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Interaction of laminar far wake with a free surface
Andy T. Chan and Allen T. Chwanga)
Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
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Wave disturbances caused by the uniform translatory motion of a submerged body on or beneath the
free surface of a viscous fluid are investigated analytically. The submerged body is idealized as an
Oseenlet or an Oseen doublet, and exact solutions in closed integral forms are obtained. Based on
these exact solutions, asymptotic representations of the wave amplitude for large Reynolds numbers
based on the deep-water wavelength at large distances downstream of the body are derived. The
results obtained show explicitly the effect of the laminar wake on the amplitude and the phase of the
surface waves thus created. ©1996 American Institute of Physics.@S1070-6631~96!02902-X#

I. INTRODUCTION

A submerged body moving through an incompressible
viscous fluid generates waves on the free surface of the fluid.
Generation of free-surface waves due to a moving distur-
bance can be found in many situations, such as a ship mov-
ing across the ocean or a fish swimming near the free sur-
face. In the present study, we investigate the waves generated
by bodies with uniform translatory motion near the free sur-
face of a viscous fluid. We simulate the moving body by an
Oseenlet or an Oseen doublet, which creates a laminar far
wake downstream of itself similar to that due to the moving
body.

A great deal of work has been devoted to problems of
this kind, since Kelvin’s studies1 of ship waves. Lamb2 and
De Prima and Wu3 provided analytical solutions for various
cases of the problem. Wehausen and Laitone4 first provided
methodologies in understanding viscous waves using infini-
tesimal wave theory. Cumberbatch5 also worked on viscous
waves employing similar methodologies for a pressure point.
Dugan6 dealt with a two-dimensional version of the problem
by studying the viscous drag of bodies moving near a free
surface, while Ammicht7 extended Dugan’s work by consid-
ering the effect of surface tension. The corresponding three-
dimensional Green’s tensor problem was formulated by
Lurye.8 However, it was felt that the effect of the laminar far
wake has not been fully explored, which in this paper is
shown to be of significant interest.

Our analysis is based on the assumptions that the motion
satisfies the Oseen’s equations, the fluid is infinitely deep,
and the free-surface conditions are linearized. We shall de-
rive formal expressions for the wave amplitude associated
with the laminar wake created by the motion of an Oseenlet
or an Oseen doublet parallel or perpendicular to the free
surface. Then the asymptotic behavior of these expressions is
derived and graphical plots of the system shown.

II. THEORETICAL SOLUTION FOR A HORIZONTAL
OSEENLET

We consider first a viscous incompressible fluid that oc-
cupies the lower half spacez,0 in a Cartesian coordinate

system and is flowing with a uniform velocityUex , whereex
denotes the unit vector along thex direction. Let us nondi-
mensionalize the velocity byU, the pressure byrU2, and
distance byU2/g, wherer is the density of the fluid andg is
the gravitational constant. For small disturbances, the per-
turbed dimensionless velocityu5(u,v,w) satisfies the
steady-state Oseen’s equations,

“–u50, ~1!

]u

]x
52“p1e ¹2u, ~2!

where

e5
mg

rU3 , ~3!

p is the dimensionless pressure, andm is the dynamic vis-
cosity of the fluid. The dimensionless parametere in ~3! can
be regarded as the reciprocal of the Reynolds number with
respect to the deep-water wavelengthU2/g. It will be used as
the perturbation parameter throughout the asymptotic expan-
sion of the free-surface elevation expression.

For a singular force~Oseenlet! located at (0,0,2z0) with
dimensionless magnitude 4pF, normalized with respect to
rU2(U2/g)2, along the negativex direction, the solution to
Eqs.~1! and ~2! for an unbounded fluid is given by Moore9

as

u52
F

e

e~x2r !/2e

r
ex1F“S e~x2r !/2e21

r D , ~4!

p52
Fx

r 3
, ~5!

whereex denotes the unit vector in thex direction and

r 25x21y21~z1z0!
2. ~6!

We impose the linearized free surface conditions atz50
that represent the continuity of the normal and tangential
stresses in addition to the kinematic boundary condition,4

]u

]z
1

]w

]x
50, ~7!

]v
]z

1
]w

]y
50, ~8!

a!Corresponding author; tel.: 852-2859-2634; fax: 852-2858-5415;
e-mail: atchwang@hkucc.hku.hk

421Phys. Fluids 8 (2), February 1996 1070-6631/96/8(2)/421/9/$6.00 © 1996 American Institute of Physics

Downloaded¬09¬Nov¬2006¬to¬147.8.21.97.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://pof.aip.org/pof/copyright.jsp



]p

]x
22e

]2w

]x ]z
2w50. ~9!

Now let the entire solution be written as

u5uu1uFS, ~10!

p5pu1pFS, ~11!

where subscriptu denotes the unbounded system solution
given by ~4! and ~5! and FS denotes the free-surface effect.
In terms ofuFS, the free-surface conditions become

]uFS
]z

1
]wFS

]x
52S ]uu

]z
1

]wu

]x D , ~12!

]vFS
]z

1
]wFS

]y
52S ]vu

]z
1

]wu

]y D , ~13!

]pFS
]x

22e
]2wFS

]x ]z
2wFS52S ]pu

]x
22e

]2wu

]x ]z
2wuD . ~14!

To reduce the number of variables involved, we define
two new functionsf and f by

uFS52“f1“3f, ~15!

f5 f xex1 f zez , ~16!

pFS5
]f

]x
, ~17!

such that

¹2f50, ~18!

]f

]x
5e ¹2f, ~19!

for z,0. Thus, we can express the linearized free-surface
conditions in terms off and f. Combining Eqs.~12!–~19!,
we obtain, atz50,

22
]2f

]x ]z
1

]2f z
]y ]z

2
]2f x

]x ]y
52S ]uu

]z
1

]wu

]x D , ~20!

22
]2f

]y ]z
2

]2f z
]x ]z

2
]2f x
]y2

1
]2f x
]z2

52S ]vu
]z

1
]wu

]y D , ~21!

]2f

]x2
22eS ]3f

]x ]z2
1

]3f x
]x ]y ]zD1S ]f

]z
1

] f x
]y D

52S ]pu
]x

22e
]2wu

]x ]z
2wuD . ~22!

To solve the problem, it is convenient to define forz<0
the following Fourier transforms forj51 or 3 ~1 and 3 de-
notex andz, respectively!,

f5FE
2`

` E
2`

`

f̂@k1 ,k2#e
i ~k1x1k2y!1Az dk1 dk2 , ~23!

f j5FE
2`

` E
2`

`

f̂ j@k1 ,k2#e
i ~k1x1k2y!1Bz dk1 dk2 , ~24!

where

A5Ak121k1
2, B5Ak1

21k2
21

ik1
e
. ~25!

It can be shown that the free-surface elevationh can be
expressed as

h5puz5022e
]w

]zU
z50

. ~26!

The wave amplitude expression can also be written as

h5hu1hFS, ~27!

where

hFS5puz5022e
]wFS

]z U
z50

. ~28!

Introducing the cylindrical coordinates (R,u) on the free sur-
face through

x5R cosu, y5R sin u, ~29!

it can be shown that

lim
R→`

hu5o@hFS#. ~30!

Thus

h'hFS5
]f

]xU
z50

22eS ]2f x
]y ]z

2
]2f

]z2 D U
z50

. ~31!

We then decompose the functionsf̂ and f̂ x into

f̂5f̂01f̂v , f̂ x5 f̂ 01 f̂ v , ~32!

where subscript 0 denotes contribution by the inviscid term
“[1/r ] of the Lagerstrom needle and the subscriptv denotes
the remaining viscous terms. Combining~20!–~32!, we ob-
tain

f̂05
@2~k1

2/2A1 1
2!12i ek1A12e2A2~A1B!#e2Az0

D
, ~33!

f̂v5
~22i ek1B24e2A3B!e2Bz0

D
, ~34!

f̂05
~22ek1A

214i e2A4!e2Az0

k2D
, ~35!

f̂ v5
@~ i /2!~k1

22A!12ek1A
222i e2A422i e2A3B#e2Bz0

k2D
,

~36!

where

D5~k1
22A!24i ek1A

214e2A3~B2A!. ~37!

Hence, the exact integral expressions of the wave amplitude
can be written as

hFS
0 5FE

2`

` E
2`

`

h0e
iR~k1 cosu1k2 sin u!dk1 dk2 , ~38!

hFS
v 5FE

2`

` E
2`

`

hve
iR~k1 cosu1k2 sin u!dk1 dk2 , ~39!

where
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h05~ ik112eA2!f̂012i ek2B f̂0 , ~40!

hv5~ ik112eA2!f̂v12i ek2B f̂v . ~41!

To obtain the leading term in the expansion of the as-
ymptotic representation for largeR of hFS, we shall employ
Lighthill’s two-stage scheme.10We first consider the roots of
the pole equation,

D@k1 ,k2 ,e#5~k1
22A!24i ek1A

214e2A3~B2A!50.
~42!

For smalle, Eq. ~42! has two simple roots, which we shall
call k1,1 and k1,2. From step 1 of Lighthill’s scheme, we
obtain from~38! and ~39! for largeR,

hFS
0 5 iF(

j51

2 E
2`

`

Res@h0#e
iR~k1,j cosu1k2 sin u! dk2 , ~43!

hFS
v 5 iF(

j51

2 E
2`

`

Res@hv#e
iR~k1,j cosu1k2 sin u! dk2 , ~44!

where Res[f ] denotes the residue of functionf .
In order to satisfy the pole equation, we introduce the

following expansion ofk1 with respect toe. For smalle, the
two rootsk1,j [k2 ,e] take the form of

k1,j@k2 ,e#'k1,j0@k2#1 i ek1,j1@k2#, ~45!

k1,j0@k2#5
~21! j

2
A11m@k2#, ~46!

k1,j1@k2#5
~11m@k2# !3

2m@k2#
, ~47!

wherem[k2] is a positive function defined by

m@k2#5A114k2
2. ~48!

Since the residue factors Res[h0] and Res[hv] do not depend
on R but only one andk2 , it is convenient to replace them
by their respective leading terms in their expansions about
e50, because only these terms contribute significantly to the
asymptotic expressions of the wave amplitude.11 Thus

Res@h0#52 i
11m@k2#

2m@k2#
e2@z0~11m@k2# !/2#1O@e#, ~49!

Res@hv#5e1/2
2~21! j21

m@k2#
S 11m@k2#

2 D 7/4
3e2~z0 /A2e!@~11m@k2# !/2#1/4@11 i ~21! j21#1 i @~21! j21p/4#

1o@e1/2eAik1,j0 /e#. ~50!

Examination of~49! and~50! shows that the wave amplitude
can be expanded in the square root power ofe, that is,

hFS5h01e1/2h11O@e#, ~51!

andhFS
0 contributes to the leading termh0 while hFS

v contrib-
utes to the termh1.

The integral can now be evaluated by the steepest-
descent method. The saddle points are thek2’s that satisfy
the derivative of the exponent of the Fourier kernel,

]

]k2
†ik1,j0@k2#cosu2ek1,j1@k2#cosu1 ik2 sin u‡50,

~52!

for j51 or 2. Equation~52! has two roots, namelyk2,j
6 for

eachj . We expandk2 similarly to ordere to satisfy the above
equation. Therefore, we write, forj51 or 2,

k2,j
6 'k2,j0

6 @u#1 i ek2,j1
6 . ~53!

Upon substituting~53! into ~52!, it shows that

k2,j1
6 @u#52

]k1,j1 /]k2
]2k1,j0 /]k2

2U
k25k

2,j0
6

. ~54!

We return to evaluate the integral expressions~43! and
~44! at the saddle points. Here~43! and ~44! can be written,
in terms of saddle point contributions evaluated atk2,j

6 , as12

hFS
0 'h05 iF(

j
A 2p

Ru]2k1,j /]k2ucosu

3Res@h0#e
iR@k1,j cosu1k2,j

6 sin u1~ i /2!~p2d j !#, ~55!

hFS
v 'e1/2h15 iF(

j
A 2p

Ru]2k1,j /]k2ucosu

3Res@h1#e
iR@k1,j cosu1k2,j

6 sin u1~ i /2!~p2d j !#,
~56!

where the phase angled j is defined through the relationship

i
]2k1,j
]k2

5U]2k1,j]k2
Ueid j . ~57!

Substituting~53! into the exponent of~55! and~56!, we have

iR~k1,j cosu1k2,j
6 sin u!

' iR@~k1,j01 i ek1,j1!cosu1~k2,j0
6 1 i ek2,j1

6 !sin u#. ~58!

From ~54!, it can be shown thatk2,j1
6 is real, and thus

iR~k1,j cosu1k2,j
6 sin u!

'2eRk1,j1 cosu1 iR~k1,j0 cosu1k2,j0
6 sin u! ~59!

and

U]k1,j0]k2
U
k25k

2,j0
6

cosu1sin u50, for j51 or 2. ~60!

Returning to~57!, we expand the denominator of the saddle
point contributions aboute50, and keep only the terms of
order e or lower. From this and Eqs.~57!–~60!, the phase
angle in~57! can be found as

d j5p2
p

2
sgnUS ]2k1,j0

]k2
D U

k25k
2,j0
6

1O@e#. ~61!

By substitutingk2,j0 for k2 into the residue function in
~49! and ~50!, we obtain the leading term of it for smalle,
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Res@h0#52 i
11m@k2,j0

6 #

2m@k2,j0
6 #

e~z0/2!~11m@k2,j0
6

# !, ~62!

Res@h1#5e1/2
2~21! j21

m@k2,j0
6 #

S 11m@k2,j0
6 #

2 D 7/4
3e2~z0 /A2e!@~11m@k2,j0

6
!/2#@11 i ~21! j21#1 i ~21! j21~p/4!.

~63!

Substituting the expansions into~57!, we obtain the summa-
tion representation of the wave amplitude evaluated atk2,j0

6 ,

h052F(
6

(
j

SRU]2k1,j0]k2
2 cosuU D 21/2 11m6

2m6 e2~z0/2!~11m6!2eRk1,j1 cosu1 iR~k1,j0 cosu1k2,j0
6

!1 i ~p/4!sgn@]2k1,j0 /]k2
2
#, ~64!

h154iF(
6

(
j

SRU]2k1,j0]k2
2 cosuU D 21/2 ~21! j21

m6 S 11m6

2 D 7/4
3e2~z0 /A2e!@~11m6!/2#1/4†11~21! j21i2eRk1,j1 cosu1 iR~k1,j0 cosu1k2,j0

6
!1 i ~p/4!sgn@]2k1,j0 /]k2

2
#‡1 i ~21! j21~p/4!, ~65!

where(6 stands for the summation over the saddle pointsk2,j
6 and

m65A114~k2,j0
6 !2. ~66!

The final procedure is to express allk’s in terms ofu. From Eqs.~45!–~48!, we obtain

k2,j0
6 5~21! jm6S 11m6

2 D 1/2 tan u, ~67!

with the rootm6 of this equation written as

m65
1

4
cot2 u~16A128 tan2 u!. ~68!

Upon substituting and other mathematical manipulation, the wave amplitude can be formally expressed as

h054FS 2p

R cosu D 1/2~128 tan2 u!21/43H Sm111

2 D 3/4e2~z0/2!~11m1!2~4eR/m1!@~m111!/2#3 cosu

3cosFRSm111

2 D 1/2 S cosu2Sm121

2 D 1/2 sin u D2
p

4 G1Sm211

2 D 3/4e2~z0/2!~11m2!2~4eR/m2!@~m211!/2#3 cosu

3cosFRSm211

2 D 1/2 S cosu2Sm221

2 D 1/2 sin u D1
p

4 G J , ~69!

h154A2FS 2p

R cosu D 1/2~128 tan2 u!21/43H Sm111

2 D 3/2e2~z0 /A2e!~11m1!1/42~4eR/m1!@~m111!/2#3 cosu

3cosFRSm111

2 D 1/2 S cosu2Sm121

2 D 1/2 sin u D 2
z0

A2e
~11m1!1/41

p

2 G
1Sm211

2 D 3/2e2~z0 /A2e!~11m2!1/424eR/m2@~m211!/2#3 cosu3cosFRSm211

2 D 1/2
3S cosu2Sm221

2 D 1/2 sin u D 2
z0

A2e
~11m2!1/41pG J . ~70!

An immediate conclusion can be made about the wave am-
plitude regarding its region of validity. It can be seen that the
expression breaks down as~128 tan2 u!>0. This is just the
same as in the classical inviscid Kelvin’s wave pattern: sur-
face deformation only occurs within a confined region of
uuu<sin21~13!. Equations~69! and~70! break down even when

u5sin21~13!, however, this can be taken care of by the exten-
sion of the method of steepest descent of uniform asymptot-
ics of Chester, Friedman, and Ursell.12

Figures 1–3 show the normalized free-surface profiles
generated by the horizontal Oseenlet fore50.01, z051,
F5 1

4, andR.10. Close examination of~69! and ~70! and
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Fig. 2 shows that the expressions involvingm1 represent the
diverging wave system, while those involvingm2 represent
the transverse system. From the two wave amplitude expres-
sions, it can be seen that there exists a phase shift ofp/2
between them, which is the same as in the inviscid case. The
wavelength of the diverging wave system, calculated from
the phase equation of~69! and~70! is 4p/A3, and the angle of
deviation subtended by the diverging and the transverse
wave system with the line of motion at Kelvin’s wedge is
found to be 1

2@p/22sin21~13!#, all being reconciled with the
inviscid case.

In the limit ase approaches zero, similar to the use of
artificial viscosity in classical calculations of inviscid waves,
Eq. ~69! simply reduces to the classical Kelvin’s wave pat-
tern produced by a source of normalized strength 4F, as
calculated by Wehausen and Laitone,4

h054FS 2p

R cosu D 1/2~128 tan2 u!21/4

3H Sm111

2 D 3/4e2~z0/2!~11m1! cosFRSm111

2 D 1/2
3S cosu2Sm121

2 D 1/2 sin u D2
p

4 G
1Sm211

2 D 3/4e2~z0/2!~11m2! cosFRSm211

2 D 1/2
3S cosu2Sm221

2 D 1/2 sin u D1
p

4 G J , ~71!

while Eq.~70! simply vanishes. The main difference between
~69! and ~71! is the presence of a viscous decay factor,
namely

e~4eR/m6!@~11m6!/2#3 cosu.

This viscous decay effect can be seen in Fig. 3.
Sinceh1 is associated with thee1/2 term, as shown in

~51!, its contribution toward wave generation remains negli-
gible unless the Oseenlet is very close to the free surface,
that is, when the exponential termse2(z0 /A2e)(11m6)1/4 in
~70! become significant. From~70!, asu tends to zero, the
diverging waves first rise to a sharp peak near the line of
motion and then drop rapidly to 0 atu50. This is in contrast
with the inviscid theory, which predicts infinite diverging
wave amplitude atu50. Hence, it can be stated that the
effect of viscosity is to remove this singularity.

III. THEORETICAL SOLUTION FOR A HORIZONTAL
OSEEN DOUBLET

To simulate the flow over a self-propelling body, we in-
vestigate the case of an Oseen doublet. The analysis follows
exactly that of the Oseenlet, with only minor modifications.
Since the flow field over a doublet can be taken as the gra-
dient of that of the source, therefore the velocity and pressure
fields of a horizontal Oseen doublet with strength 4pG are

u5
G

e

]

]x

e~x2r !/2e

r
ex2G

]

]x
¹Fe~x2r !/2e21

r G , ~72!

p5
]

]x

Gx

r 3
, ~73!

where

G5F dx. ~74!

Using similar procedures and defining the Fourier transform,

f5GE
2`

` E
2`

`

f̂@k1 ,k2#e
i ~k1x1k2y!1Az dk1 dk2 , ~75!

f j5GE
2`

` E
2`

`

f̂ j@k1 ,k2#e
i ~k1x1k2y!1Bz dk1 dk2 , ~76!

we obtain, after some mathematical manipulation,FIG. 2. Wave pattern generated by a horizontal Oseenlet/Oseen doublet.

FIG. 1. Free-surface profile created by a horizontal Oseenlet.

FIG. 3. Wave amplitude due to a horizontal Oseenlet versus the distance
along the line of motion, and the dotted line represents the corresponding
inviscid solution.
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f̂052 ik1
@2~k1

2/2A1 1
2!12i ek1A12e2A2~A1B!#e2Az0

D
,

~77!

f̂v52 ik1
~22i ek1B24e2A3B!e2Bz0

D
, ~78!

f̂ 052 ik1
~22ek1A

214i e2A4!e2Az0

k2D
, ~79!

f̂ v52 ik1

3
@~ i /2!~k1

22A!12ek1A
222i e2A422i e2A3B#e2Bz0

k2D
,

~80!

whereD is given in ~37!. The integral form of the surface
profile can then be expressed as

hFS
0 5GE

2`

` E
2`

`

h0e
iR~k1 cosu1k2 sin u! dk1 dk2 , ~81!

hFS
v 5GE

2`

` E
2`

`

hve
iR~k1 cosu1k2 sin u! dk1 dk2 , ~82!

whereh0 andhv are given in~40! and ~41!.
The asymptotic analysis follows that in Sec. II. The pro-

cedures will not be reproduced here but we simply quote the
final result,

h0522GS 2p

R cosu D 1/2~128 tan2 u!21/4H Sm111

2 D 5/4e2~z0/2!~11m1!2~4eR/m1!@~m111!/2# cosu

3cosFRSm111

2 D 1/2 S cosu2Sm121

2 D 1/2 sin u D1
p

4 G1Sm211

2 D 5/4e2~z0/2!~11m2!2~4eR/m2!~m211!/2 cosu

3cosFRSm211

2 D 1/2 S cosu2Sm221

2 D 1/2 sin u D1
3p

4 G J , ~83!

h1522A2GS 2p

R cosu D 1/2~128 tan2 u!21/4H Sm111

2 D 2e2~z0 /A2e!~11m1!1/42~4eR/m1!@~m111!/2#3 cosu f

3cosFRSm111

2 D 1/2 S cosu2Sm121

2 D 1/2 sin u D 2
z0

A2e
~11m1!1/4G

1Sm211

2 D 2e2~z0/A2e!~11m2!1/42~4eR/m2!@~m211!/2#3 cosu

3cosFRSm211

2 D 1/2 S cosu2Sm221

2 D 1/2 sin u D 2
z0

A2e
~11m2!1/41

p

2 G J . ~84!

Figures 4 and 5 give the graphical plots of a horizontal
Oseen doublet withe50.01, z051, G5 1

4, and largeR. The
wave pattern due to an Oseen doublet is very similar to that
produced by an Oseenlet, except that the former lags the
latter by a phase ofp/2. The wave amplitude generated is
seen to be much reduced because of the decoupling effect of
the doublet.

IV. THEORETICAL SOLUTION FOR A VERTICAL
OSEENLET

We now investigate the surface waves generated by an
Oseenlet moving perpendicularly away from the free surface
with velocity U. For the wake to interact with the free sur-
face, the Oseenlet must move away from it. Since the flow is
basically potential upstream and outside of the laminar wake

FIG. 4. Free-surface profile created by a horizontal Oseen doublet.
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of the singularity, the free-surface deformation caused by the
Oseenlet moving toward the free surface is negligible when
compared with that generated by the wake. Therefore we
shall concentrate on investigating the effect of an Oseenlet
moving away from the free surface only. Assuming suffi-
ciently large depth so that the Oseen equations can be em-
ployed, the solution to~1! and~2! for a singular force located
at (0,0,2z0) with a magnitude 4pFz along the negativez
direction in an unbounded fluid is then

uu52
Fz

e

e~z1z02r !/2e

r
ez1Fz“Fe~z1z02r !/2e21

r G , ~85!

pu52
Fz~z1z0!

r 3
. ~86!

We shall employ cylindrical coordinates (R,u,z) to deal with
this axisymmetric problem. The free-surface boundary con-
ditions are given by~7!–~9!, except that~9! is replaced by

]p

]z
22e

]2w

]z2
2w50, ~87!

for z50, whereu5(u,v,w) is the normalized velocity vec-
tor in the polar coordinate system.

We introduce similarly the free-surface potential and
streamfunctions such that

uFS52“f1“3f, ~88!

with

f5 f zez1 f ReR . ~89!

After some mathematical manipulation, the free-surface con-
ditions can be expressed in terms off only as

]2f

]z2
22e

]3f

]z3
2

]f

]z
52S ]pu

]z
22e

]2wu

]z2
2wuD . ~90!

Sincef satisfies the cylindrical Laplacian, we introduce a
Hankel transform defined by

f5FzE
0

`

f̂@k#e2kzJ0@kR#dk, ~91!

whereJ0[x] is the Bessel function of the zeroth order.
Recalling the expression for the wave amplitude,

h5puz5022e
]w

]zU
z50

5hu1hFS, ~92!

it must be emphasized thathu is not negligible in this case.
Employing similar techniques, the free-surface potential
functionsf̂ can be expressed algebraically as

f̂052e2kz0, ~93!

f̂v5
~a21a!1~12a!Ak21a21~213a!~k21a2!2~k21a2!3/2

Ak21a2~ek22k11!
ez0~a2Ak21a2!, ~94!

where subscripts 0 andv have the same meaning as in the
previous section and

a5
1

2e
. ~95!

Hence, the exact integral form of the wave amplitude can be
formulated as

h05FzE
0

`

h0J0@kR#dk, ~96!

hv5FzE
0

`

hvJ0@kR#dk, ~97!

where

FIG. 5. Wave amplitude due to a horizontal Oseen doublet versus distance
along the line of motion and the dotted line represents the corresponding
inviscid solution.

FIG. 6. Free surface profile generated by a vertical Oseenlet.
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h05~2k12ek2!f̂0 , ~98!

hv5~2k12ek2!f̂v , ~99!

From the theory of the Hankel transform,14 it can be seen
that the first integral is directly integrable, giving rise to an
exact solution,

h05FzS 2
2F1@1,2

1
2;1;R

2/~R21z0
2!#

AR21z0
2

1
4e2F1@3,21;1;R2/~R21z0

2!#

~R21z0
2!3/2 D e2z0 /e, ~100!

where2F1@a,b;c;z# is the 2-1 hypergeometric function. On
the other hand, thehv term is simply a series of Cauchy
Principal Values. However, by Laplace’s asymptotic method,
it can be found that all of them are of the order ofee2z0 /e or
lower, and thus can be neglected for large values ofz0 . Thus,
the first two terms of the wave amplitude expansion follow-
ing ~51! are

h05FzS 2
2F1@1,2

1
2;1;R

2/~R21z0
2!#

AR21z0
2 D e2z0 /e, ~101!

h150. ~102!

The normalized graphical plots of the vertical Oseenlets
with e50.01,z0510, andFz51 are presented in Fig. 6 and
Fig. 7. Based on the expressions and the figures, it can be
seen that the decay of the ripples is much quickened by the

effect of viscosity. In the inviscid case, the ripples decay
exponentially. It is observed that the wave amplitude from
the free-surface effect termhFS is negligible when compared
to the unbounded solutionhu . This is in large contrast with
the horizontal Oseenlet, where the main contribution arises
from the free-surface solution, as seen from Eq.~30!. This
can be explained from the fact that as the Oseen equations
are employed, large submergence must be assumed. As the
free-surface solution decays like exp[2z0/e], the solution
becomes negligible.

V. THEORETICAL SOLUTION FOR A VERTICAL
OSEEN DOUBLET

We continue to consider the effect of a self-propelling
body moving vertically downward away from the free sur-
face. The velocity and pressure fields of a vertical Oseen
doublet with strength 4pGz can be expressed as

uu5
Gz

e

]

]z

e~z1z02r !/2e

r
ez2Gz

]

]z
“Fe~z1z02r !/2e21

r G ,
~103!

pu5
]

]z

Gz~z1z0!

r 3
, ~104!

where

Gz5Fz dz. ~105!

Using exactly the same procedure, but replacing allFz

by Gz , we can obtain the free-surface potential functions as

f̂05ke2kz0, ~106!

f̂v52
~a21a!1~12a!Ak21a21~213a!~k21a2!2~k21a2!3/2

Ak21a2~ek22k11!
~a2Ak21a2!ez0~a2Ak21a2!, ~107!

FIG. 7. Wave amplitude of a vertical Oseenlet versus the radial distance.

FIG. 8. Free-surface profile generated by a vertical Oseen doublet.
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wherea is given in ~95!. Again, an exact solution for the
wave amplitude by the inviscid term can be obtained in
terms of

h052GzS 2
z0

~R21z0
2!3/2

2
2ez0

~R21z0
2!5/2De2z0 /e, ~108!

and by Bleistein asymptotic evaluation the viscous term
turns out to be of the order ofe exp[2z0/e] and is thus
neglected. Thus, the first two terms of the wave amplitude
expansion of the free-surface contribution can be expressed
as

h05Gz

z0
~R21z0

2!3/2
e2z0 /e, ~109!

h150. ~110!

The graphical plots of a vertical Oseen doublet are presented
in Fig. 8 and Fig. 9 fore50.01,z0510, andGz51. It can be
seen that the wave amplitude is less conspicuous than that of
a vertical Oseenlet. Besides, the waves also decay much
faster than the former case.

VI. CONCLUSIONS

With the Oseen flow assumption, the asymptotic expres-
sions and graphical representations of free-surface profiles
caused by the translatory motion of an object are presented.

Though extensive work on surface waves has been known,
the inclusion of the laminar wake is believed to be new. The
graphical plots of the free-surface profiles are in fairly good
agreement with physical intuition. However, it must be em-
phasized that the use of the linearized theory can only predict
the leading-order solutions for the actual problem.

The present work is a first attempt. Possible cases such
as wave generation in waters of finite depth, transient devel-
opment of viscous waves may also be of interest in engineer-
ing and physical applications. The use of linearized theory
has also shed light on the hypothetical possibility of super-
position to simulate other types of flow over a finite body. All
of the aforementioned work will require extensive investiga-
tion and will be discussed in future studies.
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