
Title Regularization of RIF blind image deconvolution

Author(s) Ng, MKP; Plemmons, R; Qiao, S

Citation IEEE Transactions on Image Processing, 2000, v. 9 n. 6, p. 1130-
1134

Issued Date 2000

URL http://hdl.handle.net/10722/42991

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37882298?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1130 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 6, JUNE 2000

Correspondence________________________________________________________________________

Regularization of RIF Blind Image Deconvolution

Michael K. Ng, Robert J. Plemmons, and Sanzheng Qiao

Abstract—Blind image restoration is the process of estimating both the
true image and the blur from the degraded image, using only partial infor-
mation about degradation sources and the imaging system. Our main in-
terest concerns optical image enhancement, where the degradation often in-
volves a convolution process. We provide a method to incorporate truncated
eigenvalue and total variation regularization into a nonlinear recursive in-
verse filter (RIF) blind deconvolution scheme first proposed by Kundur and
Hatzinakos. Tests are reported on simulated and optical imaging problems.

Index Terms—Blind image deconvolution, circulant matrix, inverse filter,
regularization.

I. INTRODUCTION

A fundamental issue in image restoration is blur removal in the pres-
ence of observation noise. In the important case where the blurring op-
eration is spatially invariant, then the basic restoration computation in-
volved is simply a deconvolution process that faces the usual difficul-
ties associated with ill-conditioning in the presence of noise [2]. The
image observed from a shift invariant linear blurring process, such as
an optical system, is described by how the system blurs a point source
of light into a larger image. The image of a point source is called the
point spread functionPSF, which we denote byh. The observed image
g is then the result of convolving the PSFh with the “true” image,
sayf . This blurring process is represented by the convolution equa-
tion g = h ? f . The standard deconvolution problem is to recover
the imagef given the observed imageg and the blurring operatorh.
There is much interest in removing blur and noise degradations from
1-D chemical spectra, as well as two-dimensional (2-D) images from
microscopes, telescopes, and scintigrams [2]. The PSF of an imaging
system can sometimes be described by a mathematical formula. More
often, the PSF must be estimated empirically. Empirical estimates of
the PSF can sometimes be obtained by imaging a relatively bright, iso-
lated point source. In astro-imaging the point source might be a natural
guide star or a guide star artificially generated using range-gated laser
backscatter, e.g, [12]. Notice here that the PSFh as well as the image
may be degraded by noise.

In many applications data corresponding toh is not completely
known.Blind deconvolutionis the process of estimating both the true
imagef and the blurh from the degraded imageg. The purpose of
this paper is to incorporate regularization into and refine a nonlinear
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recursive inverse filter blind deconvolution method first proposed by
Kundur and Hatzinakos [8]–[10]. They call their scheme thenonneg-
ativity and support constrained, recursive inverse filtering method
(NAS-RIF). In this paper, we apply two regularization techniques
to NAS-RIF. First, we apply an inexpensiveeigenvalue truncation
regularization to the filter. Second, we provide the user the option of
applying total variation regularizationto the estimated image. We
call our approach thenonnegativity and support regularized recursive
inverse filter(NAS-RRIF) algorithm. Note that the word “regularized”
applies to both regularization techniques. The inverse filter and both
regularization schemes are described in Section II. Numerical tests
are reported in Section III on some simulated and optical imaging
problems, and a comparison is made with the NAS-RIF algorithm.

II. I TERATIVE BLIND DECONVOLUTION

For simplicity, we develop our method the one-dimensional (1-D)
restoration problem. Extensions to the 2-D image case are easily de-
rived. Consider an image vectorf = (f1; � � � ; fn)

T ; fi � 0, for
1 � i � n, and a blurring filter with length2m + 1, represented by
a (2m + 1)-by-1 vectorh = (h

�m; � � � ; h0; � � � ; hm)
T : Assuming

2m < n, we can write the observed imageg as the convolution ofh
andf . In matrix form, we have

g = h ? f =

h
�m 0
...

. . .

hm
. . .

. . .
. . .

. . . h
�m

. . .
...

0 hm

f1

f2
...

fn�1

fn

= Hf: (1)

Assuming the background color is represented by 0, we can embed
H in a square circulant matrix and correspondingly embedf in an
(n+ 2m)-by-1 vector by padding zeros. Then (1) is equivalent to

g = C ~f = C

~fa
~fb
~fc

= C

0

f

0

(2)

whereC, the square and circulant matrix, is given by

h0 � � � h
�m+1

h1 � � � h
�m+2

...
. . .

...

hm
. . . h1

0
. . .

...
...

. . . hm

h
�m

. . .
...

...
. . . 0

h
�1 � � � h

�m

h
�m 0
...

. . .
... h

�m

...
...

...
...

...
...

hm
...

. . .
...

0 hm

hm � � � h1

0
. . .

...
...

. . . hm

h
�m

. . .
...

...
. . . 0

h
�1

. . . h
�m

...
. . .

...
hm�2 � � � h

�1

hm�1 � � � h0

:

Equation (2) is called the extended sequence convolution form of (1)
and leads to theextended sequence deconvolution method[6]. Here, (2)
is often preferable to (1), because its coefficient matrixC is a square
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circulant matrix, which has many desirable properties. For example,
if H in (1) has full column rank, thenC is invertible and its inverse
is also circulant andC�1 can be efficiently computed using the fast
Fourier transform (FFT), yielding the extended sequence deconvolu-
tion method for computingf .

In blind deconvolution, we estimate bothf andH in (1) given the
observed imageg. To make the problem better determined, we impose
some constraints. First, we assume the nonnegativity of pixel values in
f . This is called thenonnegativity constraint, and can be incorporated
into deconvolution computations in [2]. Second, since the size off

differs from that of the giveng, we assume the support, the sizen
of f = ~fb in (2), is known. Thus, the structure ofC in (2) can be
determined byn and the size ofg. Third, in the models (1) and (2),
we assume there is no noise present. Finally, recall that we assume the
background color is 0 as indicated in (2). Assuming thatC is invertible,
we can formulate the blind deconvolution problem as follows.

• Find C (or the first column ofC) such that~f = C�1g with
~fa = ~fc = 0 and ~fb � 0 in (2).

Some iterative blind deconvolution methods begin with a knowl-
edge-based (nonnegativity, finite support) estimate forf , “deconvolve”
g = h ? f to estimateh, and then iterate in an alternating fashion to
improve the estimates for bothf andh [3], [5], [14]. These methods
involve variations of direct, rather than inverse, filtering. Kundur and
Hatzinakos [8]–[10], however, have recently presented a novel blind
deconvolution method using recursiveinverse filtering(RIF). Inverse
filters are easier to implement and avoid certain inversion procedures,
thus reducing the computational complexity.

The method by Kundur and Hatzinakos uses a variable finite
impulse response (FIR) filter of length2p + 1, where p is an
estimate form in H in (1), characterized by its parameter vector:
u = (u

�p; � � � ; u0; � � � ; up)
T ; and the process iterates with respect

to u. The observed imageg is the input to the filter. The output is the
convolution ofu andg: y = u ? g, which is then passed through a
nonlinear filter which mapsy to ~y such that~y has a finite support,
sayn, and is nonnegative. In other words, the nonlinear filter sets any
component which is either outside the finite support or negative, to
zero. The resulting vector~y is an estimate for the true nonnegative
image with supportn, i.e., ~y � ~f: The parameter vectoru for our
FIR filter is determined by minimizing the errorky � ~yk22: In order to
avoid a trivial null vectoru, an additional term( p

i=�p
ui � 1)2 is

incorporated into the objective function, where � 0. Specifically,
the objective function is

J(u) = ky � ~yk22 + (eTu� 1)2 (3)

wheree = (1; � � � ; 1)T . An optimal FIR filter is found by mini-
mizing the above objective functionJ(u). It is proved in [10] that
J(u) is convex. Thus a global minimum exists and a variety of nu-
merical optimization algorithms can be used to computeu minimizing
J(u). Kundur and Hatzinakos [9], [10] use a nonlinear conjugate gra-
dient method to search for the minimum. Thus they call their algo-
rithm thenonnegativity and support constraints recursive inverse filter
(NAS-RIF).

A. Regularizing Iterative Blind Deconvolution

Continuous deconvolution can be modeled as an integral equation of
the first kind (an ill-posed inverse problem [4]). It is well-known that
deconvolution algorithms can be extremely sensitive to noise [2]. For
example, if the noise is additive, then the blurring process can be rep-
resented by a convolution equation of the formg = h ? f + �; which,
by (2), is equivalent tog = C ~f + �: Assuming thatC is invertible, we
haveC�1g = ~f + C�1�: In applications arising from integral equa-
tions of the first kind, the ill-conditioning ofC stems from the wide

range of the magnitudes of its eigenvalues [4]. Therefore, excess am-
plification of the noise at small eigenvalues ofC can occur. Since any
realistic signal processing problem involves noise, it is necessary to
incorporate regularization into deconvolution to stabilize the computa-
tion [4]. Regularization methods attempt to alleviate sensitivity to the
noise by “filtering” out eigen-components of the solution belonging to
the noise subspace. For some iterative methods, it has been established
that early termination of the iterations accomplishes this regulariza-
tion effect. That is, the eigen-components of the signal subspace are
reconstructed in the first (possibly many) iterations and, after reaching
a certain approximate restoration, the components in the noise subspace
begin to be reconstructed. It is at this point, where the noise begins to
contaminate the reconstruction, that the iterations are halted (see, e.g.,
[4]). The simulations by Kundur and Hatzinakos [10] show that their
NAS-RIF algorithm is sensitive to noise and, in fact, amplifies noise.
The regularization method they employ is that of truncated iterations.
The main problem with using early termination of the image restoration
iterations as a regularization tool is the following. Due to varying ac-
tivity levels, parts of the image may converge at different rates, leading
to introduction of unwanted artifacts [2].

We describe an alternative regularization approach for the NAS-RIF
algorithm. Our proposed method is referred to as thenonnegativity and
support constraints regularized recursive inverse filter(NAS-RRIF).
The idea is to first apply regularization to the inverse filter by using an
inexpensiveeigenvalue truncationscheme. Using the circulant matrix
C representation, we propose to use ak-by-k circulant matrix, which
we callS, to approximate the inverse ofC, wherek is the size of the
blurred imageg. Specifically, we letS be thek-by-k circulant matrix
with first column

(s0; � � � ; sp; 0; � � � ; 0; s�p; � � � ; s�1)
T
; 1 � p <

k

2
(4)

where p is an estimate form in H in (1), and denoteS =
Circ[(s0; � � � ; sp; 0; � � � ; 0; s�p; � � � ; s�1)

T ]: Thus, the FIR filter
performs a multiplication of the circulant matrixS and the observed
imageg. This multiplication can be implemented efficiently using the
FFT. The outputy = Sg is sent to the nonlinear filter and mapped to
~y satisfying the nonnegativity and support constraints. Then the error
z = y � ~y is measured and fed back to compute an adjustment to the
FIR parameter vector to reduce the value of the objective function.
We choose eigenvalue truncation method for regularization because
S is circulant, its eigenvalues can be efficiently computed using the
FFT. Then the vector̂s = F (s0; � � � ; sp; 0; � � � ; 0; s�p; � � � ; s�1)

T

contains the eigenvalues ofS. HereF is the discrete Fourier matrix.
To incorporate regularization into deconvolution to stabilize the
computation, we need to penalize the small, in magnitude, eigenvalues
of the convolution matrixC. Equivalently, in our inverse filter, we
suppress the large, in magnitude, eigenvalues of the deconvolution
matrixS as follows. We first apply a nonlinear filter represented by a
k-by-k projection matrixQ

~s = Qŝ

whereQ = diag(qi) and

qi =
1; if jŝij � �

0; otherwise;
for 1 � i � k

where� is a predetermined tolerance. In other words, the nonlinear
filter characterized byQ sets all the eigenvalues whose absolute values
are greater than� to zero. Effectively, the regularization is achieved
by truncating the small eigenvalues ofS�1, which is an estimate for
the convolution matrixC, as discussed in [7] and [11]. Then we mea-
sure the errorv = ŝ � ~s = (I � Q)ŝ and incorporate this error
into the objective functionJ(u) given by (3). Specifically, lets =



1132 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 6, JUNE 2000

Fig. 1. NAS-RRIF Algorithm

(s
�p; � � � ; s�1; s0; � � � ; sp)

T be the filter parameter vector, then our
regularized objective function is reformulated now in terms ofs as

Jreg(s) � kzk22 + �kvk22 + (eT s� 1)2 (5)

where

z = y � ~y; v = ŝ� ~s:

The parameter� in (5) controls the degree of regularization. The filter
parameter vectors is determined by minimizing our new objective
function (5). Fig. 1, which also involves regularization of the image cal-
culation as described in Section II-B, gives an overview of our overall
scheme.

Now we consider the gradient ofJreg. For the first term in (5), the
vector~y in z = y � ~y is a projection ofy. Denote~y = Py, thenP
is a diagonal matrix with 0 and 1 entries. Thusz = (I � P )y, where
y = Sg is the output of the filter. Note that the circulant matrixS is
determined by the filter parameter vectors. For the second term in (5),
the error vectorv = (I �Q)ŝ whereQ is also a diagonal matrix with
0 and 1 entries. Also, note that from the definitions ofŝ ands

ŝ = Es where E = F

0 Ip+1

0 0

Ip 0

:

Using some algebraic manipulation, we can show that the gradient of
Jreg(s) is

5Jreg(s) = 2Gz + 2�Re(EH
v) + 2(eT s� 1)e (6)

whereG is a (2p + 1)-by-k row-circulant matrix with its first row:
(gp+1; gp+2; � � � ; gk; g1; � � � ; gp). SinceG is row-circulant andF is
the k-by-k Fourier matrix, the gradient can be computed efficiently.
Furthermore, we can show thatJreg(s) is convex since the Hessian of
the objective function, given by

52
Jreg(s) = 2G(I �P )GT +2�Re(EH(I �Q)E)+ 2eeT (7)

is positive semidefinite. Thus, a global minimum exists and a variety of
numerical optimization algorithms can be used to compute ans mini-
mizingJreg(s). In our numerical examples, a nonlinear conjugate gra-
dient method is used to search for the global minimum. Usually, the
initial vectors is set to all zeros with a unit spike in the middle, see [9]
and [10].

B. Regularizing the Estimated Image

Our method for regularizing the estimated image involvestotal vari-
ation minimization, which has been studied extensively in recent years,
e.g., [3] and [13]. We choose this approach because it is especially ef-
fective in preservingsharpedges without penalizingsmoothimages.
Also, in our application, this approachpreserves nonnegativity of the
image. The disadvantages, however, include the complexity level in
solving total variation minimization problems, and the fact that min-
imizing the variation can sometimes cause a loss of fine detail in the
image [4]. For these reasons, we leave the incorporation of total vari-
ation regularization of the estimated image as a user option in our
NAS-RRIF scheme (see Fig. 1).

Let ~a be the nonnegative segment of sizen at the center of~y, i.e.,
~a = (0 In 0)~y: We perform the regularization by solving fora =
(a1; � � � ; an)

T in the following penalized least squares minimization
problem:

min
a

1

2
k~a� ak22 + �

n�1

i=1

jai+1 � aij2 + �

where� > 0 controls the degree and�(� 0) controls the variability
of the penalty term [13]. When� = 0, we have the usual total varia-
tion minimization. Suppose thata is the solution of above minimiza-
tion problem. The gradient of the associated objective function ata is
a + �A�(a)a � ~a; whereA�(a) is a symmetric and tridiagonal ma-
trix. Thus, the minimizera is the solution of the following equation
(In+�A�(a))a = ~a: We make two observations: first,In+�A�(a)
is an M-matrix (see e.g., [1]). Thus, the entries of the inverse of(In +
�A�(a)) are nonnegative. Second,a is the result of two consecutive
mappings on the filter outputy, first nonnegativity and support and
then total variation regularization. These two observations ensure the
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Fig. 2. (left) Original image and (right) point spread function.

Fig. 3. Degraded image with SNR= 70 DB (left), NAS-RRIF restoration
usingp = 8 (filter length= 17),  = 0:1, � = 100 and� = 100 with
(middle) 65 iterations, and (right) after post-processing the image estimate.

Fig. 4. Degraded image with SNR= 20 DB (left), NAS-RRIF restoration
usingp = 2 (filter length= 5), = 0:1 and� = 0 (no regularization) with 11
iterations (middle) and 18 iterations (right)

nonnegativity ofa. Notice that the regularized image estimatea can
replace~y as an input to compute the error vectorz in the recursive in-
verse filter algorithm. The switch in Fig. 1 indicates this option. We
remark that this image regularization method can also be incorporated
into the NAS-RIF by Kundur and Hatzinakos [9], [10] to possibly im-
prove their restored image.

Finally, we note that the 1-D results of Section II extend in a natural
way to 2-D image blind deconvolution.

III. N UMERICAL EXAMPLES IN OPTICAL IMAGING

In this section, we present numerical tests of data samples to illus-
trate the effectiveness of our NAS-RRIF approach to image restoration
by blind deconvolution.

Synthetic Data: The first data example consists of a45 � 25 syn-
thetically generated binary text image of the letters “IEEE” as shown in
Fig. 2 (left). To obtain a blurred image, we used a Gaussian-type blur-
ring filter with size23� 23, shown in Fig. 2 (right), and convolved it
with the original image. The blurred image is also polluted by Gaussian
noise so that the resulting observed image has SNR= 70 DB and SNR
= 20 DB, as shown in Fig. 3 (left) and Fig. 4 (left), respectively.

For our NAS-RRIF algorithm, the best restoration is achieved at 73
iterations and 65 iterations when SNR= 70 DB and SNR= 20 DB, re-
spectively. We see from Fig. 3 (middle) and Fig. 5 (left) that a visually
appealing result is obtained. For comparison purposes, the NAS-RRIF
algorithm without filter regularization [i.e.,� = 0 in (5)], which is ef-
fectively NAS-RIF, is applied to the degraded image with a high noise
level (SNR= 20 DB). The algorithm without filter regularization can
be viewed as the variant of the NAS-RIF method suggested by Kundur

Fig. 5. NAS-RRIF restoration usingp = 8 (filter length= 17),  = 0:1,
� = 100; and� = 100 (left) with 73 iterations and (right) after post-processing
the image estimate with total variation regularization.

Fig. 6. (left) Original satellite image and (right) guide star image.

Fig. 7. (left) Observed image, (middle) restored image with the overestimated
support, and (right) restored image with the exact support using the guide star
image to initialize NAS-RRIF.

and Hatzinakos [9], [10]. We see that when SNR= 20 DB, the method
converges to a solution [Fig. 4 (middle) with 11 iterations], but then
their scheme exhibits noise amplification on subsequent iterations [Fig.
4 (right) with 18 iterations]. In addition, the corresponding relative er-
rors

kf � yk2=kfk2

are shown at the bottom of the restored images, wheref andy are the
original and restored images Our tests thus indicate that the NAS-RRIF
algorithm can effectively recover images even in the presence of high
noise levels. We also remark that we choose the parameter� by exper-
imentation. Some formal methods for choosing regularization param-
eter can be found in [7] and [11].

We also illustrate that the post-processing of the image estimate
given by NAS-RRIF algorithm can effectively regularize the restored
image. We see from Figs. 3 (right) and 5 (right) that our blind deconvo-
lution restored image post-processing option, described in Section II-B,
and using total variation regularization, is useful in removing clutter,
while preserving sharp edges.

Ground-Based Telescope Data:We consider a256 � 256 image
with irregular boundaries. This model problem data was obtained from
the U.S. Air Force Phillips Laboratory, Lasers and Imaging Directorate,
Kirtland Air Force Base, NM. The model has been used for testing
various image restoration algorithms, e.g., [3] and [11]–[13].

Specifically, the true object is an ocean reconnaissance satellite,
which is shown in Fig. 6 (left). A computer simulation algorithm at
Phillips Laboratory was used to produce a degraded image of the
satellite, shown in Fig. 7 (left), as would be observed from a modern
ground-based telescope equipped with adaptive-optics controlled
deformable mirrors [12]. The satellite was modeled as being 12 m
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in length and in an orbit 500 km above the surface of the earth. The
simulated charge-coupled device (CCD) for forming the image was a
65 536 pixel square array. CCD root-mean-square read-out noise vari-
ance was fixed at 15 microns/pixel to reflect a realistic state-of-the-art
detector. In actual field experiments, several hundred measurement
are averaged to reduce the effects of noise. In this example, the SNR
of the blurred image is around 30 DB. The guide star observed under
similar circumstances is shown in Fig. 6 (right). Notice the blur and
noise in the image of the guide star, resulting in a degraded PSF. In
this example, we set the initial estimate of the 2-D convolution matrix
C with eigenvalues

~�i =
�i; if j�ij � 0:005;
1; if j�ij < 0:005

where�i are the eigenvalues of the estimated PSF given by the guide
star image. The filter parameter vector is initialized by applying the 2-D
inverse FFT to the vector of eigenvalues1=�i. Computed restorations
by our NAS-RRIF algorithm (four iterations,� = 1:2, � = 120; and
 = 4:5) using the knowledge of the guide star are shown in Fig. 7.
We also see that use of the observed guide star image as initialization
and use of a good estimate of the support are useful in the blind decon-
volution of the satellite image.

In summary, we have introduced regularization methods to the re-
cursive inverse filter for blind deconvolution in [8]–[10]. First, we use
the eigenvalue truncation scheme in the filter to regularize the inverse
problem. Second, we choose total variation minimization to improve
the image estimated by the filter. We have shown that the new objec-
tive function is convex and the total variation regularization preserves
the nonnegativity. Preliminary numerical results indicate the effective-
ness of the method.
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Roof-Edge Preserving Image Smoothing Based on MRFs

Stan Z. Li

Abstract—A novel Markov random field (MRF) model is proposed for
roof-edge (as well as step-edge) preserving image smoothing. Image sur-
faces containing roof-edges are represented by piecewise continuous poly-
nomial functions governed by a few parameters. Piecewise smoothness con-
straint is imposed on these parameters rather than on the surface heights
as is in traditional models for step-edges. In this way, roof edges are pre-
served without the necessity to deal with instable higher order derivatives.

Index Terms—Image smoothing, Markov random fields (MRF), max-
imum a posteriori (MAP), roof edge, smoothness.

I. INTRODUCTION

Image smoothing is aimed at removing corrupting noise and
restoring true image surfaces. It is performed based on thesmoothness
constraint about image surfaces which assumes that certain physical
properties in a neighborhood present some coherence and generally
do not change abruptly. The smoothness is imposed on the image
surface function by using a Markov random field (MRF) [1]–[3] or
regularization [4], [5] formulation.

Edges contain important information for image analysis and an im-
portant issue in image smoothing is edge preserving. Two major types
of edges are steps and roofs. Step-edge preserving smoothing has been
well researched and there exist a number of successful models, such as
the line process model [1] in the Markov random field (MRF) frame-
work and the weak string and membrane models [5] in the regulariza-
tion framework; further studies can be found in [6]–[10]. These models
assume that the underlying surface has zero first order derivatives and
are suitable for preserving step-edges but not for roof-edges. Higher
order derivatives have to be dealt with for roof-edges, but such algo-
rithms suffer from instability [5].

In this paper, a novel MRF representation is proposed in which first
order piecewise smoothness (to explained in the main text) is used for
roof-edge (as well as step-edge) preserving smoothing. Image surfaces
are assumed to be a piecewise function governed by a few parame-
ters. Roof discontinuities in the image surface function correspond to
step discontinuities in some governing parameter functions. So, it suf-
fices to preserve roof edges if the first order piecewise smoothness is
imposed on the parameter functions rather than directly on the image
surface function. Roof edges in the surface function, i.e. step edges in
the parameter functions, are preserved as if step edges in the surface
are preserved in the line process model. This extends the ability of first

Manuscript received March 5, 1996; revised July 22, 1999. This work was
supported by Nanyang Technological University under Grants NTU-AcRF RG
43/95 and RG 51/97. The associate editor coordinating the review of this man-
uscript and approving it for publication was Dr. Andrew F. Laine.

The author is with Microsoft Research China, Beijing 100080, China (e-mail:
szli@microsoft.com; http://www.research.microsoft.com/users/szli).

Publisher Item Identifier S 1057-7149(00)04697-2.

1057–7149/00$10.00 © 2000 IEEE


