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Correspondence

Regularization of RIF Blind Image Deconvolution recursive inverse filter blind deconvolution method first proposed by
Kundur and Hatzinakos [8]-[10]. They call their scheme rtbaneg-

Michael K. Ng, Robert J. Plemmons, and Sanzheng Qiao  ativity and support constrained, recursive inverse filtering method
(NAS-RIF). In this paper, we apply two regularization techniques

Abstract—Blind image restoration is the process of estimating both the to NAS-RIF. First, we apply an inexpensiegenvalue truncation
true image and the blur from the degraded image, using only partial infor- regularization to the filter. Second, we provide the user the option of

mation about degradation sources and the imaging system. Our main in- aPplying total variation regularizationto the estimated image. We
terest concerns optical image enhancement, where the degradation often in- call our approach theonnegativity and support regularized recursive
volves a convolution process. We provide amethod to incorporate truncated jnverse filter(NAS-RRIF) algorithm. Note that the word “regularized”

eigenvalue and total variation regularization into a nonlinear recursive in- ; it ; ; :
verse filter (RIF) blind deconvolution scheme first proposed by Kundur and applies to both regularization techniques. The inverse filter and both

Hatzinakos. Tests are reported on simulated and optical imaging problems. égularization schemes are described in Section Il. Numerical tests
are reported in Section Il on some simulated and optical imaging

Index Terms—Blind image deconvolution, circulant matrix, inverse filter, problems, and a comparison is made with the NAS-RIF algorithm.

regularization.

Il. ITERATIVE BLIND DECONVOLUTION

I. INTRODUCTION L . .
opucTio For simplicity, we develop our method the one-dimensional (1-D)

Afundamental issue in image restoration is blur removal in the pragstoration problem. Extensions to the 2-D image case are easily de-

ence of observation noise. In the important case where the blurring eiged. Consider an image vectgr = (fi, ---, f.)". fi > 0, for
eration is spatially invariant, then the basic restoration computation in< i < n, and a blurring filter with lengti2m + 1, represented by
volved is simply a deconvolution process that faces the usual difficl{2m + 1)-by-1 vectorh = (h—_, -+, ko, -+, hm)* . Assuming

ties associated with ill-conditioning in the presence of noise [2]. Then < », we can write the observed imageas the convolution ob
image observed from a shift invariant linear blurring process, suchasd f. In matrix form, we have
an optical system, is described by how the system blurs a point source

of light into a larger image. The image of a point source is called the hm 0

point spread functio®SF, which we denote by. The observed image : f1

g is then the result of convolving the P3Fwith the “true” image, ' L fa

say f. This blurring process is represented by the convolution equa- g=hxf= P ' . —Hf. (1)
tion g = h x f. The standard deconvolution problem is to recover e : )

the imagef given the observed imageand the blurring operatdr. ] _m faaa

There is much interest in removing blur and noise degradations from . : fa

1-D chemical spectra, as well as two-dimensional (2-D) images from 0 R

microscopes, telescopes, and scintigrams [2]. The PSF of an imaging . )
system can sometimes be described by a mathematical formula. MBRSUMINg the background color is represented by 0, we can embed
often, the PSF must be estimated empirically. Empirical estimatesdfin @ square circulant matrix and correspondingly emieid an
the PSF can sometimes be obtained by imaging a relatively bright, i§8-T 277)-by-1 vector by padding zeros. Then (1) is equivalent to
lated point source. In astro-imaging the point source might be a natural I3 0
guide star or a guide star artificially generated using range-gated laser —cji=c|f |=c|y )
backscatter, e.g, [12]. Notice here that the PS&S well as the image g ~
may be degraded by noise. fe 0

In many applications data corresponding/tds not completely here(, the square and circulant matrix, is given by
known. Blind deconvolutions the process of estimating both the true
image f and the blurh from the degraded image The purpose of ho v hemtr | Pem 0 | %
this paper is to incorporate regularization into and refine a nonlinedr », ... h_,, 4o : . 0

h_m : " hm
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circulant matrix, which has many desirable properties. For examptange of the magnitudes of its eigenvalues [4]. Therefore, excess am-
if H in (1) has full column rank, thed is invertible and its inverse plification of the noise at small eigenvalues®@fcan occur. Since any
is also circulant and”~" can be efficiently computed using the fastrealistic signal processing problem involves noise, it is necessary to
Fourier transform (FFT), yielding the extended sequence deconvolaeorporate regularization into deconvolution to stabilize the computa-
tion method for computing'. tion [4]. Regularization methods attempt to alleviate sensitivity to the

In blind deconvolution, we estimate bofthand H in (1) given the noise by “filtering” out eigen-components of the solution belonging to
observed imageg. To make the problem better determined, we impogfe noise subspace. For some iterative methods, it has been established
some constraints. First, we assume the nonnegativity of pixel valuegliat early termination of the iterations accomplishes this regulariza-
f. This is called thenonnegativity constraintand can be incorporated tion effect. That is, the eigen-components of the signal subspace are
into deconvolution computations in [2]. Second, since the siz¢ ofreconstructed in the first (possibly many) iterations and, after reaching
differs from that of the givery, we assume the support, the size a certain approximate restoration, the components in the noise subspace
of f = f, in (2), is known. Thus, the structure 6f in (2) can be begin to be reconstructed. It is at this point, where the noise begins to
determined by and the size of;. Third, in the models (1) and (2), contaminate the reconstruction, that the iterations are halted (see, e.g.,
we assume there is no noise present. Finally, recall that we assumdd4file The simulations by Kundur and Hatzinakos [10] show that their
background color is 0 as indicated in (2). Assuming tHias invertible, NAS-RIF algorithm is sensitive to noise and, in fact, amplifies noise.

we can formulate the blind deconvolution problem as follows. The regularization method they employ is that of truncated iterations.
« Find C (or the first column ofC’) such thatf = C~'g with The main problem with using early termination of the image restoration
f. = f. = 0andf; > 0in (2). iterations as a regularization tool is the following. Due to varying ac-

Some iterative blind deconvolution methods begin with a knowfivity levels, parts of the image may converge at different rates, leading
edge-based (nonnegativity, finite support) estimatefédeconvolve”  to introduction of unwanted artifacts [2].
g=hxfto estimateh, and then iterate in an a|ternating fashion to We describe an alternative regularization approach for the NAS-RIF
improve the estimates for bothand?. [3], [5], [14]. These methods algorithm. Our proposed method is referred to asibrenegativity and
involve variations of direct, rather than inverse, filtering. Kundur angupport constraints regularized recursive inverse fil(iAS-RRIF).
Hatzinakos [8]-[10], however, have recently presented a novel bliddie idea s to first apply regularization to the inverse filter by using an
deconvolution method using recursiveerse filtering(RIF). Inverse  inexpensiveeigenvalue truncatioscheme. Using the circulant matrix
filters are easier to implement and avoid certain inversion procedurésfepresentation, we propose to use-by-k circulant matrix, which
thus reducing the computational complexity. we call S, to approximate the inverse 6f, wherek is the size of the
The method by Kundur and Hatzinakos uses a variable finitdurred imagey. Specifically, we let5' be thek-by-k circulant matrix
impulse response (FIR) filter of lengthp + 1, wherep is an With first column
estimate form in H in (1), characterized by its parameter vector: T :
w = (u_p, ---, uo, ---, up)", and the process iterates with respect (805 0vs 8p0 0y ees 0y 5y ooey 50) Lsp<y )
to u. The observed imagegis the input to the filter. The output is the . . . .
convolution ofu andg: 3@: u*g,pwhich is then passed tphrough awherep is an estimate form in H in (%)’ and denotes =
Clirc[(so, ==+ $p, 0, --+, 0, 5_p, ---, s_1)" |. Thus, the FIR filter

nonlinear filter which mapg to ¢ such thaty has a finite support S .
. mapy 1o y Y . _support, Herforms a multiplication of the circulant matr& and the observed
sayn, and is nonnegative. In other words, the nonlinear filter sets a . L ) . ;i
Imageg. This multiplication can be implemented efficiently using the

component which is either outside the finite support or negative, H:T The outpuy = Sg is sent to the nonlinear filter and mapped to
zero. The resulting vectay is an estimate for the true nonnegative. § :

image with support, i.e..j ~ f. The parameter vectar for our y satisfying the nonnegativity and support constraints. Then the error

FIR filter is determined by minimizing the errgly — 7(|3. In order to = =y — y is measured and fed back to compute an a_djugtment o the
avoid a trivial null vector:, an additional termy (37 wi— 1)2is FIR parameter vector to reduce the value of the objective function.
’ i=—p 7

. . o . - We choose eigenvalue truncation method for regularization because
incorporated into the objective function, wheye> 0. Specifically, . . - ;

o L S is circulant, its eigenvalues can be efficiently computed using the
the objective function is

FFT. Then the vectot = F(sqg, -, $p, 0, ==+, 0, 5 _p, ==, 5_1)T
N 02, T 2 contains the eigenvalues 6f Here F' is the discrete Fourier matrix.
J(u) = lly = gllz +v(e u—1) ®3) ) N . o
To incorporate regularization into deconvolution to stabilize the
wheree = (1,---.1)T. An optimal FIR filter is found by mini- computation, we need to penalize the small, in magnitude, eigenvalues

mizing the above objective functioi(«). It is proved in [10] that of the convolution m_atri)C. E_quivalently, in our inverse filter, we _
J(u) is convex. Thus a global minimum exists and a variety of niEUPPress the large, in magnitude, eigenvalues of the deconvolution
merical optimization algorithms can be used to computeinimizing matrix § as fol.lows. Wg first apply a nonlinear filter represented by a
J(u). Kundur and Hatzinakos [9], [10] use a nonlinear conjugate gri=Py-* projection matrix
dient method to search for the minimum. Thus they call their algo-

rithm thenonnegativity and support constraints recursive inverse filter F=0f

(NAS-RIF). where) = diag(¢;) and

A. Regularizing Iterative Blind Deconvolution 4 = L, if ]3] 5 7'_ for1<i<k
0, otherwise;

Continuous deconvolution can be modeled as an integral equation of
the first kind (an ill-posed inverse problem [4]). It is well-known thatvherer is a predetermined tolerance. In other words, the nonlinear
deconvolution algorithms can be extremely sensitive to noise [2]. Filter characterized by sets all the eigenvalues whose absolute values
example, if the noise is additive, then the blurring process can be reye greater tham to zero. Effectively, the regularization is achieved
resented by a convolution equation of the fayre b+ f 4+ 5, which, by truncating the small eigenvalues ', which is an estimate for
by (2), is equivalent tg = C'f + 5. Assuming that” is invertible, we the convolution matrixC, as discussed in [7] and [11]. Then we mea-
haveC 'y = f + C~'4. In applications arising from integral equa-sure the errow = § — § = (I — @)s and incorporate this error
tions of the first kind, the ill-conditioning of’ stems from the wide into the objective function/(«) given by (3). Specifically, les =
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- Optional Image
Nonlinear Filter YO | Regularization
Initial input of FIR Filter s(0) (support and nonnegativity) (g Filter
(total variation method)
o
g FIR Filter y®) '
blurred s_{-p},s_{O}....s_{p} \
mage s(t+1)
0 ®
2(t) a(t
(Fr ]
; R
s(0) - N
PSF Regularization Optimization Algorithm
Filter
(bounds on the eigenvalues of ~ (nonlinear conjugate gradient method)
the deconvolution matrix) S(t)
Fig. 1. NAS-RRIF Algorithm
(5_py -+, 51, 50, ---, 5,)" be the filter parameter vector, then ouris positive semidefinite. Thus, a global minimum exists and a variety of
regularized objective function is reformulated now in terms af numerical optimization algorithms can be used to compute @imi-
mizing.J,4(s). In our numerical examples, a nonlinear conjugate gra-
Jreg(8) = 1213 + pllol3 + (s = 1)° (5) dient method is used to search for the global minimum. Usually, the
initial vector s is set to all zeros with a unit spike in the middle, see [9]
where and [10].
z=y-y, v=25—3. B. Regularizing the Estimated Image

Our method for regularizing the estimated image invoteg¢s! vari-

The parameten in (5) controls the degree of regularization. The filteation minimizationwhich has been studied extensively in recent years,
parameter vectos is determined by minimizing our new objectivee.g., [3] and [13]. We choose this approach because it is especially ef-
function (5). Fig. 1, which also involves regularization of the image calective in preservingharpedges without penalizingmoothimages.
culation as described in Section 11-B, gives an overview of our overalso, in our application, this approaghieserves nonnegativity of the
scheme. image The disadvantages, however, include the complexity level in

Now we consider the gradient df..,. For the first term in (5), the solving total variation minimization problems, and the fact that min-
vectory in = = y — g is a projection ofy. Denotey = Py, thenP  imizing the variation can sometimes cause a loss of fine detail in the
is a diagonal matrix with 0 and 1 entries. Thus= (I — P)y, where image [4]. For these reasons, we leave the incorporation of total vari-
y = Sg is the output of the filter. Note that the circulant matéixis ation regularization of the estimated image as a user option in our
determined by the filter parameter vectoiFor the second term in (5), NAS-RRIF scheme (see Fig. 1).
the error vector = (I — Q)s whereQ is also a diagonal matrix with  Let a be the nonnegative segment of sizat the center of, i.e.,
0 and 1 entries. Also, note that from the definitions @inds = (0 I, 0)y. We perform the regularization by solving for =

a
(ar, ---, ay)" in the following penalized least squares minimization
0 I])+1 p

§=Fs where E=F | 0 0

I 0 ' n—1
P min{é”&—a”ﬁ—qu [ttt —ai|2—|—[3}
a
=1

Using some algebraic manipulation, we can show that the gradient of

roblem:

Jreq(s) is wherea > 0 controls the degree an#{ > 0) controls the variability
. . of the penalty term [13]. When = 0, we have the usual total varia-
Vdreg(s) = 2Gz + 2uRe(E"v) + 2y(e” s — 1)e (6) tion minimization. Suppose thatis the solution of above minimiza-

tion problem. The gradient of the associated objective functianigt
whereG is a(2p + 1)-by-k row-circulant matrix with its first row: « 4+ a4z(a)a — @, whereAg(a) is a symmetric and tridiagonal ma-
(Gp+1s Gp+25 *** 5 Jrs 91, =+, gp). SinceG is row-circulantand® is  trix. Thus, the minimizer is the solution of the following equation
the k-by-k Fourier matrix, the gradient can be computed efficiently.7,, + «Az(a))a = a. We make two observations: first, + a43(a)
Furthermore, we can show thét.,(s) is convex since the Hessian ofis an M-matrix (see e.qg., [1]). Thus, the entries of the inversd,of-
the objective function, given by aAg(a)) are nonnegative. Seconds the result of two consecutive
mappings on the filter outpuy, first nonnegativity and support and
V2 Jrey(s) = 2G(I — P)G" 4+ 2uRe(E" (I — Q)E) 4 2vee’ (7) then total variation regularization. These two observations ensure the
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Fig. 2. (left) Original image and (right) point spread function.

Rel, error = L6751 Fel. error = 0.3001  Rel. error = 002087

Ref, #rror = L4355 T I.3THY
Fig. 5. NAS-RRIF restoration using = 8 (filter length= 17),v = 0.1,

1 = 100, andr = 100 (left) with 73 iterations and (right) after post-processing
the image estimate with total variation regularization.

l

Fig. 3. Degraded image with SNR 70 DB (left), NAS-RRIF restoration

usingp = 8 (filter length= 17),v = 0.1, p = 100 and7 = 100 with . . o ) . .
(middle) 65 iterations, and (right) after post-processing the image estimate. Fig. 6. (left) Original satellite image and (right) guide star image.

Rel. error = 00BE2S Rel. emor = 05481 Rel ercar = 006215 Fig. 7. (left) Observed image, (middle) restored image with the overestimated
support, and (right) restored image with the exact support using the guide star
Fig. 4. Degraded image with SNR 20 DB (left), NAS-RRIF restoration image to initialize NAS-RRIF.
usingp = 2 (filter length=5),~ = 0.1 andg = 0 (no regularization) with 11

terations (middie) and 18 iterations (right) and Hatzinakos [9], [10]. We see that when SNR0 DB, the method

converges to a solution [Fig. 4 (middle) with 11 iterations], but then
nonnegativity ofa. Notice that the regularized image estimatean  their scheme exhibits noise amplification on subsequent iterations [Fig.
replacey as an input to compute the error vectan the recursive in- 4 (right) with 18 iterations]. In addition, the corresponding relative er-
verse filter algorithm. The switch in Fig. 1 indicates this option. Weors
remark that this image regularization method can also be incorporated
into the NAS-RIF by Kundur and Hatzinakos [9], [10] to possibly im- ILf = yll=/1f1l2

prove their restored image.

Finally, we note that the 1-D results of Section Il extend in a naturdl® shown at the bottom of the restored images, wlieredy are the
way to 2-D image blind deconvolution. original and restored images Our tests thus indicate that the NAS-RRIF

algorithm can effectively recover images even in the presence of high
noise levels. We also remark that we choose the paramétgexper-
imentation. Some formal methods for choosing regularization param-
In this section, we present numerical tests of data samples to illgser can be found in [7] and [11].
trate the effectiveness of our NAS-RRIF approach to image restorationVe also illustrate that the post-processing of the image estimate
by blind deconvolution. given by NAS-RRIF algorithm can effectively regularize the restored
Synthetic Data: The first data example consists ofla x 25 syn- image. We see from Figs. 3 (right) and 5 (right) that our blind deconvo-
thetically generated binary text image of the letters “IEEE” as shown lation restored image post-processing option, described in Section 11-B,
Fig. 2 (left). To obtain a blurred image, we used a Gaussian-type bland using total variation regularization, is useful in removing clutter,
ring filter with size23 x 23, shown in Fig. 2 (right), and convolved it while preserving sharp edges.
with the original image. The blurred image is also polluted by GaussianGround-Based Telescope Datdle consider 256 x 256 image
noise so that the resulting observed image has SN DB and SNR  with irregular boundaries. This model problem data was obtained from
= 20 DB, as shown in Fig. 3 (left) and Fig. 4 (left), respectively. the U.S. Air Force Phillips Laboratory, Lasers and Imaging Directorate,
For our NAS-RRIF algorithm, the best restoration is achieved at Kirtland Air Force Base, NM. The model has been used for testing
iterations and 65 iterations when SNR70 DB and SNR= 20 DB, re-  various image restoration algorithms, e.g., [3] and [11]-[13].
spectively. We see from Fig. 3 (middle) and Fig. 5 (left) that a visually Specifically, the true object is an ocean reconnaissance satellite,
appealing result is obtained. For comparison purposes, the NAS-RRIRich is shown in Fig. 6 (left). A computer simulation algorithm at
algorithm without filter regularization [i.ey = 0 in (5)], which is ef-  Phillips Laboratory was used to produce a degraded image of the
fectively NAS-RIF, is applied to the degraded image with a high noisatellite, shown in Fig. 7 (left), as would be observed from a modern
level (SNR= 20 DB). The algorithm without filter regularization canground-based telescope equipped with adaptive-optics controlled
be viewed as the variant of the NAS-RIF method suggested by Kundieformable mirrors [12]. The satellite was modeled as being 12 m

Ill. NUMERICAL EXAMPLES IN OPTICAL IMAGING



1134 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 6, JUNE 2000

in length and in an orbit 500 km above the surface of the earth. Th§l4] Y. You and M. Kaveh, “A regularization approach to joint blur identi-
simulated charge-coupled device (CCD) for forming the image was a  fication and image restoration|EEE Trans. Image Processingol. 5,
65 536 pixel square array. CCD root-mean-square read-out noise vaIL'E-S] gp'éjlnﬁtiﬁzgﬁ dlgD%Hatzinakos “Blind ima ) -

. . . i . . , ge deconvolution revisited,
ance was fixed at 15 microns/pixel to reflect a realistic state-of-the-a IEEE Signal Processing Magpp. 61-63, Nov. 1996.
detector. In actual field experiments, several hundred measurement
are averaged to reduce the effects of noise. In this example, the SNR
of the blurred image is around 30 DB. The guide star observed under
similar circumstances is shown in Fig. 6 (right). Notice the blur and
noise in the image of the guide star, resulting in a degraded PSF. In
this example, we set the initial estimate of the 2-D convolution matri)‘Roof-Edge Preserving Image Smoothing Based on MRFs
C with eigenvalues

Stan Z. Li

3 = Ai,  If A > 0.005;
¢ 1, if |A] < 0.005 Abstract—A novel Markov random field (MRF) model is proposed for
) roof-edge (as well as step-edge) preserving image smoothing. Image sur-

where\; are the eigenvalues of the estimated PSF given by the gufd&eS containing roof-edges are represented by piecewise continuous poly-
nomial functions governed by a few parameters. Piecewise smoothness con-

starimage. The filter parameter vector is initialized by applying the 2-§raint is imposed on these parameters rather than on the surface heights
inverse FFT to the vector of eigenvalue$\;. Computed restorations as is in traditional models for step-edges. In this way, roof edges are pre-
by our NAS-RRIF algorithm (four iterationg, = 1.2, 7 = 120, and served without the necessity to deal with instable higher order derivatives.
v = 4.5) using the knowledge of the gui.de star are Shownl ir]lFi.g. 7-Index Terms—mage smoothing, Markov random fields (MRF), max-
We also see that use of the observed guide star image as initializaii@om a posteriori (MAP), roof edge, smoothness.
and use of a good estimate of the support are useful in the blind decon-
volution of the satellite image.

In summary, we have introduced regularization methods to the re-

cursive inverse filter for blind deconvolution in [8]-[10]. First, we use Image smoothing is aimed at removing corrupting noise and
the eigenvalue truncation scheme in the filter to regularize the inverg&toring true image surfaces. It is performed based osrtftuthness
problem. Second, we choose total variation minimization to improvgnstraint about image surfaces which assumes that certain physical
the image estimated by the filter. We have shown that the new objggoperties in a neighborhood present some coherence and generally
tive function is convex and the total variation regularization preservels not change abruptly. The smoothness is imposed on the image
the nonnegativity. Preliminary numerical results indicate the effectiveurface function by using a Markov random field (MRF) [1]-[3] or
ness of the method. regularization [4], [5] formulation.

Edges contain important information for image analysis and an im-
portant issue in image smoothing is edge preserving. Two major types
of edges are steps and roofs. Step-edge preserving smoothing has been
[1] A.Bermanand R. J. Plemmor¥onnegative Matrices in the Mathemat- Well researched and there exist a number of successful models, such as

ical Sciences2nd ed. Philadelphia, PA: SIAM, 1994. the line process model [1] in the Markov random field (MRF) frame-
[2] K.CastlemanDigital Image Processing Englewood Cliffs, NJ: Pren- work and the weak string and membrane models [5] in the regulariza-
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