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AN APPROXIMATION ALGORITHM FOR FEEDBACK VERTEX
SETS IN TOURNAMENTS∗
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Abstract. We obtain a necessary and sufficient condition in terms of forbidden structures
for tournaments to possess the min-max relation on packing and covering directed cycles, together
with strongly polynomial time algorithms for the feedback vertex set problem and the cycle packing
problem in this class of tournaments. Applying the local ratio technique of Bar-Yehuda and Even
to the forbidden structures, we find a 2.5-approximation polynomial time algorithm for the feedback
vertex set problem in any tournament.

Key words. feedback vertex set, tournament, min-max relation, approximation algorithm

AMS subject classifications. 68Q25, 68R10

PII. S0097539798338163

1. Introduction. Given a digraph with weights on the vertices, a subset of
vertices is called a feedback vertex set if it intersects every directed cycle in the di-
graph. The problem of finding a feedback vertex set with the minimum total weight
is called the feedback vertex set problem, which arises in a variety of applications. In
the area of operating systems, the problem of breaking deadlocks can be formulated
as a feedback vertex set problem. Other applications can be found in VLSI, man-
ufacturing systems, and so on. As is well known, the feedback vertex set problem
is NP -hard. Furthermore, this problem admits no fully polynomial approximation
scheme unless P = NP [11]. For general digraphs, this problem is approximable
within O(log n log log n) [7, 17], where n is the number of vertices in the input; for
planar digraphs, it is approximable within 9/4 [8] by a primal-dual method.

The feedback vertex set problem remains NP -hard even in tournaments [18],
where a tournament is an orientation of a complete graph; Speckenmeyer established
this NP -hardness using the vertex cover problem as the source problem. It can be
shown that Speckenmeyer’s reduction is an L-reduction (a concept introduced by
Papadimitriou and Yannakakis [14]). Moreover, with this reduction, an instance of
the vertex cover problem has a solution of size ≤ k if and only if the instance of
the corresponding feedback vertex set problem has a solution of size ≤ k. Thus the
feedback vertex set problem in tournaments is a generalization of the vertex cover
problem, and any inapproximability result of the vertex cover problem [9] is also valid
for the feedback vertex set problem in tournaments.

It is well known that the vertex cover problem is approximable within a factor of
2, which can be achieved by several methods [10], such as the local ratio technique [3],
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the LP-relaxation method, and the primal-dual method. Despite much recent research
effort and progress that have been made in the area of approximation algorithms, the
best known approximation ratio of the vertex cover problem is 2− log log n

2 log n [3, 13], and
no approximation algorithm with performance guarantee of 2− ε has been discovered
so far, no matter how small the positive constant ε is. It is thus conjectured in [10]
that 2 is the best possible constant. Let us point out that each of those methods men-
tioned above leads to a 3-approximation algorithm for the feedback vertex set problem
in tournaments, which is in the same spirit as the corresponding 2-approximation al-
gorithm for the vertex cover problem. One such algorithm for the unweighted case
was first given in [18]. In this work, we improve the approximation ratio to 2.5 for
the feedback vertex set problem in tournaments; our approach relies on the local ratio
technique of Bar-Yehuda and Even [3] and a characterization of tournaments that
possess a min-max relation on packing and covering cycles.

Clearly, a set of vertices in a tournament is a feedback vertex set if and only
if it intersects every triangle (a directed cycle of length three, denoted by ∆); thus
the feedback vertex set problem is actually the triangle covering problem, which is
closely related to the triangle packing problem. Let us now introduce some notions
for convenience of presentation.

Given a digraph T = (V,A) such that each vertex v ∈ V is associated with
a nonnegative integer w(v), a �-packing in T is a family of triangles (repetition is
allowed) in T such that each vertex is contained in at most w(v) triangles in this
family. A maximum �-packing in T is a �-packing in T with largest size. The �-
packing number of T is the size of a maximum �-packing in T . A �-covering in T is
a vertex set S ⊆ V that intersects each triangle in T . The size of S, denoted by w(S),
is

∑
v∈S w(v). A minimum �-covering in T is a �-covering with smallest size; the

�-covering number of T is the size of a minimum �-covering in T . The case in which
w(v) = 1 for each v ∈ V is called unweighted; clearly in this case any �-packing in T
is a family of vertex disjoint triangles of T and the size of any �-covering S in T is
the number of vertices in S.

Let �1,�2, . . . ,�m be all the triangles in T , let v1, v2, . . . , vn be all the ver-
tices in V , and let Hm×n be the triangle-vertex incidence matrix, that is, hi,j =
1 if �i contains vj and hi,j = 0 otherwise. Then the �-covering number of T
equals min{wTx | Hx ≥ em, x ≥ 0, integer}, and the �-packing number of T is
max{yT em | yTH ≤ wT , y ≥ 0, integer}, where em is the all-one column of size m. It
follows from the duality theory of linear programming [16] that the �-covering num-
ber of T is always greater than or equal to the �-packing number of T . The situation
in which the packing and covering numbers are equal is particularly interesting. We
point out that equality does not necessarily hold in general tournaments: in the un-
weighted case, both F1 and F2 have �-packing number of 1 and �-covering number
of 2. We shall demonstrate that actually F1 and F2 are the only obstructions in our
problem: if a tournament T = (V,A) contains no F1 nor F2, then the �-packing
number of T always equals the �-covering number of T .

The remainder of this paper is organized as follows. In section 2, we give a
structural description of tournaments with no F1 nor F2. We start with a vertex
w with the maximum out-degree, and partition the vertices of T according to their
distance from w, that is, V = ∪k

i=1Vi, where a vertex v ∈ Vi if and only if the distance
from w to v is i − 1. The subtournament induced by Vi is shown to be acyclic if T
contains no F1 nor F2. This property leads to a natural order for vertices in Vi. For
each v ∈ Vi+1, let V−(v) be the set of vertices in Vi that point to v and let V+(v) be
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Fig. 1. Two Forbidden Subtournaments, where the two arcs not shown in F1 may take any
directions.

the set of vertices in Vi that are pointed from v. Then every vertex in V−(v) points to
every vertex in V+(v). Moreover, if u, v ∈ Vi+1 with u pointing to v, then every vertex
in Vi that points to u also points to v. These properties turn out to be very useful
in establishing the fact that, for every triangle in the tournament, its three vertices
are in three consecutive subsets of the partition, i.e., Vi, Vi+1, Vi+2 for some i. Then
the triangle packing problem becomes the P3 (a directed path of length 2) packing
problem in the digraph D obtained from T by only keeping all the arcs between two
consecutive subsets (i.e., Vi and Vi+1) of the partition.

In section 3, using the combinatorial structure obtained in section 2, we show
that in the unweighted case the P3-packing number and the P3-covering number of
D are equal if the tournament T is free of subdigraphs F1 and F2. To establish the
min-max relation, we first show that a particular greedy algorithm for packing P3 in
D results in an optimal solution to the P3 packing problem. Informally, we prove that
the P3 with the smallest lexicographical (according to the order in section 2) index
from V3 to V2 to V1 is in an optimal solution. Then, we show that there is a vertex in
this P3 whose removal reduces the P3-packing number by one. This implies that both
the linear program relaxation min{etnx | Hx ≥ em, x ≥ 0} and the dual program
max{etny | ytH ≤ etn, y ≥ 0} have integral optimal solutions for every tournament
with no F1 nor F2 as subdigraph. We further generalize the min-max result to the
weighted case.1

In section 4, we present a 2.5-approximation polynomial time algorithm for the
feedback vertex set problem in any tournament. Applying the local ratio technique
to F1 and F2, we obtain a 2.5-approximation algorithm for the minimum feedback set
problem in any tournament by the local ratio theorem of Bar-Yehuda and Even [3].
We conclude this paper with discussion and remarks in section 5.

2. A structural description. The purpose of this section is to present a struc-
tural description of the tournaments with no F1 nor F2, which will be used repeatedly
in the remaining sections. In our proof, we shall say that u points to v in a digraph,
write u → v if (u, v) is an arc, and we let N−(u) (resp., N+(u)) stand for the set of
all the vertices v with v → u (resp., u→ v).

1In the preliminary version [4], this was done by applying a sophisticated TDI technique due to
Edmonds and Giles [5, 6, 15]. The present simple proof is suggested by one of the referees.
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Lemma 2.1. Let T = (V,A) be a strongly connected tournament with no subtour-
nament isomorphic to F1 nor F2. Then V can be partitioned into V1, V2, . . . , Vk for
some 3 ≤ k ≤ |V |, which have the following properties:

(a) For each i = 1, 2, . . . , k, Vi is acyclic and thus Vi admits a linear order ≺
such that x ≺ y whenever (x, y) is an arc in Vi.

(b) For each i = 1, 2, . . . , k − 1, there is a map f : Vi+1 → Vi such that
• for any v ∈ Vi+1,

(x, v) is an arc for each x in Vi with x ≺ f(v) and
(v, x) is an arc for each x in Vi with f(v) � x and that

• for any u, v ∈ Vi+1 with u ≺ v, there holds f(u) � f(v).
(c) For any i, j with 1 ≤ i ≤ j−2 ≤ k−2, each arc between Vi and Vj is directed

from Vi to Vj.

Proof. We reserve the symbol w for a vertex in T with maximum outdegree
throughout the proof. Now let us apply the breadth-first search to T and partition
the vertices of T as follows.

V1 = {w};
k = 1;
while V − (∪k

i=1 Vi) �= ∅
do Vk+1 = {v ∈ V − (∪k

i=1 Vi) : there exists x ∈ Vk such that v → x};
k=k+1;

end

As soon as this algorithm constructs V1, V2, . . . , Vi, it proceeds to construct a Vi+1 if
V − (∪i

p=1 Vp) �= ∅. Since T is strongly connected, Vi+1 �= ∅ for otherwise all the arcs
between ∪i

p=1 Vp and V − (∪i
p=1 Vp) are directed to V − (∪i

p=1 Vp), a contradiction.
Since V1, V2, . . . are pairwise disjoint subsets of V , the algorithm terminates in finite
number of steps. It follows that

(2.1) V1, V2, . . . , Vk form a partition of V .

We aim to show that V1, V2, . . . , Vk are as desired. For this purpose, note that (it
follows immediately from the algorithm)

(2.2) for each i = 1, 2, . . . , k − 1 and each x ∈ Vi, N−(x) ∩ (V − ∪i+1
p=1Vp) = ∅.

Thus property (c) follows. Since T is strongly connected, N−(w) �= ∅ and N+(w) �= ∅,
so V2 �= ∅ and V − (V1 ∪ V2) �= ∅. In view of (2.1), we have k ≥ 3. To prove that
V1, V2, . . . , Vk enjoy properties (a) and (b), we apply induction on the subscripts of
Vi’s.

(2.3) For each x ∈ V2, we have N−(x) ∩ V3 �= ∅.
To justify it, note that otherwise d+(x) > d+(w), contradicting the definition of

w.

(2.4) For any x, y ∈ V2, either (N−(x) ∩ V3) ⊆ (N−(y) ∩ V3) or (N−(y) ∩ V3) ⊆
(N−(x) ∩ V3).

Assume the contrary: (2.3) guarantees the existence of a vertex u in (N−(x) −
N−(y))∩V3 and a vertex v in (N−(y)−N−(x))∩V3. Since uxvyu is a cycle of length
4, w points to both u and v (recall (2.2)), and both x and y point to w, {u, v, w, x, y}
induces an F1 in T , a contradiction.

Similarly, we can prove that

(2.5) for any u, v ∈ V3, either (N+(u) ∩ V2) ⊆ (N+(v) ∩ V2) or (N+(v) ∩ V2) ⊆
(N+(u) ∩ V2).

It follows from (2.3), (2.4), (2.5), and the definition of V3 that

(2.6) there exists x ∈ V2 such that V3 ⊆ N−(x); there exists u ∈ V3 such that
V2 ⊆ N+(u).
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The following statement will be used repeatedly in our proof.
(2.7) Let U1, U2, and U3 be three disjoint vertex-subsets of T such that all the

arcs between Ui and Ui+1 are directed to Ui+1 for each i = 1, 2, 3, where the subscript
is taken modulo 3. Then each of U1, U2, and U3 is acyclic.

To justify it, assume the contrary: some Ui, say, U1, contains a triangle x1x2x3x1.
Let x4 be a vertex in U2 and let x5 be a vertex in U3. Then, by hypothesis, x4 points
to x5; each of x1, x2, and x3 points to x4; and x5 points to each of x1, x2, and x3.
Thus x1x2x4x5x1 is a cycle of length 4, x3 points to both x1 and x4, and both x2 and
x5 point to x3. Hence {x1, x2, x3, x4, x5} induces an F1 in T , a contradiction.

(2.8) Each of V2 and V3 is acyclic.
Let x ∈ V2 and u ∈ V3 be two vertices as specified in (2.6). By (2.7) with

U1 = {w}, U2 = {u}, and U3 = V2, we conclude that V2 is acyclic; by (2.7) with
U1 = {w}, U2 = V3, and U3 = {x}, we conclude that V3 is acyclic.

(2.9) Let x, y be two vertices in V2 and let u, v be two vertices in V3. Suppose
that u points to both x and y, x points to v, and v points to y. Then x points to y
and u points to v.

Suppose the contrary, let us distinguish among three cases.
If y → x and v → u, then uyxvu is a cycle of length 4, both wvyw and wuxw are

triangles. Hence {u, v, w, x, y} induces an F2 in T , a contradiction.
If y → x and u→ v, then uvywu is a cycle of length 4, x points to both v and w,

and both u and y point to x. Hence {u, v, w, x, y} induces an F1 in T , a contradiction.
If x→ y and v → u, then uxywu is a cycle of length 4, v points to both u and y,

and both w and x point to v. Hence {u, v, w, x, y} induces an F1 in T , a contradiction.
(2.10) Let x, y be two vertices in V2 with |N−(x) ∩ V3| < |N−(y) ∩ V3|. Then x

points to y.
By hypothesis, we have v ∈ V3 such that x points to v and v points to y. Moreover,

(2.6) guarantees the existence of u ∈ V3 such that u points to both x and y. It follows
from (2.9) that x points to y.

(2.11) Let u, v be two vertices in V3 with |N+(v) ∩ V2| < |N+(u) ∩ V2|. Then u
points to v.

By hypothesis, we have x ∈ V2 such that u points to x and x points to v. Moreover,
(2.6) guarantees the existence of y ∈ V2 such that both u and v point to y. It follows
from (2.9) that u points to v.

It can be seen from (2.8) that Vi admits a linear order ≺ such that x ≺ y whenever
(x, y) is an arc in Vi for each i = 2, 3.

(2.12) Let (u, x) be an arbitrary arc from V3 to V2. Then u → y for any y in V2

with x ≺ y.
Assume the contrary: y → u for some y in V2 with x ≺ y. By virtue of (2.6),

we have v ∈ V3 such that v → x and v → y. It follows from (2.9) that y → x,
contradicting the hypothesis x ≺ y.

Since V1 consists of a single vertex w, property (b) holds trivially for V1 and V2.
(2.13) Let f : V3 → V2 be the map defined as follows: for any v ∈ V3, f(v) is the

smallest vertex in V2 such that v → f(v). Then
• for any v ∈ V3,

(x, v) is an arc for each x in V2 with x ≺ f(v) and
(v, y) is an arc for each y in V2 with f(v) � y and

• for any u, v ∈ V3 with u ≺ v, there holds f(u) � f(v).
The first statement follows instantly from (2.12). To justify the second statement,

assume the contrary: f(v) ≺ f(u) for some u, v in V3 with u ≺ v. It follows from
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(2.12) that |N+(u)∩ V2| < |N+(v)∩ V2|. By (2.11), we have v → u, contradicting the
hypothesis u ≺ v.

Suppose we have proved that V1, V2, . . . , Vi enjoy properties (a) and (b) for 3 ≤
i ≤ k − 1; let us proceed to the induction step and consider Vi+1. Let ≺ be a linear
order on Vp as specified in property (a) for p = 1, 2, . . . , i. For convenience, we reserve
the symbol s for the largest vertex in Vi−1 and the symbol t for the largest vertex in
Vi−2.

(2.14) The following statements hold.
• s points to each vertex in {t} ∪ Vi+1;
• t points to each vertex in Vi ∪ Vi+1.
Indeed, by the induction hypothesis of property (b), s points to t and each vertex

in Vi points to s; the remaining statements follow from property (c).
(2.15) Let (u, x) be an arbitrary arc from Vi+1 to Vi. Then u→ y for any y in Vi

with x ≺ y.
Assume the contrary: y → u for some y in Vi with x ≺ y. Then uxstu is a cycle

of length 4 (recall (2.14)), both t and x point to y, and y points to both s and u.
Thus {s, t, u, x, y} induces an F1 in T , a contradiction.

(2.16) Vi+1 is acyclic.
Let r be the largest vertex in Vi. Then, in view of (2.15) and the definition of Vi+1,

each vertex in Vi+1 points to r. By (2.7) with U1 = {r}, U2 = {s}, and U3 = Vi+1,
we conclude that Vi+1 is acyclic.

(2.17) Let u, v be two vertices in Vi+1 with |N+(v) ∩ Vi| < |N+(u) ∩ Vi|. Then u
points to v.

Assume the contrary: v points to u. The hypothesis guarantees the existence of
x ∈ Vi such that u→ x and x→ v. Let y be the largest vertex in Vi. Then, by (2.15)
and the definition of Vi+1, we have u → y and v → y, which implies that x �= y and
hence x → y. Note that xysux is a cycle of length 4, v points to both u and y, and
both s and x point to v. Hence {s, u, v, x, y} induces an F1 in T , a contradiction.

According to (2.16), Vi+1 admits a linear order ≺ such that x ≺ y whenever (x, y)
is an arc in Vi+1.

(2.18) Let f : Vi+1 → Vi be the map defined as follows: for any v ∈ Vi+1, f(v) is
the smallest vertex in Vi such that v → f(v). Then

• for any v ∈ Vi+1,
(x, v) is an arc for each x in Vi with x ≺ f(v) and
(v, x) is an arc for each x in Vi with f(v) � x and

• for any u, v ∈ Vi+1 with u ≺ v, there holds f(u) � f(v).
The first statement follows instantly from (2.15). To justify the second statement,

assume the contrary: f(v) ≺ f(u) for some u, v in Vi+1 with u ≺ v. It follows from
(2.15) that |N+(u)∩ V2| < |N+(v)∩ V2|. By (2.17), we have v → u, contradicting the
hypothesis u ≺ v. This completes the proof.

Corollary 2.1. For each i = 1, 2, . . . , k − 1, if (v, x) is an arc from Vi+1 to Vi
in T , then (u, x) is an arc for any u in Vi+1 with u ≺ v.

Proof. Since u ≺ v, by property (b) of the lemma we have f(u) � f(v) � x, thus
(u, x) is an arc.

Corollary 2.2. Let xyzx be a triangle in T and let {V1, V2, . . . , Vk} be a parti-
tion of V as specified in the lemma. Then there exists an i with 1 ≤ i ≤ k − 2 such
that z ∈ Vi, y ∈ Vi+1, and x ∈ Vi+2 (renaming x, y, and z if necessary).

Proof. By property (a) of Lemma 2.1, Vi is acyclic for each i = 1, 2, . . . , k. Hence
each Vi contains at most two of x, y, and z; let us now verify that Vi cannot contain
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two of them. Assume the contrary: both x and y are in Vi. (Rename the vertices
if necessary.) By property (c) of the lemma, z ∈ Vi−1 or z ∈ Vi+1, for otherwise z
would have two outgoing or two incoming arcs in the triangle xyzx, a contradiction.
If z ∈ Vi−1, then (since y → z and z → x) by Corollary 1 we have y ≺ x, contradicting
the fact that x→ y; if z ∈ Vi+1, then (since y → z and z → x) by property (b) of the
lemma, y ≺ f(z) � x, contradicting the fact that x→ y.

It follows that there exist three subscripts r, s, t with 1 ≤ r < s < t ≤ k such that
|{x, y, z}∩Vp| = 1 for each p = r, s, t. We claim that t−r = 2, for otherwise t ≥ r+3,
thus either t ≥ s + 2 (by property (c) of the lemma, the vertex in {x, y, z} ∩ Vt has
two incoming arcs in the triangle xyzx) or s ≥ r + 2 (the vertex in {x, y, z} ∩ Vr has
two outgoing arcs in the triangle), we reach a contradiction in either case, completing
the proof.

Lemma 2.2. Let T = (V,A) be a strongly connected tournament. Then either
one of F1 and F2 in T or a partition {V1, V2, . . . , Vk} of V as described in Lemma 2.1
can be found in time O(|V |2).

Proof. Let us apply the same algorithm as described in the proof of Lemma 2.1 to
T first. This algorithm is essentially a breadth-first search, so it can be implemented
in time O(|V |2). We then need to check if each of (2.4), (2.5), (2.8), (2.10)–(2.12),
(2.15)–(2.17) holds. (Recall the proof of Lemma 2.1. The other statements need
not be checked; for example, (2.6) follows from (2.4) and (2.5) and (2.9) is proved
for (2.10) and (2.11).) If yes, {V1, V2, . . . , Vk} is a partition as desired; else, we can
exhibit an F1 or F2.

Note that (2.4) can be checked in time O((|V2| + |V3|)2). To see it, we first find
N−(x) ∩ V3 for each x ∈ V2; this step takes O(|V2||V3|) time. Then sort the vertices
in V2 in nondecreasing order according to |N−(x)∩V3|; this step takes O(|V2| log |V2|)
time. Suppose x1, x2, . . . , xt is the resulting order, where t = |V2|. Then we check if
(N−(xi) ∩ V3) ⊆ (N−(xi+1) ∩ V3) for i = 1, 2, . . . , t − 1. If not, let i be the smallest
subscript that violates this condition; then we can exhibit an F1. (Recall the proof of
(2.4).) Otherwise, (2.4) is satisfied; this step takes O(|V2||V3|) time. So our statement
follows.

Similarly, (2.5) can be checked in time O((|V2|+ |V3|)2).
As for (2.8), we can find a triangle in V2 or declare V2 is acyclic in time O(|V2|2).

To see it, let us apply the depth-first search to output the strongly connected com-
ponents of V2. If there is no component that contains at least three vertices, then V2

is acyclic; otherwise, apply the depth-first search on such a component to output a
directed cycle C. If C has three vertices, then C is as desired; else, take an arbitrary
chord e of C, {e} ∪ C contains a directed cycle C1 shorter than C; replace C by C1;
repeat the process.

Similarly, it can be shown that the time complexity for checking each of (2.10)–
(2.12), (2.15)–(2.17) is no more than O((|Vi| + |Vi+1|)2) when we proceed to the
structure between Vi and Vi+1 for i = 1, 2, . . . , k − 1. Hence, the total complexity is∑k−1

i=1 O((|Vi|+ |Vi+1|)2) +O(|V |2) = O(|V |2).
3. Min-max theorems. The present section is devoted to min-max theorems

on packing and covering directed cycles in tournaments. Recall that in the unweighted
case every �-packing in T is a family of vertex disjoint triangles and the size of a
�-covering S in T is the number of vertices in S.

Theorem 3.1. Let T = (V,A) be a tournament with no subtournament isomor-
phic to F1 nor F2. Then the �-packing number of T equals the �-covering number
of T .
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Proof. Without loss of generality, we may assume that T is strongly connected.

We shall let P3 stand for an induced directed path with three vertices. Recall the
definitions of a �-packing and a �-covering in section 1; with P3 in place of � over
there, we can define a P3-packing and a P3-covering.

Since T contains no F1 nor F2, V admits a partition {V1, V2, . . . , Vk} as described
in Lemma 2.1. Let D be the digraph obtained from T by deleting all arcs in Vi for
each i and deleting all the arcs from Vi to Vj for any i < j. Then we have

(3.1.1) the �-packing number of T equals the P3-packing number of D; the �-
covering number of T equals the P3-covering number of D.

To see it, let xyzx be an arbitrary triangle in T . Then Corollary 2.2 guarantees
the existence of some i such that z ∈ Vi, y ∈ Vi+1, and x ∈ Vi+2. Hence xyz is a P3

in D. Conversely, if xyz is a P3 in D, then we have some i (recall the construction of
D) such that z ∈ Vi, y ∈ Vi+1, and x ∈ Vi+2. By property (c) of Lemma 2.1, z points
to x in T . Hence xyzx is a triangle in T . So there is a one to one correspondence
between triangles in T and P ′

3s in D; (3.1.1) follows.

In view of (3.1.1), the present theorem is equivalent to the following statement.

(3.1.2) The P3-packing number of D equals the P3-covering number of D.

We shall turn to prove (3.1.2). For this purpose, note the following:

(3.1.3) Let ≺ be the linear order as defined in Lemma 2.1. Then the following
statements hold:

(i) For each i = 1, 2, . . . , k− 1, if (v, x) is an arc from Vi+1 to Vi in D, then (u, x)
is an arc in D for any u in Vi+1 with u ≺ v.

(ii) For each i = 1, 2, . . . , k − 1, there is a map f : Vi+1 → Vi such that for each
v ∈ Vi+1, (v, x) is an arc for each x in Vi with f(v) � x and that there is no arc
between v and any x in Vi with x ≺ f(v).

From the construction of D, it can be seen that (i) follows instantly from Corol-
lary 2.1 and (ii) follows from property (b) of Lemma 2.1.

Let i∗ be the smallest vertex in Vi with respect to the linear order ≺ as defined
in (3.1.3) for i = 1, 2, . . . , k.

(3.1.4) Without loss of generality, we may assume that f((i+ 1)∗) = i∗ for i = 1
and 2.

Suppose the contrary: f((i + 1)∗) �= i∗ for i = 1 or 2. Then there is no P3 in D
passing through i∗, for otherwise i ≤ 2 and the construction of D imply that such a
P3 would contain an arc (v, i

∗) for some v ∈ Vi+1. From (i) of (3.1.3), we conclude
that ((i + 1)∗, i∗) would be an arc in D, so f((i + 1)∗) = i∗, a contradiction. Hence
we may consider D − {i∗} instead of D.

(3.1.5) There exists a maximum P3-packing in D which contains 3∗2∗1∗.
To justify (3.1.5), note that, by (3.1.4), 3∗2∗1∗ is a P3 in D. Now let P be

a maximum P3-packing in D such that |θ(P) ∩ F ∗| is as large as possible, where
θ(P) is the set of all the vertices and all the arcs appeared in P3’s in P and F ∗ =
{1∗, 2∗, 3∗, (3∗, 2∗), (2∗, 1∗)}. We aim to show that this P contains 3∗2∗1∗. To this
end, observe that

(i) {1∗, 2∗, 3∗} ∩ θ(P) �= ∅. For otherwise, we may add 3∗2∗1∗ to P to obtain a
larger P3-packing in D, a contradiction.

(ii) 1∗ ∈ θ(P). For otherwise, in case 2∗ ∈ θ(P), let Q be the P3 containing 2
∗

in P and let Q′ be the P3 obtained from Q by replacing one arc with (2
∗, 1∗); in case

2∗ /∈ θ(P), let Q be the P3 containing 3
∗ in P (recall (i)) and let Q′ = 3∗2∗1∗. Next,

let P ′ be the P3-packing obtained from P by replacing Q with Q′. Then we have
|θ(P ′) ∩ F ∗| > |θ(P) ∩ F ∗| in each case, a contradiction.
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(iii) 2∗ ∈ θ(P). Assume the contrary, let Q be the P3 containing 1
∗ in P; we

distinguish between two cases: in case 3∗ is contained in no R ∈ P with R �= Q,
let P ′ be the P3-packing obtained from P by replacing Q with 3∗2∗1∗. In case 3∗ is
contained in an R ∈ P with R �= Q, we consider two subcases: if 3∗ is not a source
of R, then let R′ be the P3 obtained from R by replacing one arc with (3∗, 2∗); if 3∗

is a source of R, say, R = 3∗yx, then set R′ = 3∗2∗x (note that (2∗, x) is an arc in D
by (3.1.3)); next, let P ′ be the P3-packing obtained from P by replacing R with R′.
It can be seen that |θ(P ′) ∩ F ∗| > |θ(P) ∩ F ∗| in either case, a contradiction.

(iv) 3∗ ∈ θ(P). For otherwise, let Q = xy1∗ be the P3 containing 1 in P (recall
(ii)). Then (3∗, y) is an arc in D by (i) of (3.1.3) as 3∗ ≺ x. Now let P ′ be the P3-
packing obtained from P by replacing Q with 3∗y1∗. Then |θ(P ′)∩F ∗| > |θ(P)∩F ∗|,
a contradiction.

(v) (3∗, 2∗) ∈ θ(P). Suppose the contrary: let Q (resp., R) be the P3 containing
2∗ (resp., 3∗) in P (recall (iii) and (iv)). Then Q �= R. We distinguish between two
cases according to the position of 2∗ in Q.

Case 1. Q = x2∗y. In case R = 3∗uv, (x, u) is an arc in D by (ii) of (3.1.3) as
2∗ ≺ u, let Q′ = 3∗2∗y and R′ = xuv; in case R = u3∗v, both (u, x) and (x, v) are
arcs in D according to (3.1.3), let Q′ = 3∗2∗y and R′ = uxv; in case R = uv3∗, (v, x)
is an arc in D by (3.1.3), let Q′ = 3∗2∗y and R′ = uvx.

Case 2. Q = xy2∗. In case R = 3∗uv, both (2∗, v) and (y, u) are arcs in D by
(3.1.3), let Q′ = 3∗2∗v and R′ = xyu; in case R = u3∗v, (y, v) is an arc in D according
to (3.1.3), let Q′ = u3∗2∗ and R′ = xyv; in case R = uv3∗, we consider two subcases:
If v ≺ x, then (u, x) is an arc in D by (3.1.3), let Q′ = v3∗2∗ and R′ = uxy; if x ≺ v,
then both (x, 3∗) and (v, y) are arcs in D by (3.1.3), let Q′ = x3∗2∗ and R′ = uvy.

Next, in each case let P ′ be the P3-packing obtained from P by replacing Q with
Q′ and by replacing R with R′. Then |θ(P ′) ∩ F ∗| > |θ(P) ∩ F ∗|, a contradiction.

(vi) (2∗, 1∗) ∈ θ(P). Suppose the contrary: Let Q (resp., R = yz1∗) be the
P3 containing (3

∗, 2∗) (resp., 1∗) in P (recall (v) and (ii)). Then Q �= R. In case
Q = 3∗2∗x, (z, x) is an arc in D by (3.1.3), let Q′ = 3∗2∗1∗ and R′ = yzx; in case
Q = x3∗2∗, (x, y) is an arc in D by (3.1.3), let Q′ = 3∗2∗1∗ and R′ = xyz. Next, in
each case let P ′ be the P3-packing obtained from P by replacing Q with Q′ and by
replacing R with R′. Then |θ(P ′) ∩ F ∗| > |θ(P) ∩ F ∗|, a contradiction.

Since P3’s in P are vertex disjoint, it follows from (v) and (vi) that 3∗2∗1∗ is a
P3 in P, completing the proof of (3.1.5).

In view of (3.1.4) and (3.1.5), we have the following greedy algorithm for a maxi-
mum P3-packing in D.

(3.1.6) Description. If f((i+ 1)∗) �= i∗ for i = 1 or 2, then any maximum P3-
packing in D− {i∗} is a maximum P3-packing in D, replace D by D− {i∗}; else, the
union of any maximum P3-packing in D − {1∗, 2∗, 3∗} and 3∗2∗1∗ gives a maximum
P3-packing in D, replace D by D − {1∗, 2∗, 3∗}; repeat the process.

Since (3.1.3) is closed under taking connected induced subdigraphs of D, both
(3.1.4) and (3.1.5) are valid with respect to each connected component of new D’s.
Hence the algorithm will eventually return a maximum P3-packing in the original D.

Recall (3.1.3): ≺ is a linear order defined on each Vi; however, there is no order
between any two vertices in two distinct Vi’s. Now let us fix this gap and extend ≺
to the whole vertex-set V of D.

(3.1.7) Define u ≺ v whenever u ∈ Vi and v ∈ Vj for any i < j.
We point out that if xyz is a P3 in D, then, according to (3.1.7), there holds

z ≺ y ≺ x. Now let us proceed to the order of P3’s in D.
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(3.1.8) Let Q1 = x1y1z1 and Q2 = x2y2z2 be two P3’s in D. Define Q1 ≺ Q2 if
one of the following three conditions is satisfied: (i) x1 ≺ x2; (ii) x1 = x2 and y1 ≺ y2;
(iii) x1 = x2, y1 = y2, and z1 ≺ z2.

Based on (3.1.8), we can further define the order of two P3-packings with the
same size.

(3.1.9) Let Q = {Qi : i = 1, 2, . . . ,m} and Q′ = {Q′
i : j = 1, 2, . . . ,m} be

two P3-packings in D sorted in increasing order: Qi ≺ Qi+1 and Q
′
i ≺ Q′

i+1 for
i = 1, 2, . . . ,m − 1. Define Q ≺ Q′ if there is some i with 1 ≤ i ≤ m such that
Qi ≺ Q′

i and Qj = Q
′
j for each j > i.

(3.1.10) Let Q1 = x1y1z1 and Q2 = x2y2z2 be two P3’s in D. Define Q1 ≺strict Q2

if the following two conditions are satisfies simultaneously: (i) x1 ≺ x2, y1 ≺ y2, and
z1 ≺ z2; (ii) for each 1 ≤ j ≤ k, if u1 ∈ Vj ∩ {x1, y1, z1} and u2 ∈ Vj ∩ {x2, y2, z2},
then u1 ≺ u2.

(3.1.11) A maximum P3-packing Q = {Qi : i = 1, 2, . . . ,m} in D is called good if
Q1 ≺strict Q2 ≺strict . . . ≺strict Qm (renaming Qi’s if necessary).

The algorithm described in (3.1.6) asserts that
(3.1.12) there exists a good maximum P3-packing in D.
Recall that our target is to prove (3.1.2). To achieve it, we still need some

preparations.
(3.1.13) Let Q = {Qi : i = 1, 2, . . . ,m} be a good maximum P3-packing in D

(recall (3.1.11)) with the largest possible order with respect to (3.1.9) and let w be an
arbitrary vertex in {1∗, 2∗, 3∗}. Assume thatD andD−{w} have the same P3-packing
number. Then there exists a good maximum P3-packing Q′ = {Q′

i : i = 1, 2, . . . ,m}
in D − {w} such that Q′

1 ≺ Q1 and Q
′
i = Qi for i = 2, 3, . . . ,m.

To justify (3.1.13), let Q′ = {Q′
i : i = 1, 2, . . . ,m} be a good maximum P3-packing

in D−{w} with the largest possible order with respect to (3.1.9), the existence of Q′

is guaranteed by (3.1.12) (with D − {w} in place of D over there). Let us show that
Q′ is as desired. Assume the contrary: let i be the largest index with Q′

i ≺ Qi. Then
i ≥ 2. Suppose Qi = xiyizi and Q

′
i = x

′
iy

′
iz

′
i, we distinguish among three cases.

Case 1. x′i = xi and y
′
i = yi and z

′
i ≺ zi. In this case Q′

i ≺strict Qi. Let
Q̃ = (Q′ −{Q′

i})∪{Qi}. Then Q̃ is a good maximum P3-packing in D−{w}. To see
it, note that Q′

j = Qj for each j > i. By definition (3.1.11), Q
′
j ≺strict Q

′
i for each

j < i, thus no Q′
j with j < i in Q′ passes through any of xi, yi, zi. The statement

follows. Since Q′ ≺ Q̃, the existence of Q̃ contradicts the selection of Q′.
Case 2. x′i = xi and y

′
i ≺ yi. In case z

′
i � zi, our proof is exactly the same

as that in Case 1; in case zi ≺ z′i, (yi, z
′
i) is an arc in D by (3.1.3). Let Q̃ =

(Q− {Qi}) ∪ {xiyiz′i}. Then Q̃ is a good maximum P3-packing in D with Q′ ≺ Q̃, a
contradiction.

Case 3. x′i ≺ xi. Let us consider three subcases.
Subcase 3.1. x′i and xi belong to the same Vj for some 1 ≤ j ≤ k. In case y′i � yi,

our proof is exactly the same as that in Case 2. So we suppose yi ≺ y′i. Thus (xi, y′i)
is an arc in D by (3.1.3). Let Q̃ be the P3-packing obtained from Q′ by replacing
Q′

i with xiy
′
iz

′
i. Then Q̃ is a good maximum P3-packing in D − {w} with Q′ ≺ Q̃,

contradicting the definition of Q′.
Subcase 3.2. x′i and yi belong to the same Vj for some 1 ≤ j ≤ k.
Consider the case x′i � yi. If y

′
i � zi (resp., zi ≺ y′i), let Q̃ be the P3-packing

obtained from Q′ by replacing Q′
i with Qi (resp., with xiyiy

′
i, recall (3.1.3)), then Q̃

is a good maximum P3-packing in D − {w} with Q′ ≺ Q̃, a contradiction.
Next, consider the case yi ≺ x′i. Note that (xi, x′i) is an arc in D by (3.1.3). Let
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Q̃ be the P3-packing obtained from Q′ by replacing Q′
i with xix

′
iy

′
i, then Q̃ is a good

maximum P3-packing in D − {w} with Q′ ≺ Q̃, a contradiction.
Subcase 3.3. x′i and zi belong to the same Vj for some 1 ≤ j ≤ k. Let u be the

smaller vertex in {x′i, zi}. Then (yi, u) is an arc in D − {w} by (3.1.3). Let Q̃ be the
P3-packing obtained from Q′ by replacing Q′

i with xiyiu, then Q̃ is a good maximum
P3-packing in D − {w} with Q′ ≺ Q̃, a contradiction.

This completes the proof of (3.1.13).

(3.1.14) There exists a w ∈ {1∗, 2∗, 3∗} such that D − {w} has less P3-packing
number than D.

To verify (3.1.14), let Q = {Qi : i = 1, 2, . . . ,m} be a good maximum P3-packing
in D with the largest possible order with respect to (3.1.9). It follows from (3.1.11)
that at least one of 1∗, 2∗, and 3∗ is on Q1, for otherwise we may add 3

∗2∗1∗ to Q to
get a larger good P3-packing of D, a contradiction. Now let us exhibit w in each of
the following cases.

Case 1. 1∗ is on Q1. In this case we may set 1
∗ as w. To see it, suppose the

contrary: (3.1.13) guarantees the existence of a good maximum P3-packing Q′ = {Q′
i :

i = 1, 2, . . . ,m} in D − {1∗} such that Q′
1 ≺ Q1 and Q

′
i = Qi for i = 2, 3, . . . ,m. Let

Q1 = xy1
∗ and let z be the vertex of Q′

1 in V1. Then (y, z) is an arc in D by (3.1.3).
Let T be the P3-packing obtained from Q by replacing Q1 with xyz, then T is a good
maximum P3-packing in D with Q ≺ T , a contradiction.

Case 2. 2∗ is on Q1 but neither of 1
∗ and 3∗ is. In this case we may set 2∗ as w.

To see it, suppose the contrary: (3.1.13) guarantees the existence of a good maximum
P3-packing Q′ = {Q′

i : i = 1, 2, . . . ,m} in D − {2∗} such that Q′
1 ≺ Q1 and Q

′
i = Qi

for i = 2, 3, . . . ,m. If Q1 = x2
∗y, then Q′

1 ≺ Q1 implies that Q
′
1 = abc for some a ≺ x

and 2∗ ≺ b with a ∈ V3. By virtue of (3.1.3), (x, b) is an arc in D; set R = xbc. If
Q1 = xy2∗, then Q′

1 ≺ Q1 implies that Q
′
1 contains a vertex z in V2 with 2

∗ ≺ z.
By (3.1.3), (y, z) is an arc in D; set R = xyz. In each case, let T be the P3-packing
obtained from Q by replacing Q1 with R, then T is a good maximum P3-packing in
D with Q ≺ T , a contradiction.

Case 3. 3∗ is on Q1. In this case we may set 3
∗ as w. To see it, suppose the

contrary: (3.1.13) guarantees the existence of a good maximum P3-packing Q′ = {Q′
i :

i = 1, 2, . . . ,m} in D − {3∗} such that Q′
1 ≺ Q1 and Q

′
i = Qi for i = 2, 3, . . . ,m. It

follows that 3∗ is not the source of Q1 for otherwise Q1 ≺ Q′
1, a contradiction. In case

Q1 = y3
∗z, let Q′

1 = abc. Then a ∈ V3 or a ∈ V4 in order for Q
′
1 ≺ Q1. Set R = yab

in the former case (note that (y, a) is an arc in D by (3.1.3)), and set R = ybc in the
latter case (note that (y, b) is an arc in D by (3.1.3)). In case Q1 = yz3

∗, Q′
1 must

contain a vertex a in V3 in order for Q
′
1 ≺ Q1, set R = yza (note that (z, a) is an

arc in D by (3.1.3)). Now let T be the P3-packing obtained from Q by replacing Q1

with R. Then T is a good maximum P3-packing in D with Q ≺ T in each case, a
contradiction.

This completes the proof of (3.1.14).

Now we are ready to prove (3.1.2).

We apply induction on the number of vertices in D. If D has at most three
vertices, the statement is trivial. Let us proceed to the induction step. If f((i+1)∗) �=
i∗ for i = 1 or 2, then any P3 in D − {i∗} is a P3 in D (recall (3.1.4)). Thus the
desired statement follows from the induction hypothesis on D − {i∗}. So we suppose
f((i + 1)∗) = i∗ for i = 1 and 2. By (3.1.5), 3∗2∗1∗ is in a maximum P3-packing in
D, so the P3-packing number of D = the P3-packing number of D − {1∗, 2∗, 3∗}+1;
by (3.1.14) there exists a vertex w on 3∗2∗1∗ such that the P3-covering number of D
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= the P3-covering number of D−{w}+1, which implies that the P3-covering number
of D ≥ the P3-covering number of D−{1∗, 2∗, 3∗} +1. Since by induction hypothesis
D − {1∗, 2∗, 3∗} has the same P3-packing and P3-covering numbers, the P3-packing
number ofD ≥ the P3-covering number ofD, so equality must hold and (3.1.2) follows.

This completes the proof of Theorem 3.1.

We further generalize Theorem 3.1 to the weighted case. In the next section we
show that it allows us to obtain a 2.5-approximation polynomial time algorithm for
the feedback vertex set problem in any tournament.

Theorem 3.2. Let T = (V,A) be a tournament with a weight w(v) on each
vertex v ∈ V . Then the �-packing number of T equals the �-covering number for
any nonnegative integral w if and only if T contains no F1 nor F2.

Proof. To see the necessity, suppose the contrary: T contains some Fi, i = 1
or 2. Let w be such that w(v) = 1 if v is a vertex of Fi and 0 otherwise. Then
the �-packing (resp., �-covering) number of T with respect to w equals the packing
(resp., covering) number of Fi in the unweighted case, which is 1 (resp., 2). Hence
the min-max relation is violated.

Now let us justify the sufficiency. Suppose T contains no F1 nor F2; we aim to
establish the min-max result. Without loss of generality, we assume that T is strongly
connected and that w(v) > 0 for each v ∈ V (for otherwise we may delete it from T ).

Let us now construct a new tournament T̃ from T by replacing each vertex v in
T with an acyclic subtournament on vertex set S(v) such that |S(v)| = w(v) and that
for each i ∈ S(u) and each j in S(v), (i, j) is an arc in T̃ if and only if (u, v) is an arc
in T . It is easy to see that |S(v) ∩ {i, j, k}| ≤ 1 for each S(v) and each triangle ijki
in T̃ . Observe that

(3.2.1) T̃ contains no F1 nor F2.

Assume the contrary: T̃ contains some Fk, where k = 1 or 2. Suppose the vertex
set of Fk is {i1, i2, . . . , i5}. Since Fk is not a subgraph of T , we may assume the
existence of a vertex v in T with {i1, i2, . . . , i5} ∩ S(v) = {i1, . . . , ij} and j ≥ 2.

From the construction of T̃ , it follows that j = 2 for otherwise Fk − {ij+1} contains
no triangle, a contradiction; next, there exist two vertices in {i3, i4, i5}, say, i3 and
i4, such that the arcs between {i1, i2} and {i3, i4} are all directed to {i1, i2} or all
directed to {i3, i4}. Thus Fk − {i5} is acyclic, a contradiction.

By virtue of (3.2.1), we deduce the following statement from Theorem 3.1.

(3.2.2) The �-packing number of T̃ equals the �-covering number of T̃ .
Now let Q̃ be a maximum �-packing in T̃ and let C̃ be a minimum �-covering

in T̃ . We construct a �-packing Q of T from Q̃ as follows: for each triangle ijki in Q̃
with i ∈ S(a), j ∈ S(b) and k ∈ S(c), create a triangle abca in Q (note that a triangle
in T may appear multiple times); that is, Q consist of all the created triangles in
T . Then Q is a �-packing of T for each vertex v of T is contained in at most w(v)
triangles of Q.

In order to construct a�-covering C of T from C̃, observe that S(v) ⊆ C̃ whenever
S(v) ∩ C̃ �= ∅. To see it, assume the contrary: i ∈ C̃ but i′ /∈ C̃ for some i and i′ in
S(v). By the minimality of C̃, there exists a triangle ijki in Q̃ which is covered by a
unique vertex, i, in C̃. Thus the triangle i′jki′ is not covered by C̃, a contradiction.
Now define C = {v ∈ V |S(v) ⊆ C̃}. Then it follows from the above observation that
C is a �-covering of T .

According to (3.2.2),
∑

v∈C w(v) =
∑

v∈C |S(v)| = |C̃| = |Q̃| = |Q|. Thus Q is a
maximum �-packing of T and C is a minimum �-covering of T ; we therefore get the
desired min-max relation.
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4. Algorithms. Now we are ready to present an O(|V |2) algorithm for the max-
imum �-packing problem and an O(|V |3) algorithm for the minimum �-covering
problem in any tournament with no F1 nor F2.

To find a maximum �-packing in T , let us apply the following algorithm, where
�(P (T )) stands for a maximum�-packing in T and P3(P (D)) stands for a maximum
P3-packing in D.

Maximum �-Packing Algorithm.

Description. Find all the strongly connected components T1, T2, . . . , Ts of T . If
s ≥ 2, then apply the algorithm on each of T1, T2, . . . , Ts, �(P (T )) = ∪s

i=1 �(P (Ti)).
Otherwise, let {V1, V2, . . . , Vk} be a partition of T as described in Lemma 2.1 and
let D be the digraph as constructed in the proof of Theorem 3.1. Find P3(P (D))
as follows: If f((i + 1)∗) �= i∗ for i = 1 or 2, then P3(P (D)) = P3(P (D − {i∗})).
Replace D by D − {i∗}; else, set w(x) = w(x) − δ for each x ∈ {1∗, 2∗, 3∗}, where
δ = min{w(1∗), w(2∗), w(3∗)}, and set W = {v ∈ V : w(v) = 0}. Then P3(P (D)) =
P3(P (D−W ))∪ {3∗2∗1∗, . . . , 3∗2∗1∗}, where the multiplicity of 3∗2∗1∗ is δ. Replace
D by D −W ; repeat the process. Return �(P (T )) = P3(P (D)).

To show the validity of the algorithm, we need only consider the case f((i+1)∗) =
i∗ for i = 1 and 2. Let D̃ be the digraph obtained from D as follows: each vertex
v in D is replaced by a set S(v) of w(v) vertices; for each i ∈ S(u) and each j in
S(v), (i, j) is an arc in D̃ if and only if (u, v) is an arc in D. Clearly, there is a one
to one correspondence between maximum weighted P3-packings in D and maximum
unweighted P3-packings in D̃. With D̃ in place of D, repeated applications of (3.1.5)
guarantee the existence of a maximum P3-packing in D̃ which contains δ copies of
3∗2∗1∗. (After getting the first copy, we remove the three vertices on this copy from D̃;
then applying (3.1.5) in the resulting digraph, we get the second copy, etc.) Thus the
validity of the algorithm follows instantly from the above-mentioned correspondence.

The strongly connected components can be found in time O(|V |2) by the depth-
first search; in case T is strongly connected, the partition {V1, V2, . . . , Vk} can be
constructed in time O(|V |2) by the breadth-first search; D can be obtained from the
partition in time O(|V |2); P3(P (D)) can be obtained in time O(|V |). Hence, the total
time complexity of the algorithm is O(|V |2).

To find a minimum covering set, let us apply the following algorithm, where
�(C(T )) stands for a minimum �-covering in T .

Minimum �-Covering Algorithm.

Description. Find all the strongly connected components T1, T2, . . . , Ts of T . If
s ≥ 2, then apply the algorithm on each of T1, T2, . . . , Ts, �(C(T )) = ∪s

i=1 �(C(Ti)).
Otherwise, let {V1, V2, . . . , Vk} be the partition as described in Lemma 2.1 and let D
be the digraph as constructed in the proof of Theorem 3.1. If f((i + 1)∗) �= i∗ for
i = 1 or 2, then �(C(T )) = �(C(T − {i∗})). Replace T by T − {i∗} and replace D
by D−{i∗}; else, find an x in {1∗, 2∗, 3∗} by the maximum �-packing algorithm such
that |�(P (T ))| = |�(P (T − {x}))| + w(x). Set �(C(T )) = �(C(T − {x})) ∪ {x}.
Replace T by T − {x} and replace D by D − {x}; repeat the process.

To justify the validity of the algorithm, we need to show the existence of an x
in {1∗, 2∗, 3∗} such that |�(P (T ))| = |�(P (T − {x}))|+ w(x). Let S be a minimum
�-covering of T . Then S must contain at least one x ∈ {1∗, 2∗, 3∗} as 3∗2∗1∗ is a P3

in D, which corresponds to a triangle in T . For this x, S − {x} is clearly a minimum
�-covering of T − {x}. Thus w(�(C(T ))) = w(�(C(T − {x}))) + w(x). It follows
from the min-max result that |�(P (T ))| = |�(P (T −{x}))|+w(x) since both T and
T − {x} have the same �-packing and �-covering numbers. In addition, we need to
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show that if |�(P (T ))| = |�(P (T −{x}))|+w(x), then x is in a minimum �-covering
of T − {x}. This implication is trivial as w(�(C(T ))) = w(�(C(T − {x}))) + w(x).

Since the time complexity of the maximum �-packing algorithm is O(|V |2), it
takes O(|V |2) to find the desired x. Note that T has |V | vertices, the total complexity
of the algorithm is O(|V |3). The proof is complete.

Given an arbitrary tournament T = (V,A) with a positive integer w(v) on each
vertex v ∈ V , let us now present a 2.5-approximation algorithm for the minimum
�-covering problem in T , which relies on “eliminating” the problematic subdigraphs,
F1 and F2, from T .

Approximation �-Covering Algorithm.

Step 0. Set w̃ = w.
Step 1. While T contains a subtournament H isomorphic to F1 or F2 such that

w̃(v) > 0 for each vertex v in H, do: set w̃(v) = w̃(v)− δ for each vertex
v in H, where δ = min{w̃(v) : v ∈ V (H)}.

Step 2. Set �(C0) = {v ∈ V : w̃(v) = 0} and V1 = V −�(C0).
Step 3. Let �(C1) be returned by applying the minimum �-covering algorithm on

T (V1) with respect to the weight w̃. Return �(C) = �(C0) ∪�(C1).

Since it takes O(|V |2) time to output an H in Step 1 according to Lemma 2.2, the
total complexity for Step 1 is O(|V |3); as justified in section 4, Step 3 takes O(|V |3).
So the total complexity of our algorithm is O(|V |3).

Based on the local ratio theorem of Bar-Yehuda and Even [3], we get the following
statement.

Theorem 4.1. The performance guarantee of the above algorithm is 2.5; that is,
if �(C∗) is a minimum �-covering in T , then w(�(C)) ≤ 2.5 w(�(C∗)).

5. Concluding remarks. The feedback vertex problem in tournaments is a
generalization of the vertex cover problem. In this work, we have pointed out that
each existing method that leads to a 2-approximation algorithm for the latter problem
yields a 3-approximation algorithm for the former problem and that the corresponding
algorithms are in the same spirit. Although it is hard to improve the approximation
ratio of 2 for the vertex cover problem, by characterizing the class of tournaments with
the min-max relation on packing and covering directed cycles, we have succeeded in
improving the approximation ratio for the feedback vertex set problem from 3 to 2.5,
using the local ratio technique.

Recent applications of the local ratio technique are made by Bar-Yehuda to some
other problems [1, 2]. It would be interesting to see if the local ratio technique
can be applied in a more sophisticated way to improve the approximation ratio for
the feedback set problem in tournaments, for example, by combining the methods
developed for the triangle packing and covering problems in graphs by Krivelevich [12].
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