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A CLASS OF UNITARILY INVARIANT NORMS ON B(H)

JORrR-TING CHAN, CHI-KwONG L1 AND CHARLIES C.N. Tu

ABSTRACT. Let H be a complex Hilbert space and let B(H) be the algebra of all bounded
linear operators on H. For ¢ = (¢1,...,¢k), where ¢; > -+« > ¢ > 0, and p > 1, define the
(¢, p)-norm of A € B(H) by

K %
[Alle,r = (Z Cisi(A)p> ,

i=1

where s;(A) denotes the ith s-numbers of A. In this paper we study some basic properties
of this norm and give a characterization of the extreme points of its closed unit ball. Using
these results, we obtain a description of the corresponding isometric isomorphisms on B(H).

1. INTRODUCTION

Let H be a Hilbert space over C and let B(H) be the algebra of all bounded linear
operators on H. When H is of finite dimension n, we shall identify B(H) with M,,
the algebra of all n x n complex matrices. For a compact operator A € B(H), the ith
s-number (or singular value) of A is the i-th largest eigenvalue of [A| = (A*A)2, where
each eigenvalue repeats according to its multiplicity. If necessary, the numbers will be
appended by 0’s to form an infinite sequence. The ith s-number of A will be denoted
by s;(A). Let ® be a symmetric gauge function on RU™H#  (We refer readers to [4] for
the basic definitions and properties.) Then & determines a symmetric norm ideal Cg of
compact operators by decreeing A € Cg if <I>({s,(A)}) < o0. Norm ideals of this type
include the Schatten class and the Hilbert-Schmidt class. Moreover ||A|le = ®({s;(A)})
is a complete norm on Cg, which is unitarily invariant in the sense that [|[UAV||e = || 4]l
for any unitary operators U and V. In particular, when dim H = n < oo, every symmetric
gauge function defines a unitarily invariant norm on M,,. The algebras Cg and M,, under
these norms have been studied extensively. For example, see [1], [5], [8] and [10]. An
important topic is to describe isometric isomorphisms under these norms. In most cases,
as in the papers cited, they are multiplication by unitary operators, possibly followed by
transposition.

Now the definition of s-number can be extended to a bounded (non-compact) operator
as follows. For A € B(H), let so(A) denote the essential norm of A. Then s, (A) is either
an accumulation point of o (| A|) or an eigenvalue of | A| of infinite multiplicity. The operator
A is compact if and only if s, (4) = 0. Every element of o(]|A|) exceeding s..(A) is an
eigenvalue of |A| of finite multiplicity. The s-numbers of A is defined to be the eigenvalues
s1(A) > s3(A) > --- of |A|, where each of them repeats according to its multiplicity.
If there are only finitely many of them, we put s;(A) = So(A) for the remaining #’s.
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Alternatively, one has s;(A) = inf {||A — X|| : X € B(H) has rank < 7 }. We refer readers
to Gohberg and Krein [4] for a detailed account. One observation is that s-numbers of
bounded operators enjoy many nice properties as their compact operator counterparts.

In this paper we study the following class of norms on B(H): let ¢ = (cy,...,cx) € RF,
where ¢; > -+ > ¢ > 0, and let 1 < p < oo. Define the (¢, p)-norm of an operator
A€ B(H) by

[Allep = (crs1(A)P + -+ crsi(A)P) 7 .

When p = 1, the norm is simply called the c-norm and denoted || - ||.. Further, if ¢ =
(1,...,1) € R, the above definition reduces to the Ky-Fan k-norm. In particular, || Al
is the operator norm and will be denoted by the usual symbol || A4].

In the next section we prove some facts about the (¢, p)-norm. Then in section 3, we
study the extreme points of the closed unit ball for || -||. . The cases p =1 and p > 1 will
be discussed separately. Using the properties obtained, we are able to describe isometric
isomorphisms on B(H) under these norms. They are of the form depicted earlier. This is
given in the last section.

2. SOME PROPERTIES OF || - [|c,p
Let H be an infinite-dimensional Hilbert space over C, ¢ = (cy,...,cx) where k > 1
and ¢; > -+ > ¢, > 0, and p > 1. These assumptions prevail unless otherwise stated. It

is known that the (c,p)-norm given by

S =

[Allep = (crs1(A)P + -+ + crsi(4)7)

is actually a norm on B(H). In fact, all (¢, p)-norms are equivalent. For example they are
equivalent to the operator norm:

k
cflAll < flAlle < (26) 1Al

i=1

More generally, we have

v

Theorem 2.1. Let 1 < p,g < o0, ¢ = (c1,...,¢k), d = (dy,...,di), where ¢y > -+
e, >0, dy >--->dg >0, and not both ¢ and dy are zero. Then

M:max{(dlzf—l—---—l—dkz;g)% tz > > 2 20, ey 4 egzy < 1}
is the smallest positive number satisfying
I|Alla < M||Al|. for all A € B(H).
In particular, if p= q =1, we have M = max{(d1 +-4di)/(er+-+e):1<i< k}
Proof. The general assertion is clear. To verify the optimality, one only needs to consider

a finite rank operator A with s-numbers zq,..., 2,0, ... that yield the maxium M in the
optimization problem.



For the particular case, let 2 = s and z; = s; — s;4q fori=1,...,k — 1. Then

k k k k i
ZdZS,:Zdisz:Z Zd] Zi
i=1 i=1 Jj=1 =1 \ j=1
SZ M c; Zi:MZC]ZZL
1=1 j=1 / 7=1 i=j
k
= MZC]'S] ,
j=1

by the definition of M. One easily checks that M is optimal. ]

Suppose A € B(H) is compact. Then A admits a Schmidt expansion

o

A= ZSZ‘(A)<'7 )i,

i=1

where {z;} and {y;} are orthonormal sequences. It follows that s;(4) = (Az;,y;). In
general we have

Lemma 2.2. (C.f. [3, Lemma 4.4]) For every A € B(H) and ¢ > 0, there ezist orthonor-
mal sequences {x;} and {y;} such that [(Az;,y;) — si(A)| < € for all i.

Proof. If the operator A is compact, there are orthonormal sequences {z;} and {y;} such
that (Az;,y;) = s;(A), as shown. In general let E be the spectral measure for |A|. If the
projection E((s(A),||A||]) is of infinite rank, there are infinity many eigenvalues for | A|
and the same argument as in the compact case applies. Otherwise there are finitely many
orthonormal vectors z1, ..., 2, such that |A|z; = s;(A)z; for i = 1,...,n. Choose a §,
0 < & < e and se(A) — 8 > 0. The projection E((se(A) — &, 5.(A)]) is necessarily of
infinite rank. Take any orthonormal sequence {z,4;} in Im E((s0(A4) — &, 55 (4)]). We
have [[|A|Znyi — Soo(A)Znyil| < 8. As Im E((s50(A) — §,55(A)]) C Im|A| (Conway [2,
p.274]), which is contained in the initial space of U, the sequence {Uz,;} is orthonormal.

We have

AT n4i, UZngi) — 8o (A)| = (UTAZ iy Tnti) — Soo(A4)]
= [{|AlTnyi — Sco(A)Tntis Tngd)|
<d<e.

The proof is complete.

We have the following description of the (e, p)-norm, which is an extension of [4,
Lemma I1.4.1].

Theorem 2.3.

=

k
|A||c.p = sup (Z cil(Az;, yi>|p) Az 3 {yiYr, are orthonormal sets in H

i=1



Proof. Let {z;}5_, and {y;}%_, be orthonormal sets in H. If H is finite-dimensional, then

(Zci|<Ayi,xi>|p) S(Zcisi(A)p) .

In general let P be the projection onto span{z;, Ay;,y; : ¢ = 1,...,k}. Then by the
corresponding finite-dimensional result,

(Zci|<Ayi,$i>|p) = (Z (PAy;, z; |)

(zk:cs PA)p)p
> A)p) .

( C;S
i=1

The reverse inequality follows from Lemma 2.2.

AN

AN

Recall that a norm N on B(H) is submultiplicative if N(AB) < N(A)N(B) for all
A,B € B(H). If, in addition, N(I) = 1, it is an algebra norm. We have the following
observations.

Theorem 2.4. A (c,p)-norm on B(H) is submultiplicative if and only if ¢1 > 1; and it
is an algebra norm if and only if it is the operator norm.

Proof. Suppose ¢; > 1. Then for any A, B € B(H),
[ABllep < AN Blle.p < [|Alle.plIBllc.p-

Conversely, if ¢4 < 1, let A be a rank one operator with s-numbers 1,0, .... Then ||A4|., =
¢ > ¢f = ||A]|%,. Therefore, || - ||, is not submultiplicative.

The second assertion is clear. 0

3. EXTREME OPERATOR FOR || - [|¢,p

Let S., denote the closed unit ball for B(H) under || - ||.,p, and let ext S, , denote
the set of extreme points of S;,. When p = 1, then as usual, we suppress the index p.
To describe ext S, let r; = Y7_, ¢; and let R, be the set of all rank j partial isometries.
A maximal partial isometry is either an isometry or a co-isometry, i.e. its adjoint is an
isometry. The set of all maximal partial isometries will be denoted by Ry .x. Note that
when H is finite-dimensional, a complete description of ext .S, is given in [8, Theorem 2].
We include their part (c) and (d) below for quick reference.

Lemma 3.1. Supposecy =---=cp > > Cp_jy1 =---=¢n > 0. Then in M,,

ext S. = r Ry U (Uncjcni 7‘]'_le) Ury ' Ry,

If n =h+141, the middle summand is empty.

When H is infinite-dimensional, we have to replace R,, by Ryax-



Theorem 3.2. Suppose ¢y =---=c¢p > --->cp > 0. Then

ext S, = Tl_lRl U (Uh<j<k T‘j_lR]'> U T;lRmax

If k = h + 1, the middle summand is empty.
We divide the proof of Theorem 3.1 into Lemma 3.3 to Lemma 3.7.

Lemma 3.3.

T‘l_lRl U (Uh<j<k Tj_lR]') CextS,

Proof. Suppose A = <7,r>y for ||x|| = ||y|| =1 and T’l_lA = %(B —|—C) for B,C € S.. For
every rank n (n > k) projections P and ) with z € Im P and y € Im @, we have

1
ritA=r'QAP = 5(@BP+QCP).
Since ||@BP||,||QCP]|. < 1, we conclude from Lemma 3.1 that QBP = QCP = r; ' A.

As P and @ are arbitrary, B =C = rl_lA.
Similarly, if A € Upcj<k rj_le, then r]._lA €extSe.

Again with a similar argument we get

Lemma 3.4.
r,?lf € ext S,

Lemma 3.5.
r;lRmax CextS,

Proof. Suppose U is an isometry and r;lU = %(C’ + D) for C,D in S.. Multiplying
both sides by U*, we get r;lf = %(U*C’—I— U*D). By Lemma 3.3, r;lf =U*C. If
C# r;lU, there is a unit vector # € H such that (C' — r;lU)x =y#0. AsUC = r;lf,
(C —r'U)z L r;'Uz and hence

ICal]* = (€ = rg ' U)z+ v Uzl
= (C = r U)z|* + i * Uz

= |lyll* +r”

> r;z .
Take an orthonormal set {zy,...,zx} in H with 1 = z and let y; = ”g—;”, y; = Ux; for
i=2,...,k. Then {yy,...,yx} is also an orthonormal set. In fact for i =2,... k&,

1
! [Cz]

1 S
= [ea v e )

= ! (z, ;)

rel|Cz]l
=0.



But then

k
IClle 2 ) eil{Cai, yi)

i=1

k
= c1[(Car, )| + Y eil(Cai, 24)|

=2

k
=a||Ca||+ ) el (UCay, ;)

=2

k

> clrlzl + (Z ci) r,?l
i=2

= 1’

contradicting C' € S.. Hence r,ZlU =C=D.

If U is a co-isometry, then U™ is an isometry. The same argument yields r,;l U € ext S,.

O

Lemma 3.6. If A € ext S, is a scalar multiple of a partial isometry, then

Ac T‘l_lRl U (Uh<j<k T‘j_lR]') U T‘;lRmaX.

Proof. First of all, it follows from Lemma 3.1 that if A is of finite rank, then A € rl_lRl U
(Uh<]'<k rj_le). If A is of infinite rank, then A = r,ZlU for a partial isometry U. We
claim that U is maximal. Otherwise both subspaces ker U and (ImU)' are non-zero.
Take unit vectors z € ker U, y € (ImU)L and consider the operator B = (-, z)y. For

small enough ¢ > 0, we have |A £ ¢B||. = 1. This contradicts A € extS..
Lemma 3.7. Fvery A € ext S, is a scalar multiple of a partial isometry.

Proof. Suppose A € ext S.. We shall prove that o(|4|) C {0, ||A||} and hence A is a scalar
multiple of a partial isometry. If every non-zero element in o(|A|) is an eigenvalue of |A|,
then by [7, Lemma 1], the assertion is true. Otherwise sy (A) # 0 is an accumulation

point of o(|A]). There is an £ > 0 such that o (|A[) N (0, soc(4) — €) # O. Let

2t, 0< ¢ < 22
flt) =9 50— € 57Kt <50 —¢
t, Soo — < t <||A]

and g(z) = 2t — f(t). Then f(|A]) # ¢g(]A4|). By the spectral mapping theorem,

o (f(1A]) N[s0(A) — &, 1 All] = o (g(IA]) N [500(4) — &, [|A]]
= o(|A]) N[see(4) =&, [|All],

and hence s (A) is an accumulation point of both o (f(|A4])) and o(g(|A])). We conclude
that [|£(AD|l. = lg(|ADIl. = 1. Now |4] = }(F(|4]) + g(|A])). If A = U|A] s the polar
decomposition of A, then 4 = 3 (Uf(JA]) + Ug(|A])). As Im f(|A]),Img(]A]) C Im|A],

6



which is the initial space of U, we have U f(|A|) # Ug(]A|). This contradicts the fact that
AgextS.. O

A refinement of the notion of an extreme point is the following. Let () be a convex
subset of a normed linear space X. A point ¢ € ) is called an exposed point of ) if there
is a bounded R-linear functional f : X — R such that f(q) > f(p) for every ¢ € Q \ {¢}.
An exposed point ¢ is said to be strongly exposed if for every sequence {¢,} in @ such
that f(g.) — f(q), we have ¢, — ¢. Clearly an exposed point is an extreme point of Q.

Grzaslewicz [6, Theorem 2] showed that under the operator norm, the closed unit ball
for B(H) does not have any strongly exposed point. We shall show that in the || - ||, case,
an extreme point of S, is strongly exposed if and only if it is of finite rank.

Theorem 3.8. Let A € extS.. Then A is a strongly exposed point of S. if and only if

Ac T‘l_lRl U (Uh<j<k T‘j_lR]').

Proof. Suppose A € r,?lU is a strongly exposed point of S.. Then it is easy to see that U
is a strongly exposed point of the closed unit ball for the operator norm. This contradicts
[6, Theorem 2] mentioned above.

For finite rank extreme points, we shall show that every A € Upcjck r;lR]' is a
strongly exposed point of S.. The proof for A € rl_lRl is similar.

Suppose A = 7‘]._1 {:1<',$i>yi for orthonormal sets {z;} and {y;}. Define f :
B(H) — R by

J
f(F) = erRe (Fz;,y;) for all F € B(H).
i=1
The functional f exposes A in S.. Indeed, f(A) = j and for any F € S,

Cl|<F$17y1>|+ et C]|<F$]7y]>| S 17
Cl|<F$27y2>| + -+ C]'|<F$17y1>| < 17

al{Fzj,y) + - + cil[{(Frj_1,y-1)] < 1.

Summing up the j inequalities, we get f(F) < r; > 71_, [(Fz;,y:)| < j.

If f(F)=jfor F € S., then Re(Fz;,y;) = |(Fz;,y;)| for all 7, and all inequalities
in (1) become equalities. Since ¢; > ¢, all (Fz;,y;) are equal and have the value rj_l.
Let P and @ be projections onto the subspaces span{zy,...,z;} and span{yy,...,y;}
respectively. Apply [4, Theorem 4.3.26] to the operator |QF P|, we get

s1(F) > rj_l,

s1(F) + s2(F) > 27‘]._1 ,

st(F) + - +s;(F) > jrit.

On the other hand, we may replace each |(Fz;, y;)| by s;(F) in (1) to get r; 2521 si(F) < 7.
Hence r; Zle si(F) = j. Again, as ¢; > ¢j, all s;(F) are equal to r]._l. The other s-
numbers must be zero. As (Fz;,y;) = s;(F) = rj_l for all ¢, F = A by the following
version of [8, Lemma 4]:



Lemma 3.9. Let F € B(H) be of finite rank n. If for orthonormal sets {z1,...,z,} and
{v1,.-,yn}, (Fzi,yi) = si(F) for every i, then

F= Zsi(F)<-,xi)yi.

We now show that A is strongly exposed. It is a modification of the preceding argu-
ment. Let {A, } be a sequence in S, such that f(4,) — f(A4), or

J
T Z Re (Anzi, yi) — 7.

i=1
Replacing F by A, in system (1) above, we get

J
T Z [(Anziyi)| — 7.
i=1

Indeed for each i, (A,zi,yi) — r]._l.

This is obtained by showing that every convergent
subsequence of {(Anxl,yl>} has limit r]._l. Again let P and @ be projections onto the
subspaces span{zi,...,z;} and span{yi,...,y,} respectively. Then |[(I — Q)A,(I —
P)|| — 0; for otherwise ||A4,||. > 1 for some large n. We claim that QA,P — A, (I —
Q)A,P and QA,(I — P) — 0, and hence A,, — A.

Note that all the Q A, P’s are (essentially) mappings between fixed finite-dimensional
spaces. To show QA,P — A, we need only show that A is the only accumulation point.
For simplicity, let QA,P — B. Then (Bz;,y;) = 7‘]._1 for all 7. It is also clear that

||B|lc < 1 and a similar argument as for F above shows that B = A.

If (I -Q)A,P 4 0, there exist an ¢ > 0 and a sufficiently large n such that ||( —
Q)ALP|| > € and (Apzi, ) > r]._l — &' (to be determined) for all i. Without loss of
generality we may assume that there is a unit vector y, orthogonal to all y;’s such that
|(Apz1,y)| > €. Let

Y = (Anzi,y1)yn + (Apzr, y)y
1= )
VI{Anz, Y1) 2+ [(Anar, y)]?

Then (Apzy,yi) > \/(7‘;1 —¢e")2 4 ¢2. Choosing €' small enough, we obtain by Fan’s

inequality (see [8, Lemma 3]) that ||A,||. > 1, which is a contradiction.
For p > 1, we have

Theorem 3.10. An operator A is an extreme point of S.,, if and only if

A= si( 2y + sj41U

1

J
1=

where 1 < j < k, Ele c;ist =1, where s; = sjqq fori > j+1, and U is a mazimal partial
isometry from {zy,... ,z;}t into {y1,...,y;}t.

Note that the above description includes A is a scalar multiple of some maximal
partial isometry.



Proof. (<=) Suppose A is of the above form with U an isometry from {zy,...,z;}* into
{y1,.-.,y;}F. We shall show that A is an extreme point of S.,. Let A = %(B + C)
for B,C € S.,. Take an orthonormal set Sy = {zy,...,zj,...,25}. The set Sy =
{v1,...,y;;Uzj41,...,Uzi} is also orthonormal. Let P and @ be projections onto
span S; and span S respectively. We have

j k
QAP =) "si(ai) + 501y (2)Uzi,

and QAP = %(QBP + QCP). As the (¢,p)-norm on My is strictly convex, (this is
essentially strict convexity of C*¥ under p-norm,) QBP = QCP = QAP. If R denotes
the projection onto span ({yl, oo,y UIm U), we conclude that RB = RC = A. Now
si = s;{(RB) < s;(B) for all 7. As

k k
1> Zcisi(B)p > Zcisf =1,
1=1 1=1

si(B) = s; for all i. We have (I — R)B = 0, or B = A. Similarly, C = A. If U is a

co-isometry, the same argument shows that A is also an extreme point of S, .

(=) Let A € ext S, ,. We contend that the s-numbers eventually equal a constant, which
must be s (A4). Otherwise every s-number of A is an eigenvalue of |A| and there is a large
n(> k) for which s,41(A4) < sp(A4). Take a corresponding eigenvector z,4; of s,41(A)
and let B = (-, 2,41)Azp41. For sufficiently small ¢ > 0, we have ||[A +¢eB||., = 1. This
contradicts A € ext S.,. Note that the above reasoning indeed requires si(A) = s (A).
Now a similar argument as in Lemma 3.6 shows (i) there is no other value in o (|4|),
except perhaps 0, and (ii) A is of the required form.

4. ISOMETRIC ISOMORPHISMS FOR || - ||cp
The main result of this section is the following

Theorem 4.1. Suppose T : B(H) — B(H) is a linear isomorphism such that ||T(A)||cp =
|Allc,p for every A € B(H). Then there are unitary operators U and V' such that either

T(A) = UAV for every A€ B(H),

or

T(A) = UA'V for every A € B(H),

where At denotes the transpose of A with respect to an orthonormal basis fized in advance.

Proof. (<=) Clear.

(=) Suppose T : B(H) — B(H) is surjective and ||T'(A)||c,p = ||A]|cp for all A. By

Rias [9, Lemma 3], T is of the given form if (and only if) T preserves maximal partial
1 1

isometries. As r;;Rmax C ext S, p, which is fixed by T, we have to single out r;;Rmax
from other extreme points. For p = 1, the set is precisely the non-strongly exposed points
and we are done. For p > 1, the following Lemma 4.2 concludes our proof.



Lemma 4.2. Let A be an extreme point of S. . Then A is a scalar multiple of a mazimal
partial isometry if and only if A can be decomposed into A = B+ C' with the property that

|AB + uC

ep = max {[A, |ul}

for any complex numbers A and p.

Proof. (=) Clear.

(=) Suppose A = B + C with the said condition. By our description of extreme points
of S, (Theorem 3.8), it suffices to show that s1(A) = si(A4). Now it is plain that
[Blle.o = [Clle,p = 1 and ||A+Bl[cp = [[A+Clc,p = 2. Hence |[A+Bllcp = [|Allcp+Blle,p-
Moreover '
J

si(A+ B) < Zsi(A)—}—Zsi(B) (G=1,2,...).

[~

i=1 i=1
We have
= (0151 A—|—B +"“|‘Ck8k(A+B)p);
< (er(sn +51( )P+ e(si(4) + sk(B))P)?
< (0151 ot ks (A)P) 7 + (s (B)P + -+ cxsp(B)P) 7
=2.

It follows from [4, Lemma II.3.5] and Minkowski’s inequality that

(s1(A),...,sk(A)) = (s1(B),...,sk(B))

and

(s1(A+ B),...,s(A+ B)) =2(s1(4),...,sk(4)).

If s1(A) > sg(A), then s;(A) is an s-number of A of finite multiplicity, say /. Clearly
the largest s-numbers of B and A + B also have multiplicity [. Now

L={z€H:|(A+ B)z||=[lA+ Bllll=]}

is a subspace of H of dimension /, and the same is true if we replace A+ B by A and B
respectively. Take any z € L, we have

2(|Allllell = [[A+ Bll[l«]| = l|(A + B)z[| = [[Az + Bz|| < [[Az|| + || Bz[| < 2[|All]|z] -
Hence Az = Bz and ||Az|| = ||A||||z||. As both subspaces are of dimension I,
L={zeH:|Az| =[lAlll=]]}.

If we substitute C for B in the above argument, we also get Az = Cz for every z € L.
But then Az = (B + C)z = 2Az, which is absurb.
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