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PRECONDITIONED LANCZOS METHODS FOR THE MINIMUM
EIGENVALUE OF A SYMMETRIC POSITIVE DEFINITE TOEPLITZ

MATRIX∗
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SIAM J. SCI. COMPUT. c© 2000 Society for Industrial and Applied Mathematics
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Abstract. In this paper, we apply the preconditioned Lanczos (PL) method to compute the
minimum eigenvalue of a symmetric positive definite Toeplitz matrix. The sine transform-based
preconditioner is used to speed up the convergence rate of the PL method. The resulting method
involves only Toeplitz and sine transform matrix-vector multiplications and hence can be computed
efficiently by fast transform algorithms. We show that if the symmetric Toeplitz matrix is generated
by a positive 2π-periodic even continuous function, then the PL method will converge sufficiently
fast. Numerical results including Toeplitz and non-Toeplitz matrices are reported to illustrate the
effectiveness of the method.
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1. Introduction. An n-by-n matrix Tn is said to be Toeplitz if

Tn =




t0 t−1 · · · t2−n t1−n

t1 t0 t−1 t2−n

... t1 t0
. . .

...

tn−2
. . .

. . . t−1

tn−1 tn−2 · · · t1 t0



;(1.1)

i.e., Tn is constant along its diagonals. There are many efficient direct methods that
exploit Toeplitz structure to invert Toeplitz matrices or to solve Toeplitz systems
Tnx = b [15, 13]. There are also preconditioned conjugate gradient methods for
solving Toeplitz systems with O(n log n) operations [4].

Recent progress in signal processing and estimation has generated considerable
interest in the problem of computing the minimum eigenvalue of a Toeplitz matrix.
Numerical solution of the Toeplitz eigenvalue problem has recently received attention
[6, 10, 22, 23, 16]. In particular, Cybenko and Van Loan [6] presented a method for
using Levinson’s algorithm [15] to find the minimum eigenvalue of an n-by-nHermitian
Toeplitz matrix with O(n2) operations. In [22, 23], Trench extended their method
and gave an iterative method for computing arbitrary eigenvalues and associated
eigenvectors of Hermitian Toeplitz and Toeplitz-plus-Hankel matrices at a cost of
O(n2) per eigenvalue. On the other hand, there is an extensive literature on the
asymptotic distribution of the eigenvalues of a sequence of Toeplitz matrices. In this
case, the diagonals of the Toeplitz matrix are given by the Fourier coefficients of the
periodic function f , see [9].
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Table 1.1
Preconditioned Lanczos algorithm.

Let x0 be an approximation to the eigenvector x of An.
ρ0 = xT

0 Anx0/xT
0 x0

For k = 0, 1, . . .,

Let P
(k)
n = Q

(k)
n Q

(k)T
n be a preconditioner for the matrix An − ρkIn.

Set B
(k)
n = Q

(k)−1
n (An − ρkIn)Q

(k)−T
n .

Apply the Lanczos method for B
(k)
n with starting vector Q

(k)T
n xk.

The Lanczos algorithm for finding the smallest eigenvalue of the matrix B
(k)
n

builds an orthogonal matrix R(k) of orthogonal Lanczos vectors and approximates

the smallest eigenvalue of B
(k)
n by the smallest Ritz value (the smallest eigenvalue

of the symmetric tridiagonal matrix R(k)TB
(k)
n R(k)).

Let θk be the smallest Ritz value and yk be the corresponding Ritz vector

(R(k) times the eigenvector corresponding to the smallest eigenvalue θk of

R(k)TB
(k)
n R(k)). The stopping test is −θk > ‖B(k)

n yk − θkyk‖2.
xk+1 = Q

(k)−T
n yk.

ρk+1 = xT
k+1Anxk+1/x

T
k+1xk+1 (= ρk + θk/x

T
k+1xk+1).

End For

The purpose of this paper is to use the preconditioned Lanczos (PL) method
for computing the minimum eigenvalue of a symmetric positive definite Toeplitz ma-
trix. The PL method is stated as in Table 1.1. In Table 1.1, the outside loop of the
method updates a certain preconditioned matrix and the inside loop applies the Lanc-

zos method to the preconditioned matrix B
(k)
n . We compute the smallest Ritz value

and the corresponding Ritz vector of B
(k)
n and then transform it back to get xk+1, an

approximate eigenvector of An. The Rayleigh quotient ρk+1 of xk+1 is an approximate
eigenvalue of An. Morgan and Scott [17] showed both theoretically and numerically
that the PL method is effective. In particular, they proved that the iterate in the PL
algorithm converges to the minimum eigenvalue of An at an asymptotically quadratic
rate.

The motivation behind using the preconditioned Lanczos method in this paper is
that the Toeplitz matrix-vector product Tnv can be computed efficiently. For instance,
the matrix-vector product can be computed by the fast Fourier transform (FFT) by
first embedding Tn into a 2n-by-2n circulant matrix. The FFT for a real n-vector
based on the split-radix method requires [4nν/3−17n/9− (−1)ν/9+3] additions and
[2nν/3 − 19n/9 − (−1)ν/9 + 3] multiplications, where n = 2ν for positive integers ν
(see [1]). Thus when n = 2ν , the cost of the matrix-vector product requires O(n log n)
operations (see [4]). In order to compete with other methods [6, 22], the preconditioner
should be chosen so that the Lanczos method, when applied to the preconditioned
matrix, converges sufficiently fast in the inner loop. It is well known that the Lanczos
method converges very quickly if the desired eigenvalues are well separated from the
rest of the spectrum [19, 21].

In this paper, we employ the sine transform-based preconditioner to precondition
the Toeplitz matrix in the Lanczos algorithm. The idea of using preconditioned
conjugate gradient methods with sine transform-based preconditioners for solving
Toeplitz systems has been studied recently by various researchers, see [2, 3, 5, 11].
In these papers, the symmetric Toeplitz matrix Tn is assumed to be generated by
a 2π-periodic even function. It has been shown that if the function is positive and
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continuous, then the conjugate gradient method when applied to solve these sine
transform preconditioned systems, will converge superlinearly, for instance (see [5]).

The outline of this paper is as follows. In section 2, we recall some of the results
in approximating a given matrix by matrices that can be diagonalized by the discrete
sine transform matrix. In section 3, we use the optimal sine transform approximation
to construct preconditioners for the iteration matrices in the PL method. We will
show that if the symmetric Toeplitz matrix is generated by a positive 2π-periodic
even continuous function, then the spectra of the preconditioned matrices in the PL
algorithm will be clustered around 1. We prove that if the spectra of the precondi-
tioned matrices are clustered around 1, the Lanczos method, when applied to find the
minimum eigenvalue of the preconditioned matrix, will converge sufficiently fast. In
section 4, we discuss an application to signal processing and extend our method to
compute the minimum eigenvalue of a non-Toeplitz matrix. Finally, we describe the
results of numerical experiments with the algorithm in section 5.

2. Sine transform approximations. In the following, we assume that the
entries tj in (1.1) are given by

tj =
1

π

∫ π

0

f(θ) cos jθ dθ, j = 0,±1,±2, . . . .

The function f is called the generating function of the Toeplitz matrix Tn. We em-
phasize that this class of Toeplitz matrices arises in some practical applications; see
[4, 9] and the references therein. For this class of Toeplitz matrices, we note that
there is a close relationship between the spectrum of Tn and its generating function
f .

Theorem 2.1 (Grenander and Szegö [9]). Let f be a continuous function on
[0, 2π]. Then the spectrum λ(Tn) of Tn satisfies

λ(Tn) ⊆ [fmin, fmax] ∀n ≥ 1,

where fmin and fmax are the minimum and maximum values of f , respectively. More-
over, the eigenvalues λj(Tn), j = 0, 1, . . . , n− 1, are equally distributed as f(2πj/n),
i.e.,

lim
n→∞

1

n

n−1∑
j=0

[
g(λj(Tn))− g

(
f

(
2πj

n

))]
= 0

for any continuous function g defined on [0, 2π].
The equal distribution of eigenvalues of Toeplitz matrices indicates that the eigen-

values will not be clustered in general [9, p. 65]. Therefore, when the Lanczos method
is applied to compute the minimum eigenvalue of this Toeplitz matrix, it does not
converge very quickly; see the numerical results in section 5. To speed up the conver-
gence of the Lanczos method, we construct sine transform based-preconditioners for
this class of Toeplitz matrices.

The (j, k) entry of the n-by-n discrete sine transform matrix Ψn is given by√
2

n+ 1
sin

(
πjk

n+ 1

)
, 1 ≤ j, k ≤ n.

We note that Ψn are symmetric and orthogonal, i.e., Ψn = ΨT
n and ΨnΨ

T
n = In.

For any n-vector v, the matrix-vector product Ψnv can be done in O(n log n) real
operations by the fast sine transforms (FSTs); see, for instance, Yip and Rao [25].
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Let S be the vector space over the field of real numbers containing all n-by-n
matrices that can be diagonalized by the discrete sine transform matrix Ψn, i.e.,

S = {ΨnΛnΨn | Λn is diagonal} .

The authors of [2, 3, 5, 11] proposed the use of matrices that can be diagonalized by
the sine transform matrix Ψn to precondition Toeplitz matrices in conjugate gradient
iterations. The motivation is to exploit the fast inversion of these sine transform-based
matrices. They showed that the conjugate gradient iteration converges superlinearly
for a wide range of Toeplitz matrices; see [4].

Given an n-by-n matrix An, we are interested in finding a matrix Sn ∈ S which
minimizes ‖Sn−An‖F in the Frobenius norm ‖ · ‖F . We will denote the minimizer by
Pn and call it the optimal sine transform approximation to An. The following lemma
gives some basic properties of Pn.

Lemma 2.2 (Chan, Ng, and Wong [5]). Let An be an n-by-n symmetric matrix
and Pn be the minimizer of ‖Sn − An‖F over all Sn ∈ S. Then Pn is uniquely
determined by An and is given by

Pn = Ψn∆nΨn,(2.1)

where ∆n denotes the diagonal matrix whose diagonal is equal to the diagonal of the
matrix ΨnAnΨn, i.e.,

[∆n]j,j = [ΨnAnΨn]j,j .(2.2)

Furthermore,

λmin(An) ≤ λmin(∆n) ≤ λmax(∆n) ≤ λmax(An).(2.3)

In particular, if An is positive definite, then Pn is also positive definite.
We remark that this spectral property will be used to generate the starting value

ρ
(n)
0 and the starting vector x0 (cf. Table 1.1) in the PL algorithm.

We note that forming Pn by computing all the diagonal entries of ΨnAnΨn as in
(2.1) requires O(n2 log n) operations. Chan, Ng, and Wong [5] gave another approach
for constructing Pn which reduces the cost to O(n2) operations. Before we describe
how the matrix Pn is formed, we let Ui, i = 1, . . . , n, be n-by-n matrices with the
(j, k)th entry given by

[Ui]j,k =




1 if |j − k| = i− 1,
−1 if j + k = i− 2,
−1 if j + k = 2n− i+ 3,
0 otherwise.

We note that each Ui is a sparse matrix with at most 2n nonzero entries. Also, we let

r = (1Tn (U1 ◦An)1n, 1
T
n (U2 ◦An)1n, . . . , 1

T
n (Un ◦An)1n)

T ,(2.4)

where 1n = [1, 1, . . . , 1]T and ◦ is the Hadamard product. Now we can give explicit
formulae for the entries of the minimizer Pn.

Lemma 2.3. (Chan, Ng, and Wong [5]) Let An = [ajk] be an n-by-n symmetric
matrix and Pn be the minimizer of ‖Sn − An‖F over all Sn ∈ S. Denote the first
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column of Pn by p. If so and se are defined, respectively, to be the sum of the odd and
even index entries of r where the vector r is given in (2.4), then we have

[p]1 =
1

2(n+ 1)
(2[r]1 − [r]3), [p]i =

1

2(n+ 1)
([r]i − [r]i+2), i = 2, . . . , n− 2,

with

[p]n−1 =
1

2(n+ 1)
(so + [r]n−1), [p]n =

1

2(n+ 1)
(2se + [r]n)

if n is even and

[p]n−1 =
1

2(n+ 1)
(se + [r]n−1), [p]n =

1

2(n+ 1)
(2so + [r]n)

if n is odd.
We remark that if An has no special structure, then the vector r can be computed

in O(n2) operations because Ui are sparse with only O(n) nonzero entries each. There-
fore Pn can be computed in O(n2) operations. However, if An is a Toeplitz matrix,
then the cost can be reduced to O(n) operations. In particular, if [t0, t1, . . . , tn−1]

T

is the first column of an n-by-n symmetric Toeplitz matrix, then the first column of
the corresponding optimal sine transform-based preconditioner Pn is given by

pk =




t0 −
(
n− 2

n+ 1

)
t2, k = 1,

t1 −
(
n− 3

n+ 1

)
t3, k = 2,(

n− k + 3

n+ 1

)
tk−1 −

(
n− k − 1

n+ 1

)
tk+1, k = 3, 4, . . . , n− 2,(

4

n+ 1

)
tn−2, k = n− 1,(

3

n+ 1

)
tn−1, k = n.

In the next section, we will use the optimal sine transform approximation to
construct preconditioners for the iteration matrices in the PL method.

3. The convergence of preconditioned Lanczos methods. In this section,
we discuss the convergence of the preconditioned Lanczos method for Toeplitz matri-
ces. We first note the following lemma.

Lemma 3.1. Let {An} be a sequence of n-by-n symmetric positive definite ma-
trices and let ∆n denote the diagonal matrix whose diagonal is equal to the diagonal
of the matrix ΨnAnΨn. If

λmin(An) ≤ ρ(n)
0 < αn ≡ min

1≤j≤n
{[∆n]j,j}

and the preconditioners P
(k)
n are constructed by

P (k)
n = Ψn∆nΨn − ρ(n)

k In, k ≥ 0,(3.1)
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where ρ
(n)
0 is the starting value and ρ

(n)
k is generated in the PL algorithm, then the

matrices P
(k)
n are positive definite for k ≥ 0. Moreover, if infn |αn − ρ(n)

0 | ≥ δ > 0,

where δ is a constant independent of n, then ‖P (k)−1
n ‖2 is uniformly bounded for all

n and k.
Proof. Using (2.3), it is easy to show that the matrix ∆n is positive-definite.

Therefore, the matrix P
(0)
n is also positive definite. According to the PL algorithm

(cf. Table 1.1), we have

ρ
(n)
k+1 = ρ

(n)
k +

θk
xTk+1xk+1

and θk is nonpositive [17, Theorem 1], therefore the sequence {ρ(n)
k }∞k=0 is a non-

increasing sequence. It follows that P
(k)
n is positive definite for k ≥ 0. Hence if

infn |αn − ρ(n)
0 | ≥ δ > 0, we have

‖P (k)−1
n ‖2 ≤ 1

δ
∀n ≥ 1, k ≥ 0.

The result follows.
We note from Table 1.1 that the Cholesky factorization of the preconditioner P

(k)
n

is required, i.e.,

P (k)
n = Q(k)

n Q(k)T
n .

In our case, since P
(k)
n can be diagonalized by the discrete sine transform matrix Ψn,

the matrix Q
(k)
n is given by

Q(k)
n = Ψn(∆n − ρ(n)

k In)
1/2

with no extra computations using the spectral decomposition of the preconditioner.

Next we show that the spectra of the preconditioned Toeplitz matrices Q
(k)−1
n (Tn −

ρ
(n)
k In)Q

(k)−T
n are clustered around 1 in the Lanczos iteration.

Theorem 3.2. Let f be a positive continuous function on [0, π] and {Tn} be a
sequence of Toeplitz matrices generated by f . If infn |αn − ρ(n)

0 | ≥ δ > 0, where δ is a
constant independent of n, then for any given ε > 0, there exist positive integers N1

and N2 such that for all n > N1 and k ≥ 0, at most N2 eigenvalues of the matrices

Q
(k)−1
n (Tn − ρ(n)

k In)Q
(k)−T
n lie outside the interval (1− ε, 1 + ε).

Proof. Using the matrix decomposition P
(k)−1
n = Q

(k)−T
n Q

(k)−1
n , we note that the

matrix

Q(k)−1
n (Tn − ρ(n)

k In)Q
(k)−T
n

is similar to the matrix

In + P
(k)−1
n (Tn − ρ(n)

k In − P (k)
n ).

It has been proved in [5] that for any given ε > 0, there exist positive integers N1

and N2 such that for all n > N1, at most N2 eigenvalues of the matrices Tn −
Ψn∆nΨn (= Tn − P (0)

n ) have absolute values exceeding ε. By noting (3.1) and the

fact that ‖P (k)−1
n ‖2 is uniformly bounded, the spectra of Q

(k)−1
n (Tn − ρ(n)

k In)Q
(k)−T
n

are clustered around 1.
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The following theorem [8, Corollary 9.1.4] states the convergence rate of the esti-
mate of the smallest eigenvalue in the Lanczos method for a symmetric matrix in the
exact arithmetic.

Theorem 3.3. Let An be an n-by-n symmetric matrix with eigenvalues λ
(n)
1 ≥

· · · ≥ λ(n)
n and corresponding orthonormal eigenvectors z

(n)
1 , . . . , z

(n)
n . If θ

(n)
1 ≥ · · · ≥

θ
(n)
j are the eigenvalues of the matrix Wj obtained after j steps of the Lanczos itera-
tion, then

λ(n)
n ≤ θ(n)

j ≤ λ(n)
n +

(λ
(n)
1 − λ(n)

n )C2

cj−1(1 + 2C1)2
,(3.2)

whereWj is the matrix representation of the projection of An onto the Krylov subspace
[q1, q2, . . . , qj ] generated by the Lanczos iteration,

C1 =
λ

(n)
n−1 − λ(n)

n

λ
(n)
1 − λ(n)

n−1

, C2 =
1− |qT1 z(n)

n |2
|qT1 z(n)

n |2
,

and cj−1(x) is the Chebyshev polynomial of degree j − 1.
According to Theorem 3.3, the convergence rate of the estimate of the smallest

eigenvalue depends on C1. If the constant C1 is large, then the Lanczos method
will converge very quickly. As a corollary to Theorem 3.2, we can conclude that
the Lanczos method, when applied to find the minimum eigenvalue of the precondi-

tioned Toeplitz matrix Q
(k)−1
n (Tn − ρ(n)

k In)Q
(k)−T
n with clustered spectra, converges

sufficiently fast. The idea of the proof is to select a polynomial that annihilates the
(N2 − 1) extreme eigenvalues of the preconditioned Toeplitz matrix and the polyno-

mial is large at λ
(n)
n in comparison to its value at the remaining clustered eigenvalues

between 1− ε and 1 + ε. We have the following corollary.
Corollary 3.4. Let f be a positive continuous function on [0, π] and {Tn} be a

sequence of Toeplitz matrices generated by f . If infn |αn − ρ(n)
0 | ≥ δ > 0, where δ is

a constant independent of n, then for any given ε > 0 there exist positive integers N1

and N2 such that for all n > N1, k ≥ 0 and j > N2 − 1,

λ(n)
n ≤ θ(n)

j ≤ λ(n)
n +

(1 + ε− λ(n)
n )C2

cj−N2−1(1 + 2C1)2
,(3.3)

where λ
(n)
n and z

(n)
n are the smallest eigenvalues and its corresponding orthonormal

eigenvector of Q
(k)−1
n (Tn−ρ(n)

k In)Q
(k)−T
n , respectively, θ

(n)
j is the smallest eigenvalue

of the matrix Wj obtained after j steps of the Lanczos iteration, and

C1 =
1− ε− λ(n)

n

2ε
, C2 =

∑
� such that λ

(�)
n ∈[1−ε,1+ε]

|qT1 z(�)n |2

|qT1 z(n)
n |2

.

Here the matrix Wj is the matrix representation of the projection of Q
(k)−1
n (Tn −

ρ
(n)
k In)Q

(k)−T
n onto the Krylov subspace [q1, q2, . . . , qj ] generated by the Lanczos iter-

ation.
According to Corollary 3.4, the magnitude C1 is sufficiently large if ε is small and

cj−N2−1(1 + 2C1) grows exponentially as j increases, therefore the second term of
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the right-hand side inequality (3.3) is sufficiently small for large j. We note that the
upper bound in (3.3) is tighter than that in (3.2). Thus we expect that the smallest
eigenvalue estimate of the preconditioned Toeplitz matrix converges very quickly.

For the outside loop of the PL algorithm, Morgan and Scott [17] showed that the
method converges at an asymptotically quadratic rate.

Theorem 3.5 (Morgan and Scott [17]). Assume that the matrices P
(k)
n and

P
(k)−1
n in the preconditioned Lanczos algorithm, as stated in Table 1.1, are uniformly

bounded in ,2-norm. The iterate ρ
(n)
k converges to an eigenvalue of Tn at an asymp-

totically quadratic rate.
By combining the results in Lemma 3.1, Corollary 3.4, and Theorems 3.2 and

3.5, it follows that the inner loop of the PL algorithm will converge very quickly and
the iterate will also converge to the minimum eigenvalue of Tn at an asymptotically
quadratic rate.

We now consider the cost of each Lanczos iteration. For a discussion of Lanc-
zos method, see Golub and Van Loan [8]. It is known that the cost per iteration in

the Lanczos method is about 8n operations plus the cost of computing Q
(k)−1
n (Tn −

ρ
(n)
k In)Q

(k)−T
n v for some vectors v. Since the matrix Q

(k)
n is equal to Ψn(∆n −

ρ
(n)
k In)

1/2, the matrix-vector multiplications Q
(k)−1
n v and Q

(k)−T
n v can be done in

O(n log n) real operations. Since Tn and v are both real, the Toeplitz matrix-vector
product Tnv will also be real. We would like to avoid the added computational work
of using complex arithmetic to compute real results. However, we can embed the
Toeplitz matrix Tn into a larger matrix that can be diagonalized by the sine trans-
form matrix. Thus the matrix-vector product Tnv can be computed in O(n log n)
real operations. The details can be found in [3, 4]. Hence the cost of each Lanczos
iteration is of O(n log n) operations. Moreover, the basic tool of the algorithm is the
FST. Since the FST is highly parallelizable, the method can be expected to perform
efficiently on a parallel machine for large-scale or real-time applications.

4. An application to signal processing. The input {xk} and the output {yk}
of a transversal filter of order n are related by

yr =

n−1∑
k=0

wkxr−k.

In signal processing problems it is often necessary to estimate the filter coefficients

{w0, w1, . . . , wn−1}

given observed values {x1, x2, . . . , xm} and {y1, y2, . . . , ym} of the input and output,
where m > n. One way to do this is to choose {w0, w1, . . . , wn−1} so as to minimize

σ(w0, w1, . . . , wn−1) =

m∑
r=1

(
yr −

n−1∑
k=0

wkxr−k

)2

,

where it is assumed that xj = 0 if j ≤ 0. An elementary argument shows that {wi}n−1
i=1

should be chosen so that

n∑
j=1

aijwj−1 =

m∑
r=1

yrxr−i+1, 1 ≤ i ≤ n,
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where

aij =

m∑
r=1

xr−i+1xr−j+1.

The matrix An = [aij ]
n
i,j=1 is given by An = XTX, where X is the m × n Toeplitz

matrix

X =




x1 0 · · · 0 0

x2 x1
. . . 0

... x2 x1
. . .

...
...

. . .
. . .

. . . 0

xn
. . .

. . .
. . . x1

...
. . .

. . .
. . .

...

xm−1
. . .

. . .
. . . xm−n

xm xm−1 · · · xm−n+2 xm−n+1




.(4.1)

The matrix XTX is called the normal equations matrix or the information matrix
of the corresponding least-squares problem [7, 20]. It is an approximation to the
correlation matrix of the input signal data. We are interested in computing the
eigenvalues of XTX because, for example, the smallest and the largest eigenvalues of
XTX are related to the accuracy of the least-squares computations and the stability
of least-squares algorithms [7, 20]. We see that the matrix X has Toeplitz structure.
However, the matrix An is non-Toeplitz in general.

Noting from Lemma 2.3, the minimizer Pn of ‖Sn −An‖F over all Sn ∈ S is still
well defined and can be obtained in O(m log n) operations. Therefore we can use the
optimal sine transform-based preconditioner Pn to precondition the normal equations
matrix An in the PL algorithm. Using the procedures in [18] and Theorem 3.2, it can
be proved that under some practical assumptions in signal processing, the spectra of
these preconditioned matrices in the PL algorithm are clustered around 1. Therefore,
we expect that the preconditioned Lanczos method will converge very quickly.

5. Numerical results. In this section, we test the performance of the PL algo-
rithm for computing the minimum eigenvalue of a symmetric positive definite Toeplitz
matrix. We test the performance on two types of Toeplitz matrices.

(i) The Kac–Murdock–Szegö (KMS) matrix:

[Tn]j,k = tj−k = η
|j−k|, 0 < η < 1

discussed in [9] and [12]. The eigenvalues of the KMS matrix can be computed
quite easily. It was shown in [12] that if

sin(n+ 1)ψ − 2η sinnψ + η2 sin(n− 1)ψ = 0,

then the quantity

λ =
1− η2

1− 2η cosψ + η2
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is an eigenvalue of the KMS matrix. It is well known that the generating
function for the KMS matrices is given by

f(θ) =
1− η2

1− 2η cos θ + η2
;

see [12]. The generating function is a positive continuous function on [0, π].
(ii) The Toeplitz matrix Tn:

[Tn]j,k = tj−k =


 1 +

π4

5
, j = k,

(−1)|j−k|
(

4π2

|j−k|2 − 24
|j−k|4

)
, j �= k,

discussed in [4]. The corresponding generating function is given by f(θ) =
θ4 + 1 for −π ≤ θ ≤ π. We have used this Toeplitz matrix as an example to
test the performance of preconditioned conjugate gradient method. According
to Theorem 1, we note that the minimum eigenvalue of Tn is bounded below
by 1.

In the tests, we used the ĵth unit vector as the starting vector x0 (cf. Table 1.1)
in the PL algorithm, where ĵ is the index for which the minimum of {[∆n]j,j}nj=1 is

attained. The required residual tolerance is 1× 10−7.
Figures 5.1 and 5.2 show the convergence behavior of the PL algorithm and the

standard Lanczos algorithm. We plot the relative error between the ρ
(n)
k and the

minimum eigenvalue of the tested Toeplitz matrix against the iteration number. We
recall that the main cost per iteration in the Lanczos method is the cost of comput-

ing Q
(k)
n (Tn − ρ(n)

k In)Q
(k)−T
n v for some vectors v. Therefore the iteration number

required for convergence means the number of matrix-vector multiplications required
in the Lanczos method. The minimum eigenvalue of the tested Toeplitz matrix is
computed by the formula in example (i) or by the QR method in example (ii). We see
from both Figures 5.1 and 5.2 that the standard Lanczos algorithm converges very
slowly. The number of Lanczos iterations required for preconditioned Toeplitz ma-
trices is significantly less than that required for nonpreconditioned Toeplitz matrices.
Moreover, the relative error in the standard Lanczos algorithm is larger than that
computed in the PL algorithm. Therefore, the sine transform preconditioning can
speed up the convergence rate of the Lanczos method.

We compare the optimal sine transform based preconditioner Pn with the sine
transform based preconditioner Kn derived by Boman and Koltracht, as was done in
[5] also. From Figures 5.1 and 5.2, the convergence rate of the PL method using Pn

is the same as that using Kn, especially when n is large. However, we remark that
for an arbitrary Hermitian matrix An, Kn may not satisfy

λmin(An) ≤ λmin(Kn) ≤ λmax(Kn) ≤ λmax(An).(5.1)

Therefore, the starting value and the starting vector of the PL method using Kn in
these tests are chosen from those of the PL method using the optimal sine transform-
based preconditioner Pn as Pn satisfies (5.1) (cf. Lemma 1). This shows that our sine
transform-based preconditioners may be more applicable in the computation of the
minimum eigenvalue of a Toeplitz matrix.

For circulant preconditioning, the implementation requires the use of the FFTs
and therefore requires complex arithmetic. Since Tn is real, we avoid the added
computational work of using complex arithmetic to compute real results. Therefore,
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Fig. 5.1. The convergence behavior of PL and standard Lanczos algorithms for Toeplitz matrices
(i) n=63, 127, 255, and 511 with η = 0.99.

we do not employ circulant preconditioners in these numerical tests to precondition
Toeplitz matrices in the Lanczos iteration.

Next we compare the execution time of the PL method using the optimal sine
transform-based preconditioner, the standard Lanczos method, and the method pro-
posed by Trench [22, 23] on a Sun Ultra SPARC workstation.

In Figure 5.3, we plot the time required to compute the minimum eigenvalue
of Toeplitz matrices in examples (i) and (ii) against the size n of the matrix (n =
63, 127, 255, 511, 1023). We use the FST program obtained from the double precision
version of FFTPACK in NETLIB to implement the PL method. Since the convergence
rate of the PL method using Pn is the same as that using the Boman and Koltracht
preconditioner Kn (cf. Figures 5.1 and 5.2), the time required by using Pn or Kn

to compute the minimum eigenvalue of Tn will be almost the same. From Figure
5.3, we observe that the time required by the PL method is less than those required
by the standard Lanczos method and the method proposed by Trench when n =
63, 127, 255, 511, 1023 for examples (i) and (ii). We remark that the time required in
each Lanczos iteration depends on the time required to compute FSTs for Toeplitz
matrix-vector multiplications. For any n-vector v, the sine transform matrix-vector
product Ψnv requires O(n log n) operations [14, p. 155]. In particular, if n = 2ν−1 for
positive integers ν, then Yip and Rao [24, 25] showed that the sine transform matrix-
vector product can be done more efficiently using the sparse-matrix factorization
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Fig. 5.2. The convergence behavior of PL and standard Lanczos algorithms for Toeplitz matrices
(ii) n=63, 127, 255, and 511.

technique. It requires (2n log n − 4n + 4) real additions and ((n/2) log n − n + 1)
real multiplications, see [24, 25]. In this case, we note that the cost of each Lanczos
iteration is about (15n log n−19n+31) real operations (additions plus multiplications)
[8], whereas the cost of the method proposed by Trench is about (2n2 + n) real
operations [22]. Thus when n = 2ν − 1, where ν is large, we expect that the time
required by our method will be less than that required by Trench’s method.

Finally, we also test our method on matrices of the form XTX where X is as
in (4.1), with m = 1024 and n = 127. We consider the case with {x1, . . . , x1024}
generated by the second-order autoregressive process

xk − 1.4xk−1 + 0.5xk−2 = φk.

Here {φk} is a Gaussian process with mean zero and variance one, and E(φjφk) =
δjk. We remark that the sine transform-based preconditioner derived by Boman and
Koltracht is not defined in this case since the matrix XTX is not Toeplitz. Figure
5.4 shows the convergence behaviour of the PL algorithm and the standard Lanczos
algorithm. Again we observe that the standard Lanczos algorithm requires more
iterations and the relative error in the standard Lanczos algorithm is larger than that
computed in the PL algorithm.

In summary, these preliminary experiments suggest that the preconditioned Lanc-
zos algorithm with optimal sine transform preconditioning is an efficient and effective
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Fig. 5.3. Time (in seconds) required to compute the minimum eigenvalue of the Toeplitz matrix
(i) left and (ii) right (..... standard Lanczos method, - - - Trench’s method, and —– the PL method).
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method for computing the minimum eigenvalue of symmetric positive-definite Toeplitz
matrices of order n = 2ν − 1 for positive integers ν.
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