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Interaction of laminar far wake with a free surface

Andy T. Chan and Allen T. Chwang?®
Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong

(Received 15 February 1995; accepted 30 October )1995

Wave disturbances caused by the uniform translatory motion of a submerged body on or beneath the
free surface of a viscous fluid are investigated analytically. The submerged body is idealized as an
Oseenlet or an Oseen doublet, and exact solutions in closed integral forms are obtained. Based on
these exact solutions, asymptotic representations of the wave amplitude for large Reynolds numbers
based on the deep-water wavelength at large distances downstream of the body are derived. The
results obtained show explicitly the effect of the laminar wake on the amplitude and the phase of the
surface waves thus created. ©96 American Institute of Physid$$1070-663(96)02902-X]

I. INTRODUCTION system and is flowing with a uniform velocitye, , wheree,

A submerged body moving through an incompressibledenmes the unit vector along tledirection. Let us nondi-

viscous fluid generates waves on the free surface of the ﬂu'dn_ensmnallzez the veIomty by, the pressure pr ' ar_ld
. . .. distance byu<“/g, wherep is the density of the fluid and is
Generation of free-surface waves due to a moving distur: L .
) L . the gravitational constant. For small disturbances, the per-
bance can be found in many situations, such as a ship moy- . . : g
urbed dimensionless velocityy=(u,v,w) satisfies the

ing across the ocean or a fish swimming near the free sur- adv-state Oseen's equations
face. In the present study, we investigate the waves generat(%e y q '

by bodies with uniform translatory motion near the free sur-  V-.u=0, (D)
face of a viscous fluid. We simulate the moving body by an
; ; Ju

Oseenlet or an Oseen doublet, which creates a laminar far 7~ _ —Vp+eVau )
wake downstream of itself similar to that due to the moving ~ 9X
body. where

A great deal of work has been devoted to problems of
this kind, since Kelvin's studiésof ship waves. Lamband = ~g 3)
De Prima and WRiprovided analytical solutions for various pU3’

cases of th? pr(_)blem. Wehau_sen gnd Latdiret prm_nde_d ._.p is the dimensionless pressure, ands the dynamic vis-
methodologies in understanding viscous waves using infini:

tesimal th Cumberbatchl ked : cosity of the fluid. The dimensionless parametén (3) can
esimal wave theory. L.UMDErvatcalSo Worked on vISCous -y, regarded as the reciprocal of the Reynolds number with
waves employing similar methodologies for a pressure poin

) . . . tr‘espect to the deep-water wavelengtffg. It will be used as
Dugarf d_ealt with gt\No-dlmenS|onaI version qf the problem the perturbation parameter throughout the asymptotic expan-
by studying the viscous drag of bodies moving near a fre

%ion of the free-surface elevation expression.
surface, while AmmicHtextended Dugan’s work by consid- b

) : X For a singular forcéOseenletlocated at (0,0; zy) with
ering the effect of surface tension. The corresponding threedimensionless magnituderF, normalized with respect to
dimensional Green's tensor problem was formulated by :

20112/ )2 ; ; ; ;
8 ) ) pU“(U“/g)“, along the negative direction, the solution to
Lurye® However, it was felt that the effegt of_the I_ammar fa_r Egs. (1) and(2) for an unbounded fluid is given by Modre
wake has not been fully explored, which in this paper is

N ) as
shown to be of significant interest.

Our analysis is based on the assumptions that the motion ~ F 7" v ex—NRe_q
satisfies the Oseen’s equations, the fluid is infinitely deep, U== &+ F ' )
and the free-surface conditions are linearized. We shall de-
rive formal expressions for the wave amplitude associated p=— Fx )
with the laminar wake created by the motion of an Oseenlet 3
or an Oseen doublet para_llel or p_erpendlcular to the_ fre%vhereex denotes the unit vector in thedirection and
surface. Then the asymptotic behavior of these expressions Is
derived and graphical plots of the system shown. r2=x?+y?+(z+2p)> (6)
We impose the linearized free surface conditionz-a0
Il. THEORETICAL SOLUTION FOR A HORIZONTAL that represent the continuity of the normal and tangential
OSEENLET stresses in addition to the kinematic boundary condftion,
We consider first a viscous incompressible fluid that oc-  gu  ow
cupies the lower half space<0 in a Cartesian coordinate —t=0 @)
Jdz X
a) . o e . Jdv  Iw
Corresponding author; tel.: 852-2859-2634; fax: 852-2858-5415; —+—=0 (8)
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ap 5w
ax ax 9z

—w=0. (9

Now let the entire solution be written as
U=Uy,+ Ugs, (10

P=Put Prs; (11

where subscripu denotes the unbounded system solution
given by (4) and (5) and FS denotes the free-surface effect.

In terms ofugg, the free-surface conditions become

Ju ow Ju Iw
77FS L (e} 4. (12)
Jz X 0z X
Jdv ow v oW
Nl i e Nl ) (13)
gz oy gz " ay
IPrs FPWes py Wy 14
X 2€axaz FsT T\ ox %€ axaz W) 19

ik
A= ICFKZ, B=\/K2+K+ 71 (25
It can be shown that the free-surface elevatipoan be
expressed as

ow

7=Pl=0—2€ —

- (26)

z=0

The wave amplitude expression can also be written as

7=yt TFs, (27
where
IWE
Nrs=Pl—0— 2¢ ‘725‘2—0. (28

Introducing the cylindrical coordinate®(6) on the free sur-
face through

To reduce the number of variables involved, we defindt can be shown that

two new functionsg andf by

Ups= — V o+ V X1, (15

f=f.e+f,e, (16)

stzgy (17
such that

V2¢4=0, (18

of

€ V2, (19

x=R cosf, y=Rsiné, (29
lim  7,=o0[ 7gs]- (30
R—»
Thus
b ( 9%t (92¢)‘
N=Mes=— | T 2€ — 7 : (31)
x|, _, ay oz 9z° )| _,
We then decompose the functiofﬁmndfx into
‘Tb::ﬁo—‘r%v! %X:%O_’_’fv! (32)

where subscript 0 denotes contribution by the inviscid term
V[1/r] of the Lagerstrom needle and the subscritenotes
the remaining viscous terms. Combinif20)—(32), we ob-
tain

for z<0. Thus, we can express the linearized free-surface

conditions in terms ofp andf. Combining Eqs(12)—(19),
we obtain, az=0,

92 *f *f du, ow
P Pl X:_(_u ) 0
X 9z dy dz  IX dy 9z ox
&2 ?*f,  9*f, 9°*f v, ow
PR ; 2X=—(—“ “>, (22)
dy 9z ax dz Iy 9z 9z ' ay
P At I3, ap  ofy
0—)(5—26((9)( 02 axayaz) \az oy
Py 9w,
- _(ﬂ_x_ze ax gz i)’ (22)

To solve the problem, it is convenient to define #s£0
the following Fourier transforms for=1 or 3(1 and 3 de-
notex andz, respectively,

(23

¢=F f Bk kole! ke +AZ qig, dy,
fj=Ff J filky kol ko rka B2 dig diy,  (24)

where
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. [~ (Ki2A+ 1)+ 2i ek A+ 2€2A%(A+B) e A%

ho= A , (33

~  (—2iek;B—4€’°A%B)e B

b, = 3 , (34)

. (—2ek A +4i Aty e A a5

ho= KA : (35

. _[(i/2)(k§—A)+2eklA2—2i62A4—2i52A3B]e—BZo

v koA ’
(36)

where

A=(Ki—A)—4iek;A%+4€>A3(B—A). (37)

Hence, the exact integral expressions of the wave amplitude
can be written as

7728: F fﬁ J’7 hoeiR(kl cos 0+k; sin 0)d kl dkz , (38)

nlléS:Ff_ f_ hUeiR(k1 cos 0+k; sin G)dkl dkz, (39)
where

A. T. Chan and A. T. Chwang
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ho= (iky+2€A2) do+ 2i ek BT, 40 p)
0=(iky+2eA%) o+ 21 ekxBTo 40 i likajolkp]cos 6 eky 3 kplcos 6+ ik, sin 01=0,
2

h, = (ik;+ 2€A2) b, + 2i ek, BT, . (41) (52

To obtain the leading term in the expansion of the asy,, j=
ymptotic representation for large of 75, we shall employ
Lighthill’s two-stage schem® We first consider the roots of
the pole equation,

1 or 2. Equation52) has two roots, namelyjj for
eachj. We expandk, similarly to ordere to satisfy the above
equation. Therefore, we write, fge=1 or 2,

Kyi~Ky o[ 0] +ieks:,. 53
A[Kg, Kz, €]=(ki—A) - 4i ek; A%+ 4€>A3(B—A)=0. 2Kyl O+ Tekz &3
(42)  Upon substituting53) into (52), it shows that

For smalle, Eq. (42) has two simple roots, which we shall ke r 10k
call k; ; and ky ,. From step 1 of Lighthil’'s scheme, we kijl[ 9]=——22k1"1/ k2 . (54
obtain from(38) and(39) for large R, 9Ky jol IK; k=k510

We return to evaluate the integral expressiofid) and
(44) at the saddle points. Hed3) and(44) can be written,

2
77252 iFjgl Reiho]e‘R(li cos f+kj sin 6) dk,, (43
in terms of saddle point contributions evaluatekgaf, as?

— o0

2
Ws=iFY, | Regh,JeRlacosorkosing gy, (4q , \/ 2w
=1 J - NFs™ 770_":; R|9°ky j/dky|cos 6
where Resf] denotes the residue of functidn
In order to satisfy the pole equation, we introduce the X Reghg]e'Rlka, cos 6+ k3 sin o+ (i2)(m=5)]  (55)

following expansion ok, with respect tce. For smalle, the

two rootsklyj[kz,e] take the form of . 2 ) 27
- nks= i =iF 2 R| 9%k, i/ 9k,|cos 0
kij[Ka,€]~kyjolKo]+iekyji[Ko], (45) J 17902
— 1) < Res h, 1eiRlky, cos 0+ky sin 0+ (i/2)(7— ;)]
olkal =TT (46 sHmjeT .
(1+m[k,])3 where the phase angt is defined through the relationship
Kijilkol= —5——=—, (47)
j 2m(k,] Ky, _ 7Ky o5 -

wherem[k,] is a positive function defined by 9k 9k '

mlk,]= V1+4k3. (48)  Substituting(53) into the exponent of55) and(56), we have

Since the residue factors Rég] and Res,] do not depend  iR(ky; cos 6+kj; sin 6)

on R but only one andk,, it is convenient to replace them . .

by their respective leading terms in their expansions about ~iR[(Kyjo+iekyj1)cos 0+ (K o+ieky;;)sin 6]. (58)
€=0, because only these terms contribute significantly to th

asymptotic expressions of the wave amplitdti&hus From (54 it can be shown thakz j, is real, and thus

1+mik iR(ky; cos 6+ k;j sin 6)
Regho]=—i ﬁ e [2(l+mkD2l 1 Of €], (49 .
2mlk;] ~ — €Rk;j1 c0S 0+iR(Kyjo COS 04k 0 Sin ) (59)
2(—1)7" (14 mlk,]) "
_ 1R and
Regh,]=¢€ -~ 5 )
(9 .
Xe—(zo/\sZ)[(1+m[k2])/2]1’4[1+i<—1)1‘1]+i[(—1)i‘177/4] ﬁ cosf+sin =0, for j=1 or 2. (60
2 Tko=k3
J0

+ o[ e¥%eVkijo’€], (50) _ _
Returning to(57), we expand the denominator of the saddle
Examination of(49) and(50) shows that the wave amplitude point contributions abou&=0, and keep only the terms of

can be expanded in the square root powee,dhat is, order € or lower. From this and Eqg57)—(60), the phase
angle in(57) can be found as
Nrs= Mo+ €2y +O[ €], (51 gle in(57)
2

and 725 contributes to the leading termy, while 725 contrib- 5= z sgr‘ ( d kl,jo) Lo[el. 61)
utes to the termy,. 2 oKz Sl -k

The integral can now be evaluated by the steepest- 210
descent method. The saddle points are khie that satisfy By substitutingk; j o for k; into the residue function in
the derivative of the exponent of the Fourier kernel, (49 and(50), we obtain the leading term of it for smad]
Phys. Fluids, Vol. 8, No. 2, February 1996 A. T. Chan and A. T. Chwang 423
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1+ m[kzt,jo] X @ (20 N2 (1+mlk; ;)21 1+i (=111 +i(= 1)~ H(wld)

Reghy]=—i 2107 q(z/2) (14 mikg o) (62)
° 2mlk; o] (63)
_\j-1 + 714
Regh,]= €2 2 13 1rml kZJO]) Substituting the expansions int67), we obtain the summa-
mlk3;0l 2 tion representation of the wave amplitude evaluatekﬁg@,

%Ky ; 214 m* . _ . 5 )
770:2FE E R 12,10 cos @ - ef(z0/2)(l+m*)feRk1'j1 cos 0+iR(ky jo c050+k£jo)+|(w/4)sgd& kl‘jolakz], (64)
E k5 2m-
%Ky i0 2yt (14m*\ T4
=4iF R|—=- cos 6 =
mear 3 3 (R w2
e~ (Z/\VZO(1+ m5) 21 41+ (—- 1)1 Y — €Rky j; cosf+iR(ky jo cos O+ kijo)+i(w/4)sgr{(72klyjo/aké]]+i(—1)i*1(w/4)’ (65)

whereX, stands for the summation over the saddle pokjtsand

m*=1+4(k3;0)°. (66)

The final procedure is to express ki in terms off. From Eqs.(45)—(48), we obtain

] +\1/2
kzi’joz (— 1)'m+( > tan 6, (67)
with the rootm™ of this equation written as
1
m::Z cof 9(1++1—8tarf 6). (68)

Upon substituting and other mathematical manipulation, the wave amplitude can be formally expressed as

3/4
e

+
m'+1 —(2g/2)(1+m™)— (4eRim™)[(mT +1)/2]3 cos

2a 1/2
7’]O=4F(m) (1-8 tarf (9)1/4><[

+ 1/2 +_q\ 12 - 3/4
% cos R m +1 cos f— m -1 sin 6 T + m +1 e~ (2/(1+m7)—(4eRM)[(m~ +1)/2]% cos ¢
2 2 4 2
m™+1)\12 m-—1)2 T
X — i —
cos{R 5 (cose ( 5 ) sin 6|+ 710 (69
12 + 32
771:4\/§F Ri:se) (1—8tarf' 0)1’4><{ m +1 e—(zO/\Z)(Hm*)1’4—(4eR/m+>[(m++1)/2]3 cosé
mt+1\ "2 mt—1\" y4 T
- . 0
x cog R —|— —— (1+m") ¥y —
coa{ > ) (cosa ( 5 ) sin 0) \/ﬂ( m™) 5
_ 32 _ 1/2
+ m +1 e—(zol\s?—e)(um*)1’4—4eR/m*[(m*+1)/2]3 cosox(:oﬁ{R m 2+1
m -1\ zZ
x(cosa—( 3 ) sin 6) —\/TO_ (L+m)YV4+ 7 ] (70
€

An immediate conclusion can be made about the wave am9=sin_1(%), however, this can be taken care of by the exten-
plitude regarding its region of validity. It can be seen that thesion of the method of steepest descent of uniform asymptot-
expression breaks down &6—8 tarf §)=0. This is just the ics of Chester, Friedman, and Urs¥ll.

same as in the classical inviscid Kelvin's wave pattern: sur-  Figures 1-3 show the normalized free-surface profiles
face deformation only occurs within a confined region ofgenerated by the horizontal Oseenlet fo+0.01, z;=1,
||<sin~%(3). Equationg69) and(70) break down even when F=3% andR>10. Close examination of69) and (70) and

424 Phys. Fluids, Vol. 8, No. 2, February 1996 A. T. Chan and A. T. Chwang
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FIG. 3. Wave amplitude due to a horizontal Oseenlet versus the distance
along the line of motion, and the dotted line represents the corresponding
inviscid solution.

FIG. 1. Free-surface profile created by a horizontal Oseenlet.

while Eq.(70) simply vanishes. The main difference between

Fig. 2 shows that the expressions involvimg representthe (69) and (71) is the presence of a viscous decay factor,
diverging wave system, while those involvimg™ represent namely
the transverse system. From the two wave amplitude expres- ;o1 213 cos g
sions, it can be seen that there exists a phase shift/df € '
between them, which is the same as in the inviscid case. ThEhis viscous decay effect can be seen in Fig. 3.
wavelength of the diverging wave system, calculated from  Since 7, is associated with the*? term, as shown in
the phase equation ¢89) and(70) is 4x/,3, and the angle of  (51), its contribution toward wave generation remains negli-
deviation subtended by the diverging and the transversgible unless the Oseenlet is very close to the free surface,
wave system with the line of motion at Kelvin's wedge is that is, when the exponential ternes (%o/\Za)(1+m*)M¥ o
found to be3{m/2—sin"%(3)], all being reconciled with the (70 become significant. Froni70), as 6 tends to zero, the
inviscid case. diverging waves first rise to a sharp peak near the line of

In the limit as e approaches zero, similar to the use of motion and then drop rapidly to 0 a=0. This is in contrast
artificial viscosity in classical calculations of inviscid waves, with the inviscid theory, which predicts infinite diverging
Eq. (69) simply reduces to the classical Kelvin's wave pat-ywave amplitude at¥=0. Hence, it can be stated that the

tern produced by a source of normalized strengty 4s  effect of viscosity is to remove this singularity.
calculated by Wehausen and Laitche,

112 o Ill. THEORETICAL SOLUTION FOR A HORIZONTAL
(1-8tarf 6) OSEEN DOUBLET

70~ Rcos @
mt 1|34 m 41\ 2 To simulate the flow over a self-propelling body, we in-
X e (z0/2)(1+m") Cog{ R( vestigate the case of an Oseen doublet. The analysis follows
2 exactly that of the Oseenlet, with only minor modifications.
mt—1\12 - Since the flow field over a doublet can be taken as the gra-
X | cos 0—( 5 ) sin 0) - Z} dient of that of the source, therefore the velocity and pressure
fields of a horizontal Oseen doublet with strengthl4are
- 3/4 - 1/2
4 ( m +1 e~ (/2)(1+m") COE{R m +1 T g e . d v ex—Nf2e_ -
2 2 =~ 7 &I ; : (72
m~—1\12 T
X - ino|+— 71 Jd I'x
cos 0 ( 3 ) sin 6|+ 11, (71) p= 7 (73
where
y I'=F dx. (74)

Using similar procedures and defining the Fourier transform,

¢:rf J‘gb[kl,kz]ei(kl”kzy““dkldkz, (75)

0 5 10 15 X fj:FfﬁxJ‘iwfj[kl-kZ]el(le+k2y)+BZ dk, dk,,  (76)
FIG. 2. Wave pattern generated by a horizontal Oseenlet/Oseen doubletwe obtain, after some mathematical manipulation,

Phys. Fluids, Vol. 8, No. 2, February 1996 A. T. Chan and A. T. Chwang 425
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" [ — (K3/2A+ 1) + 2i ek, A+ 2€?A%(A+B) Je A%

ho=—1ky A ,
(77)

- . (—2iek;B—4€°A%B)e B

¢U =1 kl A ’ (78)

N . —2ekA“t4ie e

(—2ek;A’+4i’At)e™ A%
f0=_|kl kZA f (79)
f,=—ik,
[(i/2)(K2— A)+ 2¢ek,A?— 2i 2A*— 2i 2A°Ble B
X 1
sz FIG. 4. Free-surface profile created by a horizontal Oseen doublet.

(80)

where A is given in (37). The integral form of the surface ,];S:rfw fw h,eiR(kicoso+ka sin0) i dk,, (82)
profile can then be expressed as —ooJ -
wherehy andh,, are given in(40) and(41).

ngszrfw fx heelR(k1 cosotke sine) g gk, (81) The asymptotic analysis follows that in Sep. II. The pro-
—oJ - cedures will not be reproduced here but we simply quote the
final result,

1/2 + 5/4
7]0=—2F<R i:)TS 0) (1—8tar? 9)—1/4{ m +1 e—(20/2)(1+m*)—(4eR/m+)[(m++1)/2] cos 6
+ 12 +_ 4\ 12 - 5/4
X cos R m-+1 cos H— m 1 sin 6 +z + m +1 ef(zolz)(l+m_)f(AeR/m_)(m‘+1)/2 cosé
2 2 4 2
m-+1)\12 m~—1\12 37
Xcos R 5 cos 60— 5 sin 6 +T , (83
1/2 n 2
7712—2\/§F Ri:sa) (1—8tan’- 0)1/4[(m +1) e—(zo/\sZ)(1+m+)1’4—(4eR/m+>[(m++1)/2]3cosef
1/2 1/2
mt+1 mt—1 z
X cos R cos 60— sin 6 ——0(1+m*)1’4
2 2 \/Z
_ 2
m +1 e—(zO/\s‘Z)(Hm*>1/4—(4eR/m*)[(m*+1)/2]3cose
xcog R| T " P Yy 6] 22 (14m )t T 84
co 5 cos 5 sin \/2_6( m~) 51 (84)

Figures 4 and 5 give the graphical plots of a horizontallV. THEORETICAL SOLUTION FOR A VERTICAL

Oseen doublet witke=0.01,z,=1, '=%, and largeR. The =~ OSEENLET

wave pattern due to an Oseen doublet is very similar to that  \We now investigate the surface waves generated by an
produced by an Oseenlet, except that the former lags th@seenlet moving perpendicularly away from the free surface
latter by a phase ofr/2. The wave amplitude generated is with velocity U. For the wake to interact with the free sur-
seen to be much reduced because of the decoupling effect fdce, the Oseenlet must move away from it. Since the flow is
the doublet. basically potential upstream and outside of the laminar wake

426 Phys. Fluids, Vol. 8, No. 2, February 1996 A. T. Chan and A. T. Chwang
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FIG. 5. Wave amplitude due to a horizontal Oseen doublet versus distance  FIG. 6. Free surface profile generated by a vertical Oseenlet.
along the line of motion and the dotted line represents the corresponding
inviscid solution.

UFS:_Vd)"‘VXf, (88)
of the singularity, the free-surface deformation caused by the
Oseenlet moving toward the free surface is negligible whenvith
compared with that generated by the wake. Therefore we ._
shall concentrate on investigating the effect of an Oseenlet f=1e,+ frer. 9
moving away from the free surface only. Assuming suffi- After some mathematical manipulation, the free-surface con-
ciently large depth so that the Oseen equations can be erditions can be expressed in termsdbnly as
ployed, the solution t¢1) and(2) for a singular force located

2 3 2
at (0,0,—zy) with a magnitude 4F, along the negative @_26 %_ %: —(%—25 &_V\;“_Wu . (90
direction in an unbounded fluid is then Jz Jzz  Jz Iz Jz
F, elztzo=r)i2e elztzo—rize__q Since ¢ satisfies the cylindrical Laplacian, we introduce a
W=———F " &ftF\V , (89  Hankel transform defined by
p = — 2Zr%) (86) $=F, fo ¢[Kle *Io[kR]dk, (91)

r

We shall employ cylindrical coordinateR(6,2) to deal with ~ whereJo[x] is the Bessel function of the zeroth order.
this axisymmetric problem. The free-surface boundary con-  Recalling the expression for the wave amplitude,
ditions are given by7)—(9), except tha(9) is replaced by

= Nut Trs, (92
z=0

J
p 52W n= p|Z:0_26 E
E_ZE ?—WZO, (87)
it must be emphasized thay, is not negligible in this case.

for z=0, whereu=(u,v,w) is the normalized velocity vec- Employing similar techniques, the free-surface potential

tor in the polar coordinate system. . functions ¢ can be expressed algebraically as
We introduce similarly the free-surface potential and
streamfunctions such that ho=—e K7, (93

3 :(a2+ a)+(1—a)Vk’+a’+(2+3a)(k*+a?) — (k’+a?)%? ctola T D

(94
! Vk2+a%(ek?—k+1)
|
where subscripts 0 ang have the same meaning as in the o
previous section and 70= szo hoJo[ kR]dk, (96)
1
a=_—. (95 o
2e %:szo h,Jo[ kR]dK, (97)
Hence, the exact integral form of the wave amplitude can be
formulated as where
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FIG. 7. Wave amplitude of a vertical Oseenlet versus the radial distance.
FIG. 8. Free-surface profile generated by a vertical Oseen doublet.

ho=(—k+2€k?) o, (98)  effect of viscosity. In the inviscid case, the ripples decay
A exponentially. It is observed that the wave amplitude from
h,=(—k+2ek?) ¢, , (990  the free-surface effect termegis negligible when compared

to the unbounded solution,, . This is in large contrast with
From the theory of the Hankel transforthit can be seen the horizontal Oseenlet, where the main contribution arises
that the first integral is directly integrable, giving rise to anfrom the free-surface solution, as seen from E3f). This
exact solution, can be explained from the fact that as the Oseen equations
are employed, large submergence must be assumed. As the
free-surface solution decays like expgy/€], the solution

oFi[1,-31;R¥Y(R?+2))] becomes negligible.
770:Fz - 2 2
VR +2z;
AeF[3,—1;1RI(RP+22)] V. THEORETICAL SOLUTION FOR A VERTICAL
efzolé, (100 OSEEN DOUBLET

2 2\3/2
(R°+2p) . . .
We continue to consider the effect of a self-propelling

. . . body moving vertically downward away from the free sur-
where,F,[a,b;c;2] is the 2-1 hypergeometric function. On face. The velocity and pressure fields of a vertical Oseen

the other hand, they, term is simply a series of Cauchy .
Principal Values. However, by Laplace’s asymptotic method,d oublet with strength 4T°; can be expressed as

it can be found that all of them are of the ordereaf %0’¢ or

. o e(z+zofr)/25 J e(z+zofr)/25_ 1
lower, and thus can be neglected for large valueg,ofhus, uy=——-——e~I,—V —}
the first two terms of the wave amplitude expansion follow- € 0z r oz r
ing (51) are (103

9 I'y(z+2p) 10
FiL-ELRYR+Z)]) Pmaz (104
70=F, - e %S, (10
VR?+75 where
71=0. (102 I',=F,dz (105

The normalized graphical plots of the vertical Oseenlets  Using exactly the same procedure, but replacingall
with €=0.01,z,=10, andF,=1 are presented in Fig. 6 and by I',, we can obtain the free-surface potential functions as
Fig. 7. Based on the expressions and the figures, it can be
seen that the decay of the ripples is much quickened by the ¢,=ke k%, (100

2 _ 2 2 20 42\ _ (124 22)3/2
(}5”:_ (a*+a)+(1—a)vk +a+(2+3a)(k“+a°)—(k“+a“) (a- —k2+a2)e20<a—r2+a2>, (107
VK2 +a?(ek?—k+1)
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N Though extensive work on surface waves has been known,
the inclusion of the laminar wake is believed to be new. The

0 graphical plots of the free-surface profiles are in fairly good
agreement with physical intuition. However, it must be em-
-0.002 phasized that the use of the linearized theory can only predict
the leading-order solutions for the actual problem.
-0.004 The present work is a first attempt. Possible cases such
as wave generation in waters of finite depth, transient devel-
-0.006 opment of viscous waves may also be of interest in engineer-
ing and physical applications. The use of linearized theory
-0.008 has also shed light on the hypothetical possibility of super-
0 2 4 6 8 10 position to simulate other types of flow over a finite body. All
R of the aforementioned work will require extensive investiga-

tion and will be discussed in future studies.
FIG. 9. Wave amplitude of a vertical Oseen doublet versus the radial dis-
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