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Reliable Control for Affine Nonlinear Systems

Guang-Hong Yang, James Lam, and Jianliang Wang

Abstract—This paper addresses the reliableH1-control problems
for affine nonlinear systems. Based on the Hamilton–Jacobi inequality
approach developed in theH1-control problems for affine nonlinear
systems, a method for the design of reliable nonlinear control systems
is presented. The resulting nonlinear control systems are reliable in that
they provide guaranteed local asymptotic stability andH1 performance
not only when all control components are operational, but also in the
case of some component outages within a prespecified subset of control
components. A numerical example is also given.

Index Terms—H1 control, Hamilton–Jacobi inequalities, nonlinear
systems, reliable control.

I. INTRODUCTION

In recent years, considerable attention has been paid to the de-
sign problems of reliable linear control systems achieving various
reliability goals, and some design methods have been given by
several authors (see [3], [9], [12]–[14], and the references therein).
In particular, Veilletteet al. [12] present a methodology for the
design of reliable linear control systems by means of the algebraic
Riccati equation approach from linearH1-control theory, such
that the resulting designs guaranteed closed-loop stability andH1
performance not only when all control components are operating, but
also in the case of some admissible control component outages.

In the area of nonlinearH1 control, some important advances
have been made by several authors (see [1], [4]–[6], and [8]–[11]).
In particular, in [11] it was shown that the solution of theH1-control
problem via state feedback can be determined from the solution of
a Hamilton–Jacobi equation (or inequality), which is the nonlinear
version of the Riccati equation for the corresponding linearH1-
control problem in [2]. The solution to the problem in the case of
measurement feedback has also been given in terms of the solutions
of a pair of Hamilton–Jacobi inequalities in [1], [5], and [8]. For
the computational method to find Taylor series approximations to the
solutions of the Hamilton–Jacobi inequalities, the reader is referred
to [7] and [11].

In this paper, we investigate the reliableH1-control problem for
affine nonlinear systems by using the Hamilton–Jacobi inequality
approach. A new method is given to design controllers that are
reliable in the sense that closed-loop internal stability andH1-
disturbance attenuation performance are guaranteed not only when
all sensors and actuators are functional, but also when some sensor
and/or actuator outages occur. This extends some of the reliable
control results for linear systems to nonlinear systems. An example
is given to illustrate the design procedure and to show (by computer
simulation) the effectiveness of the proposed design method.
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II. PROBLEM FORMULATION

Consider an affine nonlinear system� described by equations of
the form

_x = f(x) + g1(x)w0 +

m

j=1

g2j(x)uj (1)

yi = h2i(x) + wi; i = 1; 2; � � � ; q (2)

z =

h1(x)
u1
...
um

(3)

wherex is a state vector defined on a neighborhoodX of the origin
in Rn; u = [u1 u2 � � � um]T 2 Rm denotes the control input,
wr = [wT

0 w1 � � � wq]
T 2 Rr the disturbance input,z 2 Rs

the output to be regulated,y = [y1 y2 � � � yq]
T 2 Rq the

measured output,f(x); g1(x); h1(x); g2j(x) (j = 1; � � � ; m) and
h2i(x) (i = 1; � � � ; q) are known smooth mappings defined in a
neighborhood of the origin inRn, and f(0) = 0; h1(0) = 0; and
h2i(x) = 0 (i = 1; � � � ; q).

Denote

g2(x) = [g21(x) g22(x) � � � g2m(x)] (4)

h2(x) = [h21(x) h22(x) � � � h2q(x)]
T
: (5)

Let 
a � f1; 2; � � � ; mg and 
s � f1; 2; � � � ; qg correspond to a
selected subset of actuators susceptible to outages and a selected
subset of sensors susceptible to outages, respectively. Then, the
problem considered in this paper is as follows.

Given the system� described by (1)–(3) and a positive constant
, find a controllerK of the following form:

_� = a(�) + b(�)y

u(�) = c(�)
(6)

where� 2 Rv, such that for actuator outages corresponding to any
!a � 
a and sensor outages corresponding to any!s � 
s, the
resulting closed-loop system is locally asymptotically stable and has
a localL2 gain which is less than or equal to.

For !a � 
a and!s � 
s, introduce the decomposition

g2(x) = g2! (x) + g2�! (x)

u = u! + u�!

h2(x) = h2! (x) + h2�! (x)

y = y! + y�!

w = [w1 � � � wq]
T = w! + w�!

b(x) = [b1(x) b2(x) � � � bq(x)] = b! (x) + b�! (x)

where

g2! (x) = �! (1)g21(x) �! (2)g22(x) � � � �! (m)g2m(x)

u! = �! (1)u1 �! (2)u2 � � � �! (m)um
T

h2! (x) = �! (1)h21(x) �! (2)h22(x) � � � �! (m)h2q(x)
T

y! = �! (1)y1 �! (2)y2 � � � �! (q)yq
T

w! (x) = �! (1)w1 �! (2)w2 � � � �! (q)wq
T

b! (x) = �! (1)b1(x) �! (2)b2(x) � � � �! (q)bq(x)

0018–9286/98$10.00 1998 IEEE
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with �! and �! defined as follows:

�! (i) =
1, if i 2 !a
0, if i 62 !a

�! (i) =
1, if i 2 !s
0, if i 62 !s:

Applying the controllerK of (6) to the system�, when actuator and
sensor outages corresponding to!a � 
a and!s � 
s occur, the
resulting closed-loop system�! ;! is given by

_x = f(x) + g2�! (x)c�! (�) + g1(x)w0 (7)
_� = a(�) + b�! (�)y�!

= a(�) + b�! (�)h2�! (x) + b�! (�)w�! (8)

z�! =
h1(x)
c�! (�)

: (9)

The goal is to select the functionsa(�); b(�); and c(�) such that
for any !a � 
a and !s � 
s, the system�! ;! is locally
asymptotically stable and is locally dissipative with respect to the
supply rates(wr�! ; z�! ) = 2kwr�! k2 � kz�! k2, where

wr�! = w
T
0 w

T
�!

T
: (10)

The next section will present a design procedure for the reliable
controller design problem.

The following two inequalities are obvious and will be used in
the sequel:

g2! (x)gT2! (x) � g2
 (x)gT2
 (x); for !a � 
a (11)

h2! (x)hT2! (x) � h2
 (x)hT2
 (x); for !s � 
s: (12)

III. M AIN RESULTS

In order to describe the main result of the section, we first recall
a notion of detectability.

Definition 3.1 [4]: Supposef(0) = 0 and h(0) = 0. The pair
ff; hg is said to be locally detectable if there exists a neighborhood
U of the point x = 0 such that ifx(t) is any integral curve of
_x = f(x) satisfyingx(0) 2 U , thenh(x(t)) is defined for allt � 0
andh(x(t)) = 0 for all t � 0 implies limt!1 x(t) = 0.

Define the HamiltoniansHs(x; p) andH0(x; p) as follows:

Hs(x; p) = p
T
f(x) + h

T
1 (x)h1(x) + 

2
h
T
2
 (x)h2
 (x)

+
1

4
p
T 1

2
g1(x)g

T
1 (x)� g2�
 (x)gT

2�

(x) p (13)

H0(x; p) = p
T
f(x) +

1

42
p
T
g1(x)g

T
1 (x)p

+
1

4
p
T
g2
 (x)gT2
 (x)p+ h

T
1 (x)h1(x)

� 
2
h
T
2�


(x)h2�
 (x): (14)

Then the following theorem presents a sufficient condition for the
solvability of the reliable controller design problem.

Theorem 3.2: Consider the system� described by (1)–(3) and
suppose the following:

1) the pairff; h1g is locally detectable;
2) there exists someC2 function (x) � 0 with  (0) = 0 such

that:

a) there exists aC3 positive definite functionV (x), locally
defined in a neighborhood ofx = 0 and vanishing at
x = 0, which satisfies the Hamilton–Jacobi equation

Hs x; V
T
x +  (x) = 0 (15)

b) there exists aC3 positive definite functionU(x), locally
defined in a neighborhood ofx = 0 and vanishing at
x = 0, which satisfies the Hamilton–Jacobi inequality

H0 x; U
T
x +  (x) � 0 (16)

and such thatH0(x; U
T
x ) +  (x) has nonsingular Hes-

sian matrix atx = 0;
c) U(x) � V (x) is positive definite, and

(Ux � Vx)L(x) = 22hT2 (x) (17)

has a solutionL(x);

whereVx andUx are the Jacobian matrices ofV andU , respectively.
Then, the controllerK of (6) with

a(�) = f(�) +
1

22
g1(�)g

T
1 (�)V

T
x (�)

�
1

2
g2�
 (�)gT

2�

(�)V T

x (�)� L(�)h2(�) (18)

b(�) = L(�) (19)

c(�) = �
1

2
g
T
2 (�)V

T
x (�) (20)

is a solution of the reliable controller design problem for the system
� of (1)–(3).

The following preliminaries are required in the proof of
Theorem 3.2.

For the system� described by (1)–(3), consider an extended system
�e given by

_x = f(x) + g1(x) g2
 (x) �w0 + g2(x)u (21)

y = h2(x) + w (22)

�z =
h1(x)

h2
 (x)
u

: (23)

Applying the controllerK of (6) to the system�e, the resulting
closed-loop system�ce is as follows:

_xe = �fe(xe) + �ge(xe) �w (24)

�z =
h1(x)

h2
 (x)
c(�)

(25)

wherexe = [xT �T ]T �w = [ �wT
0 wT ]T

�fe(xe) =
f(x) + g2(x)c(�)
a(�) + b(�)h2(x)

�ge(xe) =
[g1(x) g2
 (x)] 0

0 b(�)
:

The closed-loop system�! ;! of (7)–(9) can be written as

_xe = fas(xe) + gas(xe)wr�! (26)

z�! =
h1(x)
c�! (�)

(27)

wherewr�! is given by (10)

fas(xe) =
f(x) + g2 �w (x)c�! (�)
a(�) + b�! (�)h2 �w (x)

gas(xe) =
g1(x) 0
0 b�! (�)

:
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Let X(xe) be aC1 function defined in a neighborhood of(0; 0),
and denote

Jce(X;�ce)

= Xx
�fe(xe) + �zT �z +

1

42
Xx �ge(xe)�g

T
e (xe)X

T
x (28)

Jas X;�! ;!

= Xx fas(xe) + z
T
�! z�! +

1

42
Xx gas(xe)g

T
as(xe)X

T
x : (29)

Then, we have the following lemmas.
Lemma 3.3: For any !a � 
a and !s � 
s, the following

inequality holds:

Jas X;�! ;! � Jce(X;�ce): (30)

Proof: By (24)–(27), we have

Xx fas(xe) = Xx
�fe(xe)�Xx

g2! (x)c! (�)
b! (�)h2! (x)

= Xx
�fe(xe)�Xx

g2! (x)c! (�)
0

�Xx
0

b! (�)h2! (x)

� Xx
�fe(xe) +

1

4
Xx

g2! (x)gT2! (x) 0
0 0

�X
T
x + c

T
! (�)c! (�) +

1

42
Xx

�
0 0
0 b! (�)bT! (�)

X
T
x + 

2
h
T
2! (x)h2! (x)

(31)

z
T
�! z�! = h

T
1 (x)h1(x) + c

T
�! (�)c�! (�)

= h
T
1 (x)h1(x) + c

T (�)c(�)� cTw (�)cw (�) (32)

Xx gas(xe)g
T
as(xe)X

T
x = Xx

g1(x)g
T
1 (x) 0

0 b�! (�)bT�! (�)
X

T
x

= Xx
g1(x)g

T
1 (x) 0

0 b(�)bT (�)
X

T
x

�Xx
0 0
0 b! (�)bT! (�)

X
T
x : (33)

Combining equations (31)–(33), (25), and inequalities (11) and (12),
it follows that

Jas X;�! ;!

� Xx
�fe(xe) + h

T
1 (x)h1(x)

+ c
T (�)c(�) + 

2
h
T
2! (x)h2! (x) +

1

42
Xx

�
g1(x)g

T
1 (x) + 2g2! (x)gT2! (x) 0

0 b(�)bT (�)
X

T
x

� Xx
�fe(xe) + �zT �z +

1

42
Xx

�
g1(x)g

T
1 (x) + 2g2
 (x)gT2
 (x) 0

0 b(�)bT (�)
X

T
x

= Jce(X;�ce):

Lemma 3.4: Under the assumptions of Theorem 3.2, the equilib-
rium x = 0 of the system

_x = f(x) +
1

22
g1(x)g

T
1 (x)V

T
x (x)� L(x)h2(x) (34)

is locally asymptotically stable.

Proof: Let Q(x) = U(x) � V (x) and

Hw x;Q
T
x = Qx f(x) +

1

22
g1(x)g

T
1 (x)V

T
x

+
1

2
g2
 (x)gT2
 (x)V T

x �QxL(x)h2(x)

+
1

42
Qx g1(x)g

T
1 (x) + 

2
g2
 (x)gT2
 (x) QT

x

+ c
T (x)c(x) +

1

42
QxL(x)L

T (x)QT
x : (35)

Then, by (13)–(17) and (20), it follows:

Hw x;Q
T
x = H0 x; U

T
x �Hs x; V

T
x

= H0 x; U
T
x +  (x) � 0: (36)

By computing directly, we have

Hw x;Q
T
x � Qx f(x) +

1

22
g1(x)g

T
1 (x)V

T
x � L(x)h2(x)

+ c
T (x)c(x)�

1

4
Vxg2
 (x)gT2
 (x)V T

x

+
1

42
Qxg1(x)g

T
1 (x)Q

T
x +

1

42
QxL(x)L

T (x)QT
x

� Qx f(x) +
1

22
g1(x)g

T
1 (x)V

T
x � L(x)h2(x)

which further implies from (36) and the condition under which
H0(x; U

T
x ) +  (x) has a nonsingular Hessian matrix atx = 0 that

the system (34) is locally asymptotically stable.
Lemma 3.5: Under the assumptions of Theorem 3.2, letQ(x) =

U(x) � V (x); X(xe) = V (x) + Q(x � �), then there exists a
neighborhood of(x; �) = (0; 0) in which the following inequality
holds:

Jce(X;�ce) � 0: (37)

Proof: In the extended system�e described by (21)–(23), let
�g1(x) = [g1(x) g2
 (x)] and �h1(x) = [ h (x)

h (x)
]. Then, from

(13), we have

Vxf(x) + �hT1 (x)�h1(x) +
1

4
Vx

1

2
�g1(x)�g

T
1 (x)� g2(x)g

T
2 (x) V

T
x

= Hs x; V
T
x : (38)

Denotec1(x) = 1
2

�gT1 (x)V
T
x and �f(x) = f(x) + �g1(x)c1(x). By

(17), (35), and (36), it follows:

Qx
�f(x) + c

T
1 (x)c1(x)� 

2
h
T
2 (x)h2(x) +

1

42
Qx�g1(x)�g

T
1 (x)Q

T
x

= Hw x;Q
T
x

= H0 x; U
T
x +  (x): (39)

Then, from the assumptions of Theorem 3.2, (38), (39), and the
proof of [5, Th. 3.1], it follows that (37) holds in a neighborhood
of (x; �) = (0; 0).

Proof of Theorem 3.2:By Lemma 3.3, Lemma 3.5, and [11, Th.
2], it follows that for any!a � 
a and!s � 
s, the system�! ;!

of (7)–(9) or (26) and (27) is locally dissipative with respect to the
supply rates(wr�! ; z�! ) = 2kwr�! k

2 � kz�! k2.
In the following, we show that the system�! ;! is locally

asymptotically stable.
From Jas(X;�! ;! ) � 0 andwr�! = 0, it follows:

dX(xe(t))

dt
= Xx fas(xe(t)) � �z

T
�! z�!

= �kh1(x(t))k
2� c�! (�)

2
:
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This proves that the system�! ;! is stable at the equilibrium
(x; �) = (0; 0), and any trajectory satisfying

dX(xe(t))

dt
= 0

is necessarily a trajectory of

_x = f(x) + g2�! (x)c�! (�)

such thatx(t) is bounded andh1(x(t)) = 0; c�! (�(t)) = 0, which
further follows from assumption 1) thatlimt!1 x(t) = 0. Thus, the
!-limit set of such a trajectory is a subset of

M = (x; �): x = 0; c�! (�(t)) = 0 :

By (18), and�
a � �!a, any initial condition on this!-limit set yields
a trajectory in whichx(t) = 0 for all t � 0, while �(t) is a trajectory
of

_� = a(�) + b�! (�)h2�! (x) = a(�)

= f(�) +
1

22
g1(�)g

T
1 (�)V

T
x (�)

�
1

2
g2�
 (�)gT2�
 (�)V T

x (�)� L(�)h2(�)

= f(�) +
1

22
g1(�)g

T
1 (�)V

T
x (�)

� L(�)h2(�) + g2�
 (�)cT�
 (�)

= f(�) +
1

22
g1(�)g

T
1 (�)V

T
x (�)� L(�)h2(�):

By Lemma 3.4, it follows thatlimt!1 �(t) = 0. Thus, by the
invariance principle, the system�! ;! is locally asymptotically
stable.

In the case of a linear system

_x = Ax +Gw0 +Bu (40)

y = Cx+ w (41)

z =
Hx

u
(42)

a solution of the corresponding reliable controller design problem is
given by the following corollary.

Corollary 3.6: Consider the linear system described by (40)–(42)
and suppose the following.

1) The pair(A;H) is detectable.
2) The following algebraic Riccati equation and inequality

A
T
X +XA�XB�
 B

T
�
 X +

1

2
XGG

T
X

+H
T
H + 

2
C
T

 C
 = 0 (43)

A
T
Y + Y A+ Y B
 B

T

 Y +

1

2
Y GG

T
Y

+H
T
H � 

2
C
T
�
 C�
 < 0 (44)

have positive definite solutionsX and Y , respectively, and
Y > X, where the matricesB
 ; B�
 ; C
 ; andC�
 have
meanings similar to those ofg2
 (x); g2�
 (x); h2
 (x); and
h2�
 (x) in (13) and (14).

Denote

G+ = [G B
 ]; Kd+ =
1

2
G
T
+X

K = �BT
X

L = 
2(Y �X)�1CT

:

Then the controller

_� = (A+BK +G+Kd+ � LC)� + Ly (45)

u = K� (46)

is a control law such that for actuator outages corresponding to
any !a � 
a and sensor outages corresponding to any!s � 
s,
the resulting closed-loop system is asymptotically stable and has an
H1-norm bound.

Remark 3.7: Note that in Corollary 3.6, (44) is a strict inequality.
This is stronger than the corresponding condition in [12, Th. 4.2]
where only an equality is needed. But with this strict inequality, the
controller in this paper need not be assumed asymptotically stable,
as is the case in [12, Th. 4.2].

Remark 3.8: The result presented in this paper provides a reliable
controller design methodology for the so-calledprimary contingency
problem where the set of sensors and actuators that are susceptible
to outages is knowna priori. This is very different from the so-
called single contingencyproblem where any single sensor or any
single actuator may have an outage. The single contingency problem
is addressed in another paper [15].

IV. A N EXAMPLE

In this section, we present an example to illustrate the design
procedure and the effectiveness of our reliable controller.

Consider the following second-order system:

_x1
_x2

=
�2x1 + x1x

2
2

x32
+

1
x1

w0 +
0 1
1 1

u1
u2

y = 2x1 + 2x2 + w1

z = [x1 x
4
2 u1 u2]

T

with 
a = f2g and
s = ;. That is, only actuatoru2 is susceptible
to outage and the sensory is 100% reliable. It is easy to check that
ff; h1g is locally detectable. By selecting = 0:81 and

�(x) =
1

2
x
2
1 +

82

2 � x21
x
6
2

approximate solutions to the Hamilton–Jacobi equality (15) and
inequality (16) are given by, respectively

V (x) = 0:4533x21 + 0:3463x21x
2
2 +

22

2 � x21
x
4
2

U(x) = 1:5938x21 + 0:3496x1x2 + 1:2667x22:

By solving (17) we have the following approximate solution:

L(x) = [1:0132 0:8961]T :

Then the final controllerK is given by (6) witha(x); b(x); andc(x)
as given in (18)–(20).

Computer simulations are performed to check the actual system
response. The actual achieved disturbance attenuation is approxi-
mated by

max max
0�t�T

(t)

max
0�t�T

T

0

zT (t)z(t)

w2
0(t) + w2

1(t)
dt (47)

whereT = 50 s and the disturbancesw0 andw1 are taken as

w0(t) = 0:3 sin(4�t)

w1(t) = square wave of amplitude0:05 and period 0.1 s:
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Fig. 1. Response foru2 outage.

TABLE I
RELIABLE CONTROLLER DESIGN RESULTS

The system response in theu2 outage case is given in Fig. 1.
Although the controller is designed foru2 outage only, computer
simulation shows that it also provides very good closed-loop perfor-
mance in the case ofu1 outage. Responses for the “no-outage” and the
“u1-outage” cases are similar to those of Fig. 1 and are omitted here.
The achievedH1-disturbance attenuation performance, as specified
in (47), is tabulated in Table I. It is noted that this actually achieved
 is less than the designed value of = 0:81, as guaranteed by
Theorem 2.

Finally, it is worth noting that if the linearization of the designed
nonlinear controller is used to control the nonlinear system, the
closed-loop system is actually unstable in the no-outage case as well
as in theu1-outage and theu2-outage cases.

V. CONCLUSION

This paper presents a solution to the reliable controller design
problem for affine nonlinear systems. The solution is shown to be
related to the existence of solutions of a Hamilton–Jacobi equation
and a Hamilton–Jacobi inequality. The resulting closed-loop nonlin-
ear control system is reliable in the sense that it achieves asymptotic
stability andH1-disturbance attenuation performance not only when
all sensors and actuators of the system are operating properly, but
also when control components (sensors and/or actuators) that are
within a prespecified subset of control components become faulty
(outage). This result is also verified, via computer simulation, by
using a nontrivial example.

ACKNOWLEDGMENT

The authors are greatly indebted to the referees for many useful
suggestions and corrections on the initial manuscript of the present
work.

REFERENCES

[1] J. Ball, J. W. Helton, and M. L. Walker, “H1 control for nonlinear
systems via output feedback,”IEEE Trans. Automat. Contr., vol. 38,
pp. 546–559, 1993.

[2] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, “State
space solutions to standardH2 andH1 control problems,”IEEE Trans.
Automat. Contr., vol. 34, pp. 831–847, 1989.

[3] A. N. Gundes and M. G. Kabuli, “Reliable decentralized control,” in
Proc. 1994 American Control Conf., Baltimore, MD, pp. 3359–3363.

[4] A. Isidori and A. Astolfi, “Disturbance attenuation andH1 control
via measurement feedback in nonlinear systems,”IEEE Trans. Automat.
Contr., vol. 37, pp. 1283–1293, 1992.

[5] A. Isidori, “H1 control via measurement feedback for affine nonlinear
systems,”Int. J. Robust and Nonlinear Contr., vol. 4, pp. 553–574, 1994.

[6] , “A necessary condition for nonlinearH1 control via measure-
ment feedback,”Syst. Contr. Lett., vol. 23, pp. 169–177, 1994.

[7] J. Huang and C.-F. Lin, “A numerical approach to computing nonlinear
H1 control laws,” AIAA J. Guidance, Contr. and Dynamics, vol. 18,
pp. 989–994, 1995.

[8] W. M. Lu and J. C. Doyle, “H1 control of nonlinear systems via output
feedback: Controller parameterization,”IEEE Trans. Automat. Contr.,
vol. 39, pp. 2517–2521, 1994.

[9] D. D. Siljak, “Reliable control using multiple control systems,”Int. J.
Contr., vol. 31, pp. 303–329, 1980.

[10] A. J. Van der Schaft, “A state-space approach to nonlinearH1 control,”
Syst. Contr. Lett., vol. 16, pp. 1–8, 1991.

[11] , “L2-gain analysis of nonlinear systems and nonlinearH1

control,” IEEE Trans. Automat. Contr., vol. 37, pp. 770–784, 1992.
[12] R. J. Veillette, J. V. Medanic, and W. R. Perkins, “Design of reliable

control systems,”IEEE Trans. Automat. Contr., vol. 37, pp. 293–304,
1992.

[13] R. J. Veillette, “Reliable linear-quadratic state-feedback control,”Auto-
matica, vol. 31, pp. 137–143, 1995.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 8, AUGUST 1998 1117

[14] M. Vidyasagar and N. Viswanadham, “Reliable stabilization using a
multicontroller configuration,”Automatica, vol. 21, pp. 599–602, 1985.

[15] G.-H. Yang, J. Wang, and C. B. Soh, “Reliable nonlinear control system
design using strictly redundant control elements,”Int. J. Contr., vol. 69,
pp. 315–328, 1998.

Approximate Identification Using Partial
Sum Operators in a Disc Algebra Basis

László Gianone, J´ozsef Bokor, and Ferenc Schipp

Abstract—H1-system identification using a basis in the disc algebra
is presented. The approximate model is represented by a partial sum
with respect to this basis. The identification problem is to estimate the
expansion coefficients of this partial sum. Since the constructed basis
functions cannot be represented analytically, they are approximated in
order to arrive at a model in a suitable form. An algorithm is presented
which calculates the model parameters from the frequency domain data
set.

Index Terms—Disc algebra basis,H1 identification, parameter esti-
mation, system identification, summation technique.

I. INTRODUCTION

System identification withH1 criteria has received a growing
interest since the appearance ofH1 formulation of robust control.
The recent state of the art is characterized in most recent survey
papers like [13] and [15]. Information-based complexity (IBC) theory
offers a common framework for the setup of the different identifica-
tion algorithms and for examining their properties, such as optimality
and convergence [14]. Until now several linear and nonlinear algo-
rithms have been developed for solving the identification problem.
A large class of nonlinear methods is built by the interpolatory-type
algorithms [5], [6]. Another type is based onH1 approximation of
systems inL1. Examples for these so-called two-stage algorithms
can be found, e.g., in [12], [17], and [11]. Nonlinear algorithms
obviously need much higher computational effort compared to the
linear ones. Meanwhile, it is proved that no linear algorithm exists
under unknown but bounded noise condition which is convergent
in worst case and is not tuned to the prior information on the
system. However, linear algorithms do not show such dramatic—if
any—divergence in practice. This is due to the (possibly) slow speed
of divergence under worst case conditions and that the worst case
situations happen rarely.

Among the existing approaches, our problem setup is related
to linear identification given in [16] and [11] and also to the
terminology in [17] and [12]. In [16] the approximate model was the
truncated Taylor series of a rational transfer function (FIR model).
The parameters were estimated under the criterion that the frequency
response of the model should exactly match the frequency response
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at prescribed finite number of frequencies. This approach leads
to the solution of a Lagrange interpolation problem. In [11] the
authors apply an FIR-model represented by Cesaro summation, i.e.,
by arithmetic means of partial sums of the Taylor series or impulse
response function.

The basic disadvantage of the FIR modeling is that the system
fzk; z 2 C; k = 0; 1; � � �g is not a basis in the disc algebra, and the
Fourier partial sum operators are not uniformly bounded, i.e., theH1
norm of identification error will grow bylogn even in the noiseless
case, wheren is the order of the FIR model. The approach based on
Cesaro summation overcomes this problem in the noiseless case since
the Cesaro means converge in thel1 norm when approximating the
system on the unit circle. Forl1-norm bounded deterministic noise,
however, like any other linear algorithm, the identification error will
grow proportionally with" logn where" is thel1 norm of the noise.

The approach offered in this paper is based on construction of a
basis in the disc algebra. The approximate model will be represented
by a partial sum in this basis. The partial sum operator in this basis
will be uniformly bounded in theH1 norm, and the convergence
rate is proportional to the modulus of continuity of the system
transfer function. Note that one difference between the previous two
approaches is that the systemfzk; k = 0; 1; � � �g is not a basis in
the disc algebra. What we expect from our approach (in addition
to the uniform boundedness of the partial sum operator) is a faster
convergence to zero of the approximation error with respect to the
model order when compared to the algorithms based on some types of
summation procedures. This rather heuristic expectation is supported
by the fact that the proposed algorithm is optimal in the chosen basis
(from an approximation point of view), which is not true for the
other summation algorithms.

The use of specific basis functions appeared recently inl2 identifi-
cation; see [20] and [19]. This idea is extended to approximateH1
identification of systems with transfer function in the disc algebra.
This basis is derived from the Faber–Schauder system and using
orthogonalization from the Franklin system defined on the unit circle.
The order of the model, i.e., the number of basis functions, can
be much less than the number of measurement data. In the case
of equality the identification algorithm reduces to a Faber–Schauder
interpolation of the frequency response function.

The outline of the paper is as follows. This introduction is followed
by the problem formulation of the identification in theH1 setting.
Section III considers theH1 identification using a disc algebra basis.
The basis will be constructed first; the model is a partial sum of the
biorthogonal expansion of the transfer function of the system with
respect to this basis. Then the estimation of the model parameters is
considered on the basis of frequency domain measurements. Finally,
an estimate for the identification error is given. The results are
demonstrated by simulation examples in Section IV. (The conference
version of this paper has appeared in [3].)

II. PROBLEM FORMULATION OF IDENTIFICATION IN H1

The usual frequency-domain problem formulation of the identifica-
tion in theH1 space will be summarized briefly. The basic property
of this approach is that the maximum distance between the system
and the model is minimized, and it is assumed that the noise on
the output of the system is considered as an unknown-but-bounded
(UBB)-type deterministic disturbance.

Denote byR and C the field of real and complex numbers,
respectively, and byN the set of nonnegative integers. Denote the
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