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Abstract—An image-acquisition system composed of an array
of sensors, where each sensor has a subarray of sensing elements
of suitable size, has recently been popular for increasing the spa-
tial resolution with high signal-to-noise ratio beyond the perfor-
mance bound of technologies that constrain the manufacture of
imaging devices. Small perturbations around the ideal subpixel lo-
cations of the sensing elements (responsible for capturing the se-
quence of undersampled degraded frames), because of imperfec-
tions in fabrication, limit the performance of the signal-processing
algorithms for processing and integrating the acquired images for
the desired enhanced resolution and quality. The contributions of
this paper include an analysis of the displacement errors on the
convergence rate of the iterative approach for solving the trans-
form based preconditioned system of equations. Subsequently, it is
established that the use of the MAP, 2 norm or 1 norm regular-
ization functional leads to a proof of linear convergence of the con-
jugate gradient method in terms of the displacement errors caused
by the imperfect subpixel locations. Results of simulation support
the analytical results.

Index Terms—Displacement-error analysis, high resolutin,
image reconstruction, multisensors.

I. INTRODUCTION

A VERY fertile arena for applications of some of the
developed theory of multidimensional systems has been

spatio-temporal processing following image acquisition by, say
a single camera, mutiple cameras or an array of sensors. Due
to hardware cost, size, and fabrication complexity limitations,
imaging systems like CCD detector arrays often provide only
multiple low-resolution degraded images. However, a high-res-
olution image is indispensable in applications including health
diagnosis and monitoring, military surveillance, and terrain
mapping by remote sensing. Other intriguing possibilities
include substituting expensive high resolution instruments like
scanning electron microscopes by their cruder, cheaper coun-
terparts and then applying technical methods for increasing the
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resolution to that derivable with much more costly equipment.
Resolution improvement by applying tools from digital signal
processing technique has, therefore, been a topic of very great
interest [3], [5], [9], [11], [16], [19], [20], [6]. The attainment
of image superresolution (for simplicity, the difference in the
terminologies of superresolution and high-resolution or inter-
polation is ignored, because in both cases the low-resolution
images acquired for processing in this paper are assumed
to be from sensor arrays which are shifted from each other
by subpixel displacements) was based on the feasibility of
reconstruction of 2-D bandlimited signals from nonuniform
samples [10] arising from frames generated by microscanning
i.e., subpixel shifts between successive frames, each of which
provides an unique snapshot of a stationary scene.

In [9], Kim, Bose, and Valenzuela proposed a weighted
recursive least squares algorithm, based on sequential es-
timation theory in the frequency-wavenumber domain, to
achieve simultaneous improvement in signal-to-noise ratio
and resolution from available registered (for horizontal and
vertical displacements, sufficient for LANDSAT type imaging)
sequence of low-resolution noisy frames. In [11], Kim and Su
also incorporated explicitly the deblurring computation into the
high-resolution image reconstruction process since separate
deblurring of input frames would introduce the undesirable
phase and high wavenumber distortions in the DFT of those
frames. A DCT-based approach in the spatial domain with
regularization, but without the recursive updating feature,
was recently considered in [17] and an optimization theory
based approach with regularization was given in [7]. Proper
choice of the regularization tuning parameter is crucial to
achieving robustness in the presence of noise. The-curve
based procedure, recently applied to image processing, avoids
trial-and-error in the selection of an optimal tuning parameter
[2]. Stark and Oskoui [19] and Tekalp, Ozkan and Sezan [20]
formulated a projection onto convex sets algorithm to compute
an estimate from low-resolution images obtained by either
scanning or rotating an image with respect to the CCD image
acquisition sensor array or mounting the image on a moving
platform [7].

Multiple undersampled images of a scene are often obtained
by using multiple identical image sensors which are shifted rel-
ative to each other by subpixel displacements [12], [8]. The re-
sulting high-resolution image reconstruction problem using a
set of currently-available image sensors is interesting because

1057-7122/02$17.00 © 2002 IEEE
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it is closely related to the design of high-definition television
(HDTV) and very high-definition (VHD) image sensors. CCD
image sensor arrays, where each sensor consists of a rectangular
subarray of sensing elements, produce discrete images whose
sampling rate and resolution are determined by the physical size
of the sensing elements. If multiple CCD image sensor arrays
are shifted relative to each other by exact subpixel values, the
reconstruction of high-resolution images can be modeled by

and (1)

where is the desired high-resolution image,is the blur oper-
ator, is the output high-resolution image formed from low-res-
olution frames and is the additive Gaussian noise. However,
as perfect subpixel displacements are practically impossible to
realize, blur operators in multisensor high-resolution image re-
construction are space-variant.

Since the system described in (1) is ill-conditioned, solu-
tion for is constructed by applying the maximum a posteriori
(MAP) regularization technique that involves a functional ,
which measures the regularity of, and a regularization param-
eter that controls the degree of regularity of the solution to the
minimization problem

(2)

The boundary values of are not completely determined by
the original image inside the scene, because of the blurring
process. They are also affected by the values ofoutside the
scene. Therefore, when solving forfrom (1), one needs some
assumptions on the values ofoutside ther scene, referred to
as boundary conditions. In [3], Bose and Boo imposed zero
boundary condition outside the scene, i.e., a dark background
outside the scene was assumed, which can produce a ringing ef-
fect at the boundary of the reconstructed image. The problem is
aggravated if the images are acquired from a large sensor array
since the number of pixel values of the image affected by the
sensor array increases (see [4]). In [4], [14], [15], the Neumann
boundary condition was imposed i.e., the scene immediately
outside is a reflection of the original scene at the boundary. Ng
and Yip [15] recently showed that the model with the Neumann
boundary condition gives better reconstructed high-resolution
image than obtainable with the zero boundary condition.

The MAP regularization [3], [15], the norm regulariza-
tion functional and norm regularization
functional [14] have been considered and
used in high-resolution image reconstruction. Here,is the
first order differential operator. Moreover, transform based pre-
conditioners were applied to solve the structured linear system
of equations arising from high-resolution image reconstruction
models. Numerical results have shown that these transform
based preconditioners are effective.

In practice, there can be small perturbations around these
ideal subpixel locations due to imperfections of the fabrication
imaging system. The main aim of this paper is to give a detailed
discussion and analysis of these displacement errors in the con-
vergence rate of the iterative method when applied to solve the
transform based preconditioned system. We prove that when the
MAP, norm or norm regularization functional is used, the

convergence of the conjugate gradient method depends linearly
on these displacement errors arising from imperfect subpixel lo-
cations. We remark that this analysis has not been discussed in
the previous papers.

The outline of the paper is as follows. In Section II, we give a
mathematical formulation of the problem. Analysis of displace-
ment errors in the convergence analysis of the iterative method
is given in Section III. In Section IV, numerical results are pre-
sented to demonstrate the theoretical results shown in Section
III.

II. THE MATHEMATICAL MODEL

In this paper, a specific high-resolution image reconstruction
problem, based on a model for a prefabricated multisensor
image acquisition system, recently proposed and studied by
Bose and Boo [3] is considered. More general high-resolution
(or super-resolution) image reconstruction problems can be
found in [8], [18], [20].

We begin with a brief introduction to the mathematical model
considered by Bose and Boo. Consider a sensor array with

sensors in which each sensor has sensing elements
(pixels) and the size of each sensing element is . Our
aim is to reconstruct an image of resolution , where

and . To maintain the aspect
ratio of the reconstructed image, we consider the case where

only. For simplicity, we assume thatis an even
number in the following discussion.

In order to have enough information to resolve the high-reso-
lution image, there are subpixel displacements between sensors.
In the ideal case, the sensors are shifted from each other by a
value proportional to . However, in practice there
can be small perturbations around these ideal subpixel locations
due to imperfections of the mechanical imaging system. Thus,
for with , the horizontal
and vertical displacements and of the -th sensor
with respect to the -th reference sensor are given by

and

Here, and denote respectively the normalized hori-
zontal and vertical displacement errors.

We remark that the parameters and can be obtained
by manufacturers during camera calibration. We assume that

and

For if not, the low-resolution images observed from two dif-
ferent sensors will be overlapped so much that the information
is not sufficient to reconstruct the high-resolution image (see
[3]).

Let be the original scene. Then, the observed low-resolution
image from the th sensor is modeled by (3) shown
at the bottom of the next page for and

. Here is the noise corresponding to the -th
sensor. We interlace the low-resolution images to form an

image by assigning

(4)
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Here, is an image and is called theobserved high-
resolution image.

The continuous-image model in (3) can be discretized by the
rectangular rule and approximated by a discrete image model.
Let and be, respectively, the discretizations ofand using
a column ordering. According to the integration formula in (3),
the -th value of is the average of the values at the
neighborhood of , im-
plying, therefore, that the corresponding blur matrix is banded.
The Neumann boundary condition, imposed on the images, as-
sumes that the scene immediately outside is a reflection of the
original scene at the boundary, i.e.

where

Under the Neumann boundary condition, the blurring matrices
are still banded matrices with bandwidth , but the entries
on the upper left part and the lower right part of the matrices are
changed. The resulting matrices, denoted by and

, have a Toeplitz-plus-Hankel structure

ones

...
...

.. .
. . .

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

ones
ones

...

...

ones

(5)

where

and is defined similarly. The blurring matrix corre-
sponding to the -th sensor under the Neumann boundary
condition is given by the Kronecker product

The blurring matrix for the whole sensor array is made up of
blurring matrices from each sensor

(6)

Here, are diagonal matrices with diagonal elements equal
to 1 if the corresponding component of comes from the

-th sensor and zero otherwise, see [3] for more details.
With the Tikhonov regularization, our discretization problem
becomes

(7)

where is the discretization matrix corresponding to the regu-
larization functional in (2). In this paper, we consider the
MAP, norm and norm regularization functionals. Cor-
respondingly, the matrices are the inverse of the covariance
matrix of the original image, identity matrix and the discrete
Laplacian matrix with the Neumann boundary condition.

III. A NALYSIS OF DISPLACEMENT ERRORS

A. Cosine Transform Based Preconditioners

The linear system (7) will be solved by using the precondi-
tioned conjugate gradient method. Let be the discrete
cosine transform matrix, i.e., the -th entry of is given
by

where is the Kronecker delta. Note that the matrix-vector
product can be computed in operations for any
vector , see ([13], pp. 59–60).

When there are no subpixel displacement errors, i.e., when
all , the matrices and also
are the same for all and . We will denote them simply by

and . We claim that in this case, the blurring matrix
can always be diagonalized by

the discrete cosine transform matrix.
Lemma 1: For any given even integer, we have

where .

(3)
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Proof: For , we get

zeros

...
...

...
. . .

. . .
. . .

. . .
. . .

. . .

. ..
. . .

. ..
. . .

. ..
. . .

. ..
. . .

...

zeros
zeros

...

...

zeros

We note that each row or each column of has
at most two nonzero entries. Therefore, we have

It implies that

By a similar argument, we also obtain
. We note from (5) that each row or each column of

has entries of 1, one entry of and one
entry of . Therefore

and

Hence, both and are less than or equal
to 1. Since is symmetric and (or its scalar multiple)
is the eigenvector of , the corresponding eigenvalue is equal
to 1. This fact can also be inferred from the expression for the
eigenvalues of . To wit, the eigenvalues of the spatially in-
variant blur matrix are [15]

where for some positive integer

else.

The largest eigenvalue of is equal to 1, and therefore
. Using these results, we derive

Since , it follows that

When there are subpixel displacement errors, the blurring
matrix has the same banded structure as that of,
but with some entries slightly perturbed. It is a nonsymmetric
block-Toeplitz–Hankel–Toeplitz–Hankel block matrix but it can
no longer be diagonalized by the discrete cosine transform ma-
trix. Therefore we solve the corresponding linear system by the
preconditioned conjugate gradient method. We will use the co-
sine transform preconditioner of as the precondi-
tioner.

B. Convergence Analysis

In this section, we study the convergence rate of the precondi-
tioned conjugate gradient method for solving the linear systems

(8)

where is a positive constant. We remark that when the MAP,
norm or norm regularization functional is used, the
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TABLE I
NUMBER OF PCG ITERATIONS FORL = 2

corresponding regularization matrices under the Neumann
boundary condition can be diagonalized by the discrete cosine
transform matrix. Thus if we use the Neumann boundary con-
dition for both the blurring matrix and the regularization
matrix then the coefficient matrix can be
diagonalized by the discrete cosine transform matrix and hence
its inversion can be done with three two-dimensional fast cosine
transforms (one for finding the eigenvalues of the coefficient
matrix and two for transforming the right hand side and the
solution vector; see [13] for instance). Thus the total cost of
solving the system is of operations.

Below we show that the convergence rate of the conjugate
gradient method when applied to solve the linear system (8) de-
pends linearly on the displacement errors arising from imperfect
subpixel locations.

Theorem 1: Let .
Then the spectra of the preconditioned matrix

belong to the interval
, where is a positive constant

independent of and and .
Proof: We note that

Since

and

(see Lemma 1), we have

and

By using these results, we obtain

Fig. 1. The convergence curves using preconditioners and without using
preconditioners for differentL and �. The unbroken and broken lines are
associated, respectively, with and without the use of preconditioners.

Moreover, it has been shown in [14], [15] that
, where is a positive constant independent of

and . Hence the result follows.
According to the above theorem, we conclude that the spectra

of the preconditioned matrices are clustered around 1 for suf-
ficiently small . It is of theoretical interest to note that the
2-norm bound obtained above can be improved, though the extra
work required to do this is not needed to reach the objective
proved next. The reader, interested in understanding better the
scopes for further exploiting the algebraic structure inherent in
the problem discussed in this paper, might wish to investigate
the extent of these improvements. The following theorem proves
the convergence rate of the conjugate gradient method when ap-
plied to solve the preconditioned systems considered.

Theorem 2: Let . If
is sufficiently small , then the th iterate of
the conjugate gradient method when applied to solve the linear
system (8), satisfies

Here, is the solution of the linear system (8) and
.
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TABLE II
NUMBER OF PCG ITERATIONS FORL = 4

Fig. 2. Reconstructed images whenL = 2 and� = 0:15.

Proof: By using the theorem given in ([1], pp. 569–574),
the error vector at the th iteration of the conjugate gra-
dient method satisfies

where

Since

the result follows.

Thus, we conclude that the preconditioned conjugate gradient
method applied to (8) with will converge linearly with

. Since has only nonzero diagonals, the ma-
trix-vector product can be done in opera-
tions. We note that the preconditioner can be diag-
onalized by the discrete cosine transform matrix. Thus the cost
per each iteration is opera-
tions. Hence the total cost for finding the high-resolution image
vector using the MAP, -norm or -norm regularization is

operations.

IV. NUMERICAL RESULTS

In this section, we illustrate the effectiveness of using cosine
transform preconditioners for different displacement errors in
solving high-resolution image reconstruction problems.

The conjugate gradient method is employed to solve
the preconditioned system (8). The stopping criterion is
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Fig. 3. Reconstructed images whenL = 4 and� = 0:15.

, where is the normal equations
residual after iterations. In the tests, Gaussian white noise with
signal-to-noise ratio of 40 dB is added to the low-resolution
images. Tables I–II show the numbers of PCG iterations, using
cosine transform based preconditioners, that are required for
convergence for and . In the tests,
and the signal-to-noise ratio is 40 dB. We see from the tables
that the convergence rate is independent offor fixed .
Moreover, the cosine preconditioned system converges at
most linearly with the displacement error as predicted as in
Theorem 2. In Fig. 1, we also show the convergence curves
(the -axis involves and the -axis involves
the iteration number) of the cosine transform preconditioned
system and the nonpreconditioned system for and .
It is clear that when is small, the convergence of the cosine
transform preconditioned system is rapid. In Figs. 2 and 3,
we show the 128-by-128 reconstructed images using different
PCG iterations when 2 2 and 4 4 sensor arrays are used.
We find that the reconstructed images already look very good
even if the stopping criterion is not reached.

V. CONCLUSION

The problem of high-resolution reconstruction from a set
of low-resolution images, in general, involves the solving of

an ill-conditioned and underdetermined large-scale system of
linear equations. In spite of the flurry of research in iterative
techniques for solution, the computational complexity analysis
and numerical issues, though crucial in implementation, have
not been adequately addressed. Tikhonov regularization, where
the regularization parameter is calculated by the generalized
cross-validation technique for the underdetermined system of
linear equations, alongwith circulant-type preconditioners have
very recently been used for attaining superresolution and com-
putational tractability has been observed from simulations [16].

In thispaper,analgorithmfor theattainmentofhigh-resolution
from low-resolution data acquired by a prefabricated array of
sensors, discussed in [3], is analyzed. Reconstruction of a high-
resolution image from multiple, undersampled, shifted degraded
image frames with the inevitable subpixel displacement errors,
occuring during the fabrication of charge-coupled device sensor
array of sensors, each with a planar subarray of sensing elements
used for capturing the image frames, has been a topic of very
great research interest. Zero boundary conditions, periodic
boundary conditions, and Neumann boundary conditions have
been separately imposed on the two-dimensional system model
for the reconstruction process. This model is linear shift-
variant and is ill-conditioned requiring the deployment of a
regularization technique on the structured system of equations.
In the case of Neumann boundary conditions, discrete cosine
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transform based preconditioners have been effective in the
high-resolution reconstruction problem [14], [15]. The main
contribution of this paper is an analysis and proof of convergence
of the iterative method deployed to solve the transform based
preconditioned system. The proof of linear convergence of
the conjugate gradient method on the displacement errors
caused from the imperfect locations of subpixels in the sensor
array fabrication process has been given and substantiated by
results from simulation. The intriguing possibility of combining
this encouraging result with the calculation of the optimum
regularization parameter by the-curve [2] gives an analytic
foundation for the high-resolution reconstruction process on
the image acquisition framework of the CCD sensor array. In
the future, attention could be directed toward another model
for signal capture that involves a single sensor array with
arbitrary shifts between multiple captures, where errors due
to motion estimation are ubiquitous.
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