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Centralized Broadcast Scheduling in Packet Radio
Networks via Genetic-Fix Algorithms

Chiu Y. Ngo, Senior Member, IEEE,and Victor O. K. Li, Fellow, IEEE

Abstract—An important, yet difficult, problem in the design of a
packet radio network is the determination of a conflict-free broad-
cast schedule at a minimum cycle length. In this letter, we first for-
mulate the problem via a within-two-hop connectivity matrix and
then, by assuming a known cycle length, determine a conflict-free
scheduling pattern using a centralized approach that exploits the
structure of the problem via a modified genetic algorithm. This
algorithm, called genetic-fix, generates and manipulates individ-
uals with fixed size (i.e., in binary representation, the number of
ones is fixed) and therefore, can reduce the search space substan-
tially. We also propose a method to find a reasonable cycle length
and shorten it gradually to obtain a near-optimal one. Simulations
on three benchmark problems showed that our approach could
achieve 100% convergence to solutions with optimal cycle length
within reasonable time.

Index Terms—Broadcast scheduling, genetic algorithms (GAs).

I. INTRODUCTION

ONE distinguishing characteristic of a packet radio
network is the broadcast nature of its radio channels.

Transmission from a node in the network may be received by
its neighboring nodes. Consequently, conflicts (or interference)
may occur among the nodes. There are two types of conflict,
namely, primary conflict and secondary conflict [1]. A primary
conflict occurs when a node receives more than one transmis-
sion destined to it simultaneously. A secondary conflict occurs
when a node, an intended receiver of a particular transmission,
is also within the transmission range of another transmission
intended for other nodes. In the context of time-division
multiplexing (TDM), the problem of broadcast scheduling
is to determine a conflict-free assignment of time slots to
each individual nodes that satisfies the traffic requirements.
Simultaneous transmissions among nodes are allowed as long
as no conflict is produced and the collection of all distinct time
slots forms a TDM cycle.

It has been shown that this problem is NP-complete in terms
of optimal cycle length [2]. As a result, several approximate al-
gorithms have been proposed. Our problem formulation follows
a neural-network approach [3] whose objective is to obtain a
conflict-free broadcast slot assignment where the cycle length
is close to minimum. However, instead of using the one-hop
connectivity matrix directly, we formulate the problem based
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on a within-two-hop connectivity matrix and propose a central-
ized scheduling algorithm using a modified genetic algorithm
(GA), called the genetic-fix algorithm [4], [5]. Unlike the con-
ventional GAs that generate subsets of all possible sizes, ge-
netic-fix generates fixed-size subsets (i.e., in binary representa-
tion, the number of ones is fixed). This can greatly reduce the
search space and subsequently, speed up the computation.

II. BROADCAST SCHEDULING PROBLEM

The packet radio network to be considered consists ofar-
bitrary nodes with an symmetric one-hop connectivity
matrix given by

if nodes and can communicate with
each other and

otherwise.
Here, symmetric connectivity implies that any two connected
or neighboring nodes can communicate with each other. We as-
sume that the node locations are fixed and hence, the connec-
tivity between nodes is known. Due to the inherent broadcast
nature of radio channels, we assume that packets transmitted
from a node can be received by all its neighboring nodes. Fur-
thermore, fixed packet length is assumed, and the TDM scheme
is deployed where time is segmented into slots, each of which
equals a packet transmission time plus an appropriate guard
time. For simplicity, we assume uniform traffic, i.e., each node
has the same amount of externally generated traffic, and they are
equally likely to be destined to all nodes. Without loss of gener-
ality, we assume one packet per node per cycle. In addition, we
assume that all nodes are synchronized.

The optimal TDM broadcast scheduling involves the deter-
mination of the minimal TDM cycle length and the way to dis-
tribute the TDM slots among the nodes while satisfying the
following traffic and conflict avoidance constraints: each
node uses only one slot per TDM cycle; a node cannot send
and receive a packet simultaneously; and a node cannot re-
ceive more than one packet simultaneously. It is noted that con-
straint is determined by the one-hop connectivity matrix

, whereas constraint is determined by the two-hop con-
nectivity matrix . Therefore, two nodes can transmit
in the same slot without conflict only when they are more than
two hops away. As a result, these two constraints can be com-
pletely determined by a within-two-hop 0-1 connectivity matrix

defined as
if and
otherwise.

Note that if , then node can be reached by node
within two hops and vice versa.

Conventional graph-theoretic approaches formulate the
problem as a “minimum span” problem, i.e., given the
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Fig. 1. Representation of a TDM broadcast schedule.

within-two-hop connectivity matrix of an arbitrary -node
packet radio network, find a conflict-free TDM cycle schedule
such that the total number of slots, or the TDM cycle length, is
minimum. However, in practice, the determination of a conflict-
free scheduling pattern is more important. Our formulation fol-
lows the neural-network approach in [3], which assumes fixed
cycle length and formulates the problem as an unconstrained
optimization problem.

We represent the solution spaceas an binary matrix
where is the number of nodes and is the length of the TDM
cycle. Each element in the matrix is either “1” or “0” such
that

if slot is
assigned
not assigned

to node

Diagrammatically, the admissible TDM broadcast schedule
can be described in an array form as shown in Fig. 1. Basic
requirements for the scheduling problem are the traffic demand
and the avoidance of conflicts. The first requirement imposes
an allocation constraint on, i.e., there is one and only one slot
allocated to each node per cycle. This implies that only one “1”
is allowed in each row of . Mathematically, it means that if
the slot assignment to nodeviolates the allocation constraint

, then

The second requirement is determined by the previously defined
within-two-hop connectivity matrix . If slot is assigned to
node , then slot cannot be assigned to any node within two
hops from node. Mathematically, it means that if the assign-
ment of slot to node violates the constraints and ,
then

Therefore, a generic choice of cost function is given by

(1)
where . It is noted that achieves its minimum of
zero when all constraints are satisfied. Hence, our problem is to
find an such that is zero. Compared to [3], our formu-
lation is much simpler. Note that by restricting each row ofto

have only one “1”, the traffic requirement will automatically be
fulfilled and hence, the cost function can be simplified to

(2)

In the following, we discuss how the genetic-fix algorithm can
accomplish this task by generating and manipulating only those
“useful” candidate solutions represented in the above array
form.

III. PRINCIPLE OFGENETIC-FIX ALGORITHM

GAs are stochastic, yet structured, iterative search procedures
which mimic the evolution of biological genetics that favors the
fittest individuals via selection, crossover, and mutation. Gener-
ally, GAs generate subsets of all possible sizes. However, there
are some combinatorial optimization problems whose feasible
solutions are fixed size (i.e., in binary representation, the number
of ones is fixed) subsets. We develop the genetic-fix algorithm
that can generate a fixed number of ones for each individual and
preserve this property during the genetic operations. Of course,
this requires special crossover and mutation operators that can
maintain the property of a fixed number of ones.

A. Crossover in Genetic-Fix

Given two parents and , we create a first-in–last-out
(FILO) stack to store the bit position corresponding to
opposite bit pair ( , ). and are said to be opposite
if where denotes the exclusiveOR operator.
The crossover is performed by first generating two crossover
points and at random along the string length, such that

and then moving right from until an is found, such
that . We push into the FILO stack and continue
the process until we find asuch that . Then, we
compare with where is the top element in the stack.
If they are the same, we pushinto the stack; otherwise, we
swap the pair indexed bywith the pair indexed by and pop

from the stack. The process continues untilis reached.
An example can be found in [5].

B. Mutation in Genetic-Fix

In order to balance the number of ones in an individual, the
mutation operation must always be done in pair of opposite bits.
This can be implemented as follows. Letbe the th bit position
of an individual. To mutate , we need to find a random such
that . Then, we swap with . In case of binary
array representation, bothwith must be in the same row.

For details of these operatons, see [4] and [5]. When the
“elitist” selection strategy is used such that the best individual
survives with probability one, it has been shown the genetic-fix
algorithm converges asymptotically [4].

IV. A PPLICATION OF GENETIC-FIX TO

BROADCAST SCHEDULING

By representing each individual as a unit-row binary array,
as shown in Fig. 1, and preserving the unit-row property
throughout the process using the genetic-fix operators, we
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can apply the genetic-fix algorithm to solve the scheduling
problem (2) easily. However, one still has to determine the cycle
length . This number can be determined by the lower bound
estimated by either a graph-theoretic method or some other
heuristics. In the following, we present a stochastic heuristic
method that can determine a near-optimal. The method starts
with a matrix which equals the within-two-hop matrix
and an empty slot matrix, and then proceeds as follows.

1) Select randomly a “nonone column,” say column, from
. (A “one column” is a column whose elements are all

ones.)
2) Put index into the first empty row, say, of and set

the th row of to all ones to indicate that nodehas
been assigned to slot.

3) Select randomly a zero, say indexed by, from column
of . (Zeros in column are possible co-nodes of node
that can share the same slot.)

4) Append index to row of and set theth row of to
all ones to indicate that nodehas been assigned to slot.

5) Repeat steps (3)–(4) until column becomes a “one
column.”

6) Repeat steps (1)–(5) until becomes a “one matrix.”
7) Save the slot assignments and the corresponding cycle

length.
This procedure is repeated until a reasonable minimum cycle

length, say , is achieved. Then, we apply the genetic-fix al-
gorithm to solve the scheduling problem using a cycle length
shorter than . Starting from , we repeatedly decrease
the cycle length by one until we cannot find a solution. The
smallest feasible cycle length obtained thus far will be used as
our in the scheduling problem.

V. SIMULATIONS

The simulator used was called GENESIS_F (see [5]). Three
benchmark problems were examined. Problem 1 was taken
from [1], problem 2 from [6], and problem 3 from [3]. For
each problem, 100 Monte Carlo runs were performed. In order
to avoid the disappearance of the best individual, the “elitist”
selection strategy was adopted so that the best individual always
survives intact from one generation to the next. In addition,
a local search routine described in [5] was used to improve
the performance of the algorithm. Several parameters need to
be set, including the maximum number of trials per run (
trials), the crossover probability , the mutation probability

, the population size , the size of the penalty vector
, and the counter for “igniting” the local search routine (

generations). Table I summarizes the characteristics of these
three problems and their corresponding simulation parameters.

Simulations were performed on an HP Apollo 9000/700
workstation using our proposed genetic-fix algorithm in
GENESIS_F. Table II summarizes the results. For ease of
comparison, the corresponding neural-network performance in
[3] is also included.

The results show that genetic-fix gives very good results.
Compared with the low frequency of convergence in the
neural-network approach, our algorithm gives 100% conver-
gence in all three problems. Furthermore, in Problem 3, we
find a shorter cycle length of nine instead of ten, given in [3].

TABLE I
SIMULATION PARAMETERS

TABLE II
SUMMARY OF SIMULATION RESULTS

For a network with maximum nodal degree of, the lower
bound on the cycle length will be because the node
and each of its neighbors requires one slot. With reference
to the maximum nodal degrees in Table I, the cycle lengths
determined by our algorithm are, in fact, optimum for all three
problems. In addition, we found during our simulation that our
heuristic used in determining gave even better results than
the neural-network approach in Problems 1 and 2.

VI. CONCLUSIONS

We have studied the problem of conflict-free TDM broadcast
scheduling in packet radio networks. Using a within-two-hop
matrix, we obtained a simple problem formulation. We pro-
posed an approach based on a modified GA. This algorithm,
called genetic-fix, generates and manipulates individuals
with fixed size so as to reduce the search space substantially.
Simulations on three benchmark problems showed that this
algorithm could achieve 100% convergence to solutions with
optimal cycle length within reasonable time. In one case, a
cycle length shorter than that obtained by the neural-network
algorithm [3] was found. Such significant results indicate that
the genetic-fix algorithm is indeed a good method for solving
the broadcast scheduling problem. Although uniform traffic is
assumed, this algorithm can easily accommodate nonuniform
traffic requirements (see [4]).
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