
to the ODE evolving on the Stiefel manifold until a minimum
point is reached. Based on this gradient flow algorithm, an it-
erative algorithm in closed form has been generated, for which £(1) A \/trace[FT(t)F(t)] +e

it has been shown that a fixed step-size is adequate to ensure

that the cost is decreasing to a minimum. However, an adapti¥&, differentiable scalar function ¢fn [a, b]. Therefore f ()
scheme derived for choosing the step-size tends to achievgag the following Taylor expansion

greater convergence rate. All the proposed algorithms are well

Proof: Let ¢ be an arbitrary positive scalar. Then

applicable to the MIMO case. Numerical tests have indicated f(t) = f(0) +¢f(0)

the reliability of the algorithms as well as the convergence to . o

a minimum. whered is between zero antl This implies that
Developed in this paper, the techniques have since been £ < 1FO)] + 1t |£(6)].

applied to solving several related problems such as frequency-
weighted model reduction as well as filter reduction [28But, one has

[29]. _
17O = (17O + = iwace[(F(6))" F(6)]]
APPENDIX A <|IF"(0)]F
AUXILIARY LEMMAS F(0) <||F(0)||lF + Ve

Lemma A.1:If P and @ satisfy Hence, it follows that

AP+ PB+X =0 and A" B'+y =0
e QOB FOI < IFO)lr+ 1] max [F®llr + Ve.

then there holds ) ) o ) )
As ¢ is arbitrary, and this immediately results in (A3).

trace(Y" P) = trace( X" Q). (A1) Lemma A.4:Let A € R be given. Assume that + AT
is positive definite. Then, there exists some constastich

Proof: The lemma follows directly from the respectivey, 4t for any skew-symmetriE € R™*" there holds

substitution of— (AP + PB) and—(ATQ+QB7") for X and
Y into the both sides of (Al). IT||+ < &||£(A, T)||p.
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Proof: Choose an orthogond ¢ IR™*" so that
VI(A4+ AT = diag{ly, ---, L}

Note thatVZTV is still skew-symmetric and

L(diag{ly, -+, ln}, VITV) = VT g(A+ AT, IV

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 7, JULY 1999

The gradientsyJ is the uniquely determined vector field on
St(m, n) which satisfies the two conditions:

b vI(U) € Ty St(m, n), YU € St(m, n)

) D3u(e) = (v3(U). &), VE € TuStm, ).

which means that thé, j)-element of T'V is equal to that Due to (B1), condition 2) is equivalent to

of VI L£(A+ AT, T)V times1/(l; + ;). Thus, there results

IC|r < max <L)|\2(A+AT,r)|\F

1<i<i<n \ li + 1

<2 max < L )HE(AvF)HF-

1<i<i<n \ [; + lj

Setting

1
K =2 max
1<i<j<n \ I; + lj

completes the proof.

APPENDIX B
PrROOF OFLEMMA 3.1

First it is straightforward to compute the&ahet derivative

D3y of J(U) as follows:
D3y (&)= trace{OTO(g’PUT+UP£T_2X£T
+ UDPy(OIUT = 2[DXu(OIUT) }
= trace{2(PUTCTC-XTCTC)¢

+UTCTCU[D P, (€)]—2UTCTCIDXp ()]}

By differentiating the both sides of (23) and (24), it follows max({||Y]|, [|Q|]) <

that DX;;(¢) and DPy;(€) satisfy

AIDXy (O] + [DXy (O ATU + X¢TATU
+XUTAT¢ + BBT¢ =0

UTAU[DPy ()] + [DPy(OIUT AU + Z + 2 =0

with
Z =PUTATe + P ATU + U BB ¢

Hence by Lemma A.1, one obtains

DIu(€) = tmace[2(PUTCTC-XTCTC) e+ (2+27)Q

+ 2(XETATU + XUT AT¢ + BBTg)TY}

=2trace[(PUTCTC - XTCTCO)¢

+Y T (X ETATU+ XUTAT¢+ BBTE) +ZQ)]

= 2trace[(PUTC’TC - Xtcto+xtyuta
+ YIXUT AT + YT BB ¢+ ZQ)]

=2trace[(PUTCTC - XTC"C+ XTYUT A
+ YTXUTAT +YTBBT )¢

+ (QPUT AT + PQUT A+ QU BB)¢]

= 2trace (RTS) .

(B1)

(VIV)-RFE=0,  VEeTyStim,n).  (B2)
Since
Ty St(m, n)* = {UA|A —AT e kak} (B3)
(B2) together with condition 1) gives

vIU) = (I -UUT)R. (B4)

APPENDIX C
PROOF OF LEMMA 4.1

By Lemma A.2, one has

X P < % C1

max(||X||p, [|Pllr) < (C1)

max([[Ylr, |QllF) < F——7 (C2)
B 2

(., 7)) < 121 (©3)

Il ca

From the first two inequalities, (36) follows immediately by
recalling the definition ofR in Lemma 3.1. To prove (37),
differentiate the both sides of (23) to yield

AX' + XUt ATU
+{BBTU' + X[(U)"A"U +UTA"U']} = 0.
Again by Lemma A.2, one obtains

|BBTU' + X [(UNTATU + UTATU] ||,

[XIF <
@
< UBI> + 21X AN T e
- «
B|? 2|4 !
< IBIF e+ ! DIV Nl- (C5)
(87
In the same way, it can be established that
2||BJ|? (e + 2| A|DI| U
1 < 2B+ 2ADIV L 8
2 !
v < I ZIADIC L )
2/|C)1% (e + 2| AIDU
@ < AALEH AN g



YAN AND LAM: APPROXIMATE APPROACH TO H? OPTIMAL MODEL

Since

R =[(-CTC+ ATUYT) X' + AU(X)TY]
+ [(CTCU + ATUQ)P' + AUP'Q)]
+ [(BBY + AUXT)Y' + ATU(Y')T X]
+ [(BBTU + AUP)Q' + ATUQ'P]
+ [(CTCU' + ATU'Q)P + (BBYU' 4+ AU'P)Q)]
+ ATUYTX + AU'XTY

it follows that

177 < (IC12 + 20 AN Y I)I1X e
+ (IC1? + 2 Al QI I 7
+ (I1BI7 + 2 A XN 1Y |7
+ (IBIF + 2 Al P 1l 7
+ [ICIPIPI -+ 1Bl
+ 2/ ANAXY T+ 1 PRI |

6l BI2ICIP(a + 2 A2
< - 10l

2ABIEICIE |, 1Al IBIECI?
+( + HATIPIEICIEY 17

(0%
_ AIBIPICI? (e + 2] Al[)(2e + 31 A])
a3

1|

as required.

APPENDIX D
PROOF OF LEMMA 4.2

Set

@(t)é[ 0

X1() X(t)}

P(t)

where X(¢) and P(t) are defined by (23) and (24) with

[/ = U(¢). Then,® is obviously a smooth function of and
satisfies

0 BBTU
T
Ap® + QAL + {UTBBT
where

A A 0
Av = [0 UTAU}'

Moreover, by successive differentiation of the above, one can

reach the relations

0 BBTTU
Ap® + @' AL

v D+LUTF;CBBT UT£1(BBT,F;C)U}

0 0

®
+[O UT 24 (4, mU}
0 0

@ =0 D2

* [0 lfT):‘,l(AT,Fk)U} (b2)
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Ap®” + 0" AL + {

0 0 0 0
O+
J{o UT £5(A, rk)U} * [0 U7 g, (AT, Fk)U}

0 BBTT2U
UTT?BBT U L,(BBY, W)U

0 0 o
0 UTL (A T
0 0
=0 D3
0 UTsl(AT,rk)U} (B3)
0 BBTI3U
_UTTBBT  UTL4(BBT, T,)U

+2
+2<I>’[

AU‘I)/” + @ll/A%; + |:

0 0 0 0
o+
+[0 U7 £4(A, Fk)U} + [0 [T g4(AT Fk)U}

+3 0 0 @’
_0 UT’SQ(Aa Fk)U_

+ 39/ {0 0 }
0 UTL, (AT, T)\)U

0 0

0 UTL (A TU |

+ 39" 0 0 =0
0 Urg, (AT, U

+ 3 (PN

(D4)

In particular, with

it follows that
UTAUW" + W™ A,
+ [-UTT}BBT  UTg5(BBY, I')U]

0 0
UTLo(A THUW + W
+ 3(4, T UW + [0 UTg4(AT, Fk)U}

0 0
SUTLo(A, TR UW' + 3W/
* 2(4 T)UW" + [0 UT L, (AT, Fk)U}
+3UT L (A, T UW”
0 0

1 —
W [0 UT g, (AT, Fk)U} =0

UTBBTU} =0 (D1) Therefore, making use of Lemma A.2 yields

ol W (@)
< H[—UTl“zBBT UT23(BBT, ') U]
+ UTL3(A, T)UW + W 0 0
S TR 0 UTE3(AT, T)U
+ 3UT Lo(A, T UW'
0 0
3W’
* [0 UTsQ(AT,rk)U}
+3UT L (A, T UW”

0 0
3wl/
* [0 UTg, (AT, rk)U}

5 \V/|t| STk.
F

(DS)
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Since the matrix on the right-hand side equalsat+ = 0 and it is not difficult to see that the inequalities (D6)—(D9) can
has the following derivative: be combined into the compact form as shown in (D10) at the
bottom of the page.

UTTBBT UTE,(BBT,T,)U] On the other hand, recall tha{l/(¢)) can be expressed as

0 0
+UTg4(A Fk)UW—i-W[ - T } T
, 4 C
0 g £4(4 ’gk)lf JU() :trace(CEcCT +[C —CU]@{ UTcTD
AUT £5(A, TR)UW' + AW -
* a4 T)UW" + [0 UT£5( AT, Fk)U}
0 0 . - .
+6UT Ly(A, Fk)UW”—i-GW”{ UT e (AT T U} where X, is the controllability gramian of the full-order
00 2( 0’ k) system, i.e., the solution to (22). Then it is routine to compute
SUTE (A THNUW" + 3w the following derivatives with respect t0
UL, DyUWT 4 [0 UTg, (AT Fk)U}
. . : o 0 —CTCT, U7
applying Lemma A.3 to the right-hand side of (D5) gives rise3’/(1/(+)) =trs i)
toppy J J (B39 T ”CGQUTrkCTC UT £, (CTC, Fk)U}
. 0 ~CTou
” -vrcrto vrctceu
o max ||W" ()| r T
[t|<Ts 3”(U(t)) ¢ 0 - CTkU
=1ra
< |ullr +nl[LEBBT  £4(BBT, Iy ||l W\ LuTr2eTe vt gyt T U
0 —CTCT U
+ 2751 || £4(A4, T'p)|| max ||W 2 Y
’“{” o4 Tl e [ Wl * [UTFkCTC UT g, (C7C, Fk)U}
+4l1£5(4, Tw)l| max Wllr N [ 0 —OTCU} ,,)
Th
- ~Urctc Urctcu
#6224, D] ama W] 5 .
=7k 0 —CHCT U
" 3///(U(t)) :trace<|:UTF3OTC UTE CTOkI‘ U:|
+ 3|1£1(A, )| max [|[W"”||pp. (D6) k 3(CT O, )
ltl<m s 0 ~CTOU
—UTT2CTC UTLH(CTC T )U,
In the meantime, by Lemma A.3 one has 0 —CTCT U Y
3 P
* [UTFkCTC UTe, (C7C, Fk)U}
max [|[W(#)||r < |[W(0)|r + 7 max W) (D7) " 0 —CTOU ]
[t <7e [t]<7s ~vrctc vrctcu
P ! < ! . P 1
mmax W @Ollr <[[WO)llr + 7 mmax [W*()llr  (D8) =trace{ 207 T3CTCX (¢)
pax W' Ollr < W O)F + 7& max W (@)l r- (D9) + UTL3(CTC, Ty )UP(2)
STk STk
+ 3[2UTTICT X' (t)
Due to +UTL,(CTC, T )UP'(1)]
+3RUTT T OX" (1)
a > 2n, (|| £4(A, Ti)ll7id +4)|1L5(A, Tw)l|7 +UTL(CTO, TUP(1)]
+ 6]|£2(A, sl + 3| £1(A, Tw)|)) —20TCTex" (t)+UTCTCUP" (1)}
max [|[W (£) |
e IX: Pelllp
max ||[W'(t)| H[YT P Ml
[t <7 <yl L) (D10)
max|[Wr @] |~ X% Pelllp
In;LXHW”/(t)H 19%]lF + T4 BBT  £4(BBT, T) |l
[t] <7
1 — 7 0 0 -t
0 1 —T 0
W= Tk (D11)
0 0 1 _—

~2n )l S4(A T —8nal|Ls

~—~

A, Tl =127 Lo(A, Ti)ll - o = 67| €4 (A, T
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ramallCell3 D @illTellF
1<, <4
Sk S 1 _3J 2 (E4)
a = (2[|L4(A, i)limye + 8[[€3(A, Di)llmy + 12[| L2(A, Tili + 6] L1(A, Ti)ll7)
£k < 16K1K2K3K4||Fk||%
= o — QLA Ti)llm + 8lI€s(A, Te)ll7d + 12[|L2(A, Te)ll7 + 6] £0(A, Ti)lIm)
16/%31/%32/433/434 3
_ r, (E5)
(1 _ p)a || ||F

By noting that||l/(¢)|| = 1, it is easily deduced that

37U )]
<[W@Hle WOl WOl W@
IRr3CTC £5(CTC, i) 1l g
|[23CTC £5(CTC. Tw) g
3|20 CTC L1 (CTC, T llp |
valerel
This together with (D10) leads to (54).

(1]

(2]

(3]

APPENDIX E
PrROOF OF LEMMA 4.3

(4]

First, it is easy to see that
I203CTC £5(CTC, Ty |l
3|[2r3CTC Lo(CTC, Tl N 1T F
B20KCTC £(CTC, T e | = [ITkllr

vallet e, 1
wheres; is a constant independent &f.. Because ofy, < I,

it is true thator || £1 (4, Tx)|| < «. By Lemma A 4, this leads -
to

(E2) [10]

(5]

T 13
6]

(7]
(8]

(E1)

76| Tkl F < Ko
[11]

where k2 > 0 is a constant independent éf,. Hence, by
successively applying Lemma A.2 to (D1)-(D3), it is no[

difficult to establish the following inequality: 12

13

X7 Pl -

H[)gg ‘Ejk]HF [14]

IXF By )

12417 + 7l|[TEBBY  £4(BBT, Tw)]|l [
<wall Tellr TRl (ITel3]" (E3) 116

for some constants independent of/,.. Since all the elements (17
of the inverse in (55) are nonnegative, combining (E1) witf8]
(E3) yields (E4), as shown at the top of the page, whgre [19]
denotes theg4, j)-element of the adjoint oft as shown in
(D11), at the bottom of the previous page. By close inspectioi0]
it follows from (E2) that there exists a positive constant

independent of/;, and 73, such that [21]
Jj—t e .
RqTy, if ¢ <7

o {“4||Fk||z i else. (22]

Consequently, again from (E2) we have (E5), shown at the
top of the page. The proof is thus completed.
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