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The Decomposition of a Blocking Model for
Connection-Oriented Networks

C. Y. Li, Member, IEEE, P. K. A. Wai, Senior Member, IEEE, and Victor O. K. Li, Fellow, IEEE

Abstract—Two general-purpose decomposition methods to cal-
culate the blocking probabilities of connection-oriented networks
are presented. The methods are based on either the call status or
the link status of the networks, and can significantly reduce the re-
quired computational times. A heuristic is presented to simplify the
application of the proposed decomposition methods on networks
with irregular topologies. Numerical examples are given to demon-
strate the applications of the proposed methods.

Index Terms—Blocking probability, circuit-switched networks,
connection-oriented networks, decomposition methods, Monte
Carlo summation.

I. INTRODUCTION

MANY communication networks are connection oriented,
e.g., telephone systems, asynchronous transfer mode

(ATM) networks, and wavelength-routed optical networks
[1]–[4]. Some simple blocking models of circuit-switched
networks can be used to provide insight into the performance
of these networks. If these blocking models can be solved
efficiently, they will be useful in the planning and dimensioning
of these networks. For Poisson arrivals and certain routing
policies, the exact call blocking probability is given by a simple
product form formula [5]. Since the computational complexity
of this formula grows exponentially with the network size,
it is not suitable for direct modeling of the performance of
large networks [6]. Therefore, Monte Carlo summations [7],
heuristics of the Monte Carlo summations [8], approximation
methods [9]–[12], and parallel simulations [13] have been
developed to solve the blocking probabilities of large networks.
These methods in general require less computational time
but the results are not exact. The computational time can
still be very long if high accuracy is required in the Monte
Carlo methods and simulations. Furthermore, the accuracy of
some methods such as approximations depends on the traffic
conditions. In many occasions, exact results are required to
validate the approximation methods and simulations.
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When exact blocking probabilities are required, decomposi-
tion can be the most effective means to reduce the computa-
tional cost [14]–[19]. Several orders of magnitude reduction in
computational time can be obtained. In decomposition methods,
the computation of the blocking probabilities is broken down
to the subnetwork level. Besides a reduction in the size of the
subnetwork, we can choose the most suitable method to solve
the blocking probability in each individual subnetwork. In net-
works with regular topology, e.g., tree networks, decomposi-
tions have been used to develop efficient algorithms to compute
the blocking probabilities [14]–[17]. General-purpose topology-
based decomposition methods have been proposed to reduce the
computational cost of exact blocking probability computation
in product form models [18]. Numerical inversion of generating
functions, normally used to compute the blocking probability
exactly, have been used together with decomposition and trun-
cation to speed up the computation [19]. The decomposition
methods mentioned so far are based on the network topology.
For network with arbitrary topology, they do not always pro-
vide the optimal decomposition. In this paper, we develop two
general-purpose decomposition methods based on the concept
of noninterference in network traffic [20]. We found that the
computational savings with the proposed methods is larger than
that of the methods reported in the literature to date.

In Section II, we give a brief review of the general blocking
models for circuit-switched networks. We introduce the con-
cept of noninterference between call classes in Section III and
propose a decomposition method based on the call status. In
Section IV, we propose another decomposition strategy that
makes use of the link status. Both strategies do not rely on net-
work topology and can significantly reduce the computations
on the blocking probability in circuit-switched networks, but
under very different traffic conditions. An obstacle of using
decomposition methods is to find a suitable partition of the
call class set. We propose a simple heuristic in Section V to
simplify this task. Numerical examples are given in Section VI
to demonstrate the applications of the proposed methods.

II. PRODUCT FORM NETWORKS

The network is defined as a set of links labeled from to
. Link has a capacity of channels. Let

be the set of links and be the corresponding
link capacity vector. We assume that the routing paths of calls
are fixed. Calls are classified according to their requirement of
links and channel capacity. The classes of calls in the network
are labeled from to . We define as the set
of call classes. Class calls arrive at the system according to a

1063-6692/04$20.00 © 2004 IEEE
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Poisson process with mean arrival rate . The holding time is
an independent exponential random variable, with mean .
Hence, the offered load is . A class call requests
a nonnegative number of channels on link . The demand
matrix is defined as . If any of the links
that a new call requests has insufficient free channels, the call is
blocked. The call blocking probabilities can be solved based on
either call status or link status probabilities.

A. Blocking Computation With Call Status Probability

Let be the number of class calls in progress, and
be the call status vector. We define

as the set of valid states for under the link
capacity vector . The stationary probability distribution
of the call status vector is given by

(1)

where

(2)

is the normalization constant [21, Sec. 1.6]. The probability of
a class call being blocked, , is the ratio of the number of
rejected class calls to the number of offered class calls. We
have

(3)

From the expression of in (1) and the definition of
in (2), we have

(4)

where is a unit vector which represents only one
class call in progress.

B. Blocking Computation With Link Status Probability

We can calculate the blocking probabilities of the above net-
work using link status probabilities instead of call status prob-
abilities. Let be the number of channels used on link and

be the link status vector. Given the valid
call status set , the set of valid states for is defined as

. We define
as the unnormalized stationary probability distribution for the
link status being . From the definition of , we have

. The distribution can be
solved from the call status probability as

Dziong and Roberts proposed an algorithm [24] to solve
without involving the call status probability as

(5)

for all and otherwise, where is
the unit vector of length with a 1 in position and 0 elsewhere.
As the normalization constant of is also , we can
solve using

(6)

Hence, the blocking probability of a class call can be solved
from (4)–(6).

In the next section, we will show that the noninterference of
the call classes can be used to reduce the computational cost.

III. CALL-STATUS-BASED DECOMPOSITION

Two or more subsets of call classes
are said to be noninterfering with each other if the setup of a call
in a class belonging to any subset will not cause
blocking of the calls in classes belonging to any other subset

, given that the status of calls in the classes belonging
to have been fixed [20]. Some properties of
the noninterfering call classes are given in Appendix A. In [20],
we have proved that if can be partitioned into
and the call classes belonging to different sets are
noninterfering with each other, can be written as

(7)

where is the re-
duced set of valid states in which arrivals of calls not belonging
to are suspended, and

(8)

Conway et al. [18] partition a network into subnetworks and
derive equations similar to those of (7) and (8). Since the par-
tition is based on the network topology, it does not always give
the maximum computational savings. We note that Conway et
al. use call status probabilities to carry out the computations re-
lated to the inter-subnetwork traffic. In the following, we show
that one can perform the computation using link status proba-
bilities even if the decomposition is based on the status of the
call classes. In some situations, this approach will give larger
computational savings.

A. Computations With Link Status Probability Only

We define as a projection operator on such that
only the components representing the status of the calls in the
classes belonging to are retained. In (7),

is equal to the unnormalized probability
of the calls in the classes belonging to having status of

. We define as the reduced set of valid links status
where the arrivals of the calls in the classes not belonging to
are suspended. Given that the blocking probability computation
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of a network can be decomposed in the form of (7), we can trans-
form it into

(9)

where is the unnormalized probability of the links with
status under the condition that only the arrivals of the calls in
the classes belonging to are permitted. Recall that the link
status vector represents the capacities used by the calls in
the classes belonging to ; thus is
the unconditional unnormalized probability of the calls in the
classes belonging to reserving the link capacity represented
by the status vector . We can compute using (5) for

. If , then (9) can give us
more computational savings than that of (7). Such an example
is given in Section VI-B.

Apart from using (9) times to compute the blocking
probabilities with (4), we may reduce the computational com-
plexity further by using the special form of . For belonging
to one of the noninterfering subset , the blocking
probability has the expression

(10)

where is the probability of the calls in the classes be-
longing to reserving the link capacity represented by status
vector , and is equal to .
When the capacity reserved by the calls in is , the condi-
tional probability of a new class call being accepted by the
network is because the status of
calls belonging to other subsets has no effect on
the blocking of the class calls [20]. is the probability
that the calls in the classes belonging to have status .
The blocking probability of a class call is equal to one minus
the sum of the probabilities of a class call being accepted
under all conditions of . The resource requirement
of (9) and (10) is given in Appendix B. Section VI-B shows an
example where link status probability computation has lower
complexity than traditional call-status-based decomposition.

IV. LINK-STATUS-BASED DECOMPOSITION

From (9) and (10), we can compute the blocking probabilities
using link status probabilities while the decomposition is based
on call status. In some network topologies, e.g., the tree net-
works, there are efficient algorithms that are based on link status
probability for solving the blocking probability [14]–[17]. Call-
status-based decompositions cannot provide similar computa-
tional savings even if (9) and (10) are used. Thus, one should be
able to develop link-status-based decomposition methods which
can provide significant computational savings for some of the
network topologies that call status decomposition methods fail
to provide savings for. We define as the set of links that are
used by calls in the classes belonging to . Even if the call
class sets meet the requirement of noninter-
ference in Section III and we fix the status of links belonging to

Fig. 1. Partition of network into three subnetworks based on the link status.
L is the set of common links shared by the three subnetworks defined by link
set L ; k = 1; 2; 3.

, the links belonging to the different link sets (subnetworks)
will not necessarily be independent of

each other. However, if we could increase the capacity of links in
beyond certain limits, the links belonging to different links

sets would then become independent
of each other. It is because the calls in the classes belonging
to different subnetworks share common links belonging to .
Giving sufficient capacities to these common links will render
the call classes noninterfering (Appendix A). Using this obser-
vation, we compute the link status probabilities of the subnet-
works individually as if there is no other traffic in the network.
For example, we transform a network into three subnetworks as
shown in Fig. 1. After summing up the probabilities of possible
combinations of subnetwork traffic that generate the specified
status of the links belonging to , we obtain the status prob-
ability of the links in . We can then solve the and
accordingly. We summarize the procedure as follows.

Assume that a network has a link set and removing
the capacity limits of the links belonging to will partition
the remaining links into independent subnetworks of link sets

’s where .

1) First construct , the set of the classes of calls using any
link belonging to the link set for .

2) Then construct the set .
3) Then construct , the sets of the links that are re-

quired by the calls in the classes belonging to for
.

4) Solve for , the unnormalized probability of the
calls in the classes belonging to reserving the link
capacity represented by status vector as if there is no
other traffic in the networks, where .

5) After determining all the , solve for , the un-
normalized probability of the links belonging to that
have status

(11)

where is a projection operator on such that only
the components representing the status of links belonging
to are retained.

6) The normalization constant of the call status probability,
, is equal to that of in (6), and that of

in (11). Hence

(12)
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To compute , we can use (5) in Section II-B recur-
sively on the links and call classes belonging to and ,
respectively. To solve the blocking probability of a class call,
we use , where

(13)

and

(14)

The analysis of the resource requirement for using (11)–(14)
is given in Appendix B.

V. HEURISTIC FOR PARTITIONING THE CALL CLASSES SET

An obstacle of using decomposition methods to compute the
blocking probabilities is to find a suitable partition of with
acceptable costs. Exhaustive search is the only means that guar-
antee the optimum partition that gives the largest computational
savings. It is, however, not practical because the cost of the
search grows rapidly with the network size. When the network
topology is not regular, it is difficult to obtain a suitable parti-
tion by observation. We observe that instead of finding the op-
timal partition of for a given decomposition method, it will
be easier just to determine a partition of such that the com-
putational cost is less than a chosen value. The choice of this
value depends on the available computational resources, and
must be reasonably large such that at least one partition of ex-
ists. The estimates of the resource requirement of the proposed
decomposition methods given in Appendix B serves as a guide
in choosing the value. Given a demand matrix and a link ca-
pacity vector , we propose the following heuristic to generate
a partition of without relying on observation of the network
topology.

Heuristic 1: Given a demand matrix and a link capacity
vector :

1) Set an acceptable computational cost in the determination
of the blocking probabilities.

2) Randomly re-label the links by generating random per-
mutations of the rows of the demand matrix . Then in-
terchange the columns of the re-labeled matrix to the form
shown in Fig. 2. The grey area may contain nonzero ele-
ments, while the white area is all zeros. Repeat the proce-
dure to generate a number of transformed matrices, and
select the matrix with the minimum grey area for Step 3.

3) Choosing and/or ’s, we determine the parti-
tion of by interchanging columns
in the transformed demand matrix of Fig. 2 to a matrix
in a form similar to Fig. 3(a) or (b) depending on which
decomposition method is used. Fig. 3(a) and (b) shows a
partition of for a network using call (link) status-based
decomposition with . The call classes sets (link
sets ), are given by the dashed rectangles.

4) Since the common links of two noninterfering call classes
can be ignored in all subnetwork blocking probability

Fig. 2. Grouping the call classes in the demand matrix according to similar
pattern of link utilization.

Fig. 3. Partition of the set of callsR for a network using (a) call-status-based
and (b) link-status-based decomposition with K = 3. The set of (a) call classes
R and (b) links L ; k = 1; 2; 3 are given by the dashed rectangles.

computations, use Condition 1 in Appendix A to iden-
tify these links in the partition. Also use Condition 1 to
determine if the further partitioning of a subset of is
possible.

5) Use the estimate in Appendix B to determine whether
the resources required in using a specific decomposition
method with the partition exceeds the requirement in
Step 1. Otherwise, repeat the procedure from Step 3 with
a new set of and . If the possible sets of and

are exhausted, stop the procedure and report the
recorded partition of that has the lowest computational
requirements.

Step 3 transforms the demand matrix such that the required
partition of or can be determined directly. The dashed rect-
angles in Fig. 3(a) show the sets of call classes that do not
share any common links in the network. One can verify that
the call classes in these sets are independent of each other if
one fixes the status of the call classes identified by the right-
most large rectangle (discussion of noninterference is provided
in Appendix A). Hence, the columns in the rightmost large rec-
tangle represent the call classes belonging to , and those in
the dashed rectangles are for the call classes belonging to sets

in Section III, respectively. Similarly, the dashed
rectangles in Fig. 3(b) show the sets of links that do not have any
common calls. Thus, they form a partition of in Section IV.

The proposed heuristic is useful especially when the network
topology is irregular. If all the links in a network have similar
capacities, we set all in Fig. 3(a), or in Fig. 3(b), to
be the same and choose a that minimizes and/or
of the transformed matrices in Fig. 3. In general, we estimate
the resource requirement using the equations in Appendix B.
Step 2 uses a random approach instead of exhaustive search to
group the call classes according to the similarity in link utiliza-
tion. Adjacent call classes in the transformed matrix at Step 3,
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Fig. 4. Network with six nodes and nine links. The link capacity vector isN =
(C; 2C;C;C; 2C;C;C; 2C;C), where C � 2. Fourteen paths are defined.
Arriving calls can request either one or two channels. There are 28 call classes,
c –c .

therefore, have larger probability of using common links. This
reduces the number of iterations between Steps 3–5. An estimate
of the required number of randomly generated transformed ma-
trices is the maximum of the square of the number of classes
and the square of the number of links . If the final partition of

obtained cannot satisfy the requirement, we may increase the
number of randomly generated transformed matrices and repeat
the procedure from Step 2. From experience, however, the im-
provement may be small. The estimated computational savings
by the heuristic when compared to the trial-and-error approach
is given in Appendix C.

VI. EXAMPLES

In this section, we will present three examples to demonstrate
the use of the proposed decomposition methods and heuristic to
compute the blocking probabilities. In the first example, we use
a simple network to illustrate the basic features of the proposed
decomposition methods. Conway et al. proposed a topology-
based general-purpose decomposition method similar to that of
(7) and (8). They showed that large computational savings can
be obtained [18]. In the second example, we compared the per-
formance of our proposed methods with that of Conway et al.
using the same network topology and routing paths as that of
[18] but with twice the number of call classes. We showed that
our proposed methods provided significant savings over that
of [18]. In the last example, we used the heuristic proposed
in Section V to solve the call blocking probabilities of a net-
work with irregular topologies. All computations were carried
out using Fortran programs on a 600-MHz Alpha CPU work-
station. In the first two examples, the system loadings were set
at random because we are only interested in the computational
times.

A. Example 1

Fig. 4 shows a network with six nodes and nine links. The link
capacity vector is , where

. Fourteen paths are defined. They are

, and .
Arriving calls can request either one or two channels. There are
28 call classes in which – – request one channel
(two channels) on the paths – , respectively.

Fig. 5. Computational times required to calculate the blocking probabilities
of the network shown in Fig. 4. The dotted and dashed lines represent direct
computation of the blocking probabilities using call status probability (2) and
link status probability (6), respectively, without the use of decomposition
methods. The black dash-dotted line and grey dash-dotted line represent
computations using call-status-based decomposition method (7) using two
different partitions of R. The solid line represents computations using
link-status-based decomposition methods (12).

In Fig. 5, the dotted and dashed lines give the time required to
compute the blocking probabilities using call status probability
(2) and link status probability (6), respectively. The computa-
tional time grows rapidly with . In 10 seconds, we can only
compute the blocking probabilities of the network up to .

To apply the call-status-based decomposition
method, we observe that removal of link will
separate the network into two subnetworks with link
sets and . We
therefore partition into , where

,
and . The black dash-dotted
line in Fig. 5 gives the required computational time for using
this partition of and (7). The computational savings is very
large when compared with that of (2) and (6).

We observe that and are noninterfering with the rest of
the call classes in , similarly for and in . We can
therefore partition as , where

, and .
The new partition of reduces the part of the computations
arising from the subnetwork traffic but has no effects on that of
the inter-subnetwork traffic. The required computational time
using the new partition is plotted as the grey dash-dotted line
in Fig. 5. The extra savings due to the new partition is negligible
in this case because most of the computations are due to the
inter-subnetwork traffic. Equation (9) is not useful here because
the number of links used by the calls in the classes belonging to

is large, i.e., seven links.
We then apply the procedure described in Section IV. We

observe that the links in the sets and
will be independent of each other if the capacity limit of link

is removed. Hence, we decompose the network into three
subnetworks with link sets ,
and . In addition, we have
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Fig. 6. Topology of the network used by Conway et al. [18]. All the links are
set to have the same capacity of five channels. Thirty routing paths are defined.
The set of interconnecting links is f` ; . . . ; ` g.

, and
. We

compute the blocking probabilities using (11)–(14), and plot
the required times as the solid line in Fig. 5. The savings is sig-
nificant because the computations related to the interconnecting
link are much smaller than that of the inter-subnetwork
traffic, i.e., , in the call-status-based
decompositions.

B. Example 2

Fig. 6 shows the network used by Conway et al. in [18]. The
capacity of each link is five channels. In [18], 30 call classes
are defined. The calls in classes , and

request a channel on links ,
and , respectively, where . The
calls in the classes , and request
a channel on links

, and
, respectively. To demonstrate the capability

of the proposed decomposition methods, we add another 30
call classes and determine the computational time to determine
the blocking probabilities when varies from 5 to 15. The
calls in the class use the same set of links as that of

, but request two channels instead of one.
In [18], is defined as the set of intercon-

necting links. Conway et al. partitioned the network into six sub-
networks each having links set
where . Using this topology informa-
tion, we partitioned into where

is the set of inter-subnetwork
traffic. are
the set of subnetwork traffic, where . This partition
of and (7) are then used to calculate the blocking probabili-
ties for different values of . The required computational time
is plotted as the dashed line in Fig. 7. It takes only about 7 s
to compute the blocking probabilities at , but 13 397 s
when .

We check the partition with Condition 1 in Appendix A. No
call classes in can be further classified into subnetwork
traffic. To reduce the computational overhead due to the
interconnecting traffic, we applied (9). At first glance, it may
appear that the capacity utilization state set is large
because of the wide span of the interconnecting traffic; only

Fig. 7. Computational times required to compute the blocking probabilities of
the network shown in Fig. 6. We use the same set of routing paths defined in [18]
but double the number of call classes to 60. The dashed line represents the results
using (7) and a partition of R following the topology-based decomposition
method of [18]. The solid line represents computation using (9) with the same
partition of R as above.

links , and are not involved in interconnecting
traffic. Actually, can be constructed by considering
six links only; they are and . The
status of the rest of the links can be determined by those of the
above six links. Furthermore, the links belonging to the sets

are independent of each other
if only the calls in the classes belonging to are considered.
This further reduces the computations required for
in (9). The computational time to determine the blocking
probabilities using (9) and (10) is plotted as the solid line
in Fig. 7. There are significant computational savings when
compared to that of Conway et al.

We have used Heuristic 1 to check if there are any better par-
titions of (or ). The best partition of from Heuristic 1
is equivalent to that suggested by Conway et al. [18]. Further
reduction of the computational overhead due to the intercon-
nection traffic can be obtained but it relies on direct inspection
of the traffic distribution. We did not use the link-status-based
decomposition method described in Section IV because of the
large number of interconnecting links. We cannot find a valid
partition of such that the corresponding required computa-
tional time is less than 10 seconds. Finally, the computational
time required if either (1) or (6) is used directly, i.e., without
any decomposition methods, is more than 100 hours even for

.

C. Example 3

In this example, we demonstrate Heuristic 1. We will also
show that the proposed method can be combined with Monte
Carlo summation in determining the network blocking proba-
bility. In Monte Carlo summation, is calculated using a
large set of randomly generated call status vector . The av-
erage of the results is then used as an estimate of to
calculate the blocking probabilities [8]. The required compu-
tational time does not grow exponentially with the network size
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but is proportional to the square of the accuracy requirement.
Ross et al. developed a heuristic based on importance sampling
to reduce the computational time but the reduction is not sig-
nificant when the system is heavily loaded [8]. Since Monte
Carlo summations use call status probability (1)–(4) to com-
pute the blocking probabilities, call-status-based decomposition
is chosen to reduce the required computational time. We do not
consider link-status-based decomposition because at this time
we do not have an efficient way to use Monte Carlo summation
with link status probability to solve the blocking probabilities.
We found that using (7), the variance of the outputs is greatly
reduced if the ’s are pre-computed and the Monte Carlo sum-
mation is only used to deal with the computations related to the
inter-subnetwork traffic [26]. Hence, the computational time re-
quired to calculate the blocking probabilities at a given accuracy
is reduced.

Fig. 8 shows the topology of the pan-European research net-
work TEN-155.1 The links in the network have four types of
bandwidth: 622 Mb/s, 2 155 Mb/s, 155 Mb/s, and 34/45 Mb/s.
We only consider links having capacity not less than 155 Mb/s.
The resulting network consists of 13 nodes and 17 links. To sim-
plify the discussion, we set all links to the same capacity of 32
channels, i.e., . We label the links from to

as shown in Fig. 8. We assume that there is only a path be-
tween any two nodes. Using shortest path method, we have 78
paths, which are listed in Table I of Appendix D. As it is not
easy to partition based on observation, we apply Heuristic 1.

Since the storage requirement grows rapidly with the subnet-
work size, we set the maximum subnetwork size to four links.
Using Heuristic 1, we first choose a transformed matrix from a
set of 6 000 randomly permuted demand matrices, and obtain a
partition of with . We have increased the number
of randomly permuted demand matrices to 60 000 and repeat
the procedure from the first step. We find a partition of that
has . The search takes about 30 s. Thus, the improve-
ment is small even if we used 10 times the estimate of the re-
quired number of randomly permuted demand matrices. We ob-
tain a partition of as . The details of the
partitions of and are listed in Appendix D. The required
storage is over . We set the loading for each call class
to two erlangs in order to compare with Ross’s heuristic which
can provide computational savings in such traffic condition. We
require that the 95% confidence intervals are within 5% of the
results. To limit the required computational time, we only con-
sider the blocking probabilities that are larger than 10 . The
Monte Carlo summation with the proposed decomposition and
heuristic requires only 99 s while Ross’s heuristic takes 27 454 s
and simple Monte Carlo summations take 38 188 s. The reduc-
tion factor is 1/277 when compared with Ross heuristic [8] and
1/386 with simple Monte Carlo summation.

VII. SUMMARY

In this paper, we proposed two decomposition methods and
a heuristic to calculate the blocking probabilities of circuit
switched networks. Based on the noninterference property

1[Online.] Available: http://www.dante.net/ten-155/

Fig. 8. Pan-European research network TEN-155.

of traffic, we have derived two decomposition methods from
two perspectives: one is based on call status, and the other is
based on link status. Both methods can significantly reduce the
computational time in calculating the blocking probabilities,
but under very different traffic conditions. We observe that
the proposed methods can have better computational savings
than that of the currently available decomposition methods.
Examples are given to demonstrate the power of the proposed
methods.

The computational savings from decomposition methods
mainly depends on the partitioning of the network traffic.
Traditionally, the network traffic is partitioned by inspection,
which is very difficult for networks with irregular topologies.
We proposed a heuristic to address this problem. From expe-
rience, the heuristic gives good computational savings when a
sufficiently large number of random partitions is searched. We
gave an estimate of the number of random partitions required
in this search. Finally, we showed that the proposed heuristic
can be combined with other methods such as Monte Carlo
summation to further improve the computational efficiency.

APPENDIX A
NONINTERFERENCE

Two call classes and are said to be noninterfering with
each other if there exists a set of call classes such that
and are independent of each other if the status of the calls in
the classes is fixed. Note that two call classes can still be
noninterfering with each other even if they share some common
links. For example, we assume that classes , and calls
request a channel on links , and ,
respectively. Classes and calls will still be independent
of each other if where are
the capacities of links and the number of class calls is
fixed. We summarize the requirement on the link capacities for
noninterfering call classes in the following condition.
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Condition 1: Let class and calls use sets of links
and , respectively. The two classes are noninterfering with
each other if either:

• they use no common link, i.e., ; or
• the capacities available to both call classes from the links

belonging to are equal or larger than the summa-
tion of that obtained from and
individually under all traffic conditions.

To determine the noninterference property between call classes,
one must consider both the demand matrix and the link
capacity vector .

APPENDIX B
COMPUTATIONAL AND STORAGE REQUIREMENTS USING

THE PROPOSED DECOMPOSITION METHODS

In this section, we estimate the computational cost and
storage requirement of using (9) and (10) to compute the
blocking probabilities. The resource requirement of (7) can be
found in [18]. With all intermediate results saved for further
computations, the computational cost and the storage require-
ment for solving the ’s are
and , respectively, if (6) [(2)] is used,
where is the number of call classes belonging to , and

is the set of links used by the calls in the classes belonging
to . Equation (9) requires multiplication operations
with iterations for the given that the

’s are pre-computed. We need similar computations
for each . For , computations of

are required according to (10). To compute
for all , we need

computations and units of storage, where
is the set of links used by the calls in the classes belonging to

. As the maximum size of is , the
total computational complexity for solving all with (9) and
(10) is

(15)
The total storage requirement for the blocking probabilities
computation will be

(16)

The computational complexity of computing in
(11)–(14) is for . We assume

that all intermediate results during the calculation of
are re-used for blocking probability computation. There is no
extra computational cost for computing .

The number of iterations required to find each with
(11) is . To sum up for or

, requires iterations. As
we need to compute the blocking probabilities of the call

classes, the computational complexity of blocking probability
computation using (11)–(14) is

(17)

Here we assume that the subnetworks do not have any special
topology. Otherwise, we may take advantage of the topology
features to derive efficient algorithms such as those for tree type
networks [14]–[17].

The storage requirement for solving is
for . The total storage re-

quirement for the blocking probabilities computation will be

(18)

APPENDIX C
COMPUTATIONAL REQUIREMENTS USING HEURISTIC 1

We need computations of to generate a random permu-
tation of the rows. To transform a randomly permuted demand
matrix to the matrix shown in Fig. 2, we need operations.
Given a set of , and/or , a number of oper-
ations are required to obtain the transformed matrix shown in
Fig. 3(a) and (b). In addition, we need operations to check
the noninterference property between the call classes in the sub-
sets of . If we need to use Monte Carlo method to estimate the
size of , the computation is , where
is the number of random samples used [8]. The transformed ma-
trix shown in Fig. 2 is chosen from a set of average randomly
permuted demand matrices. We assume that on average we have
to repeat from the second step times before a suitable parti-
tion of can be found. We also assume that on average sets
of , and/or are tried for each chosen transformed
matrix from the second step. The average computational cost for
finding a suitable partition of is

(19)

where is the average number of subnetworks, is the av-
erage number of call classes in a subset of , and is the
average subnetwork size. If all randomly permuted demand ma-
trices in Step 2 are checked without selection, the computational
cost will be

(20)

where is the number of iterations required for repeating from
the second step. We have . We approximate by

and find that the computational savings by the heuristic
will be

when compared to the pure random trial and error approach.
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TABLE I
PATHS DEFINED IN THE NETWORK SHOWN IN FIG. 8

APPENDIX D
PARTITIONS OF AND IN EXAMPLE 3

The paths to in Example 3 are listed in Table I. Using
the proposed heuristic, we have , where

and
. The links in the five subnetworks are

,
and , respectively.
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