
Title Improved approximate QR-LS algorithms for adaptive filtering

Author(s) Chan, SC; Yang, XX

Citation Ieee Transactions On Circuits And Systems Ii: Express Briefs,
2004, v. 51 n. 1, p. 29-39

Issued Date 2004

URL http://hdl.handle.net/10722/42957

Rights

©2004 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37882264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 51, NO. 1, JANUARY 2004 29

Improved Approximate QR-LS Algorithms for
Adaptive Filtering

S. C. Chan and X. X. Yang

Abstract—This paper studies a class of ( ) approximate
QR-based least squares (A-QR-LS) algorithm recently proposed
by Liu in 1995. It is shown that the A-QR-LS algorithm is equiv-
alent to a normalized LMS algorithm with time-varying stepsizes
and element-wise normalization of the input signal vector. It
reduces to the QR-LMS algorithm proposed by Liu et al. in 1998,
when all the normalization constants are chosen as the Euclidean
norm of the input signal vector. An improved transform-domain
approximate QR-LS (TA-QR-LS) algorithm, where the input
signal vector is first approximately decorrelated by some unitary
transformations before the normalization, is proposed to improve
its convergence for highly correlated signals. The mean weight
vectors of the algorithms are shown to converge to the optimal
Wiener solution if the weighting factor of the algorithm is
chosen between 0 and 1. New Givens rotations-based algorithms
for the A-QR-LS, TA-QR-LS, and the QR-LMS algorithms are
proposed to reduce their arithmetic complexities. This reduces the
arithmetic complexity by a factor of 2, and allows square root-free
versions of the algorithms be developed. The performances of the
various algorithms are evaluated through computer simulation of
a system identification problem and an acoustic echo canceller.

Index Terms—Adaptive filtering, approximate QR-LS algo-
rithm, performance analysis, QR-LMS algorithm, square root free
Givens based algorithms, transformed domain LMS algorithm.

I. INTRODUCTION

ADAPTIVE filters have been widely used in communi-
cations, control, and many other systems in which the

statistical characteristics of the signals to be filtered are either
unknown a priori or, in some cases, slowly time varying.
Two commonly used families of adaptive filtering algorithms
are based on the least mean squares (LMS) and the recursive
least squares (RLS) algorithms [15]–[19]. The RLS-based
adaptive algorithms are well known for their fast convergence
speed, as compared with the LMS-based algorithms. The
convergence speed of the latter is usually very sensitive to
the eigenvalue spread of the correlation matrix of the input
signal. The LMS-based algorithms, however, has a very low
arithmetic complexity of (where is the number
of taps in the adaptive filter), as compared with for
the conventional RLS algorithm. Another problem with the
classical RLS algorithm is its numerical instability usually
encountered in finite wordlength implementation, especially
for short internal wordlength. These problems have stimulated
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extensive research into efficient methods for reducing the
arithmetic complexity and improving the numerical properties
of the RLS algorithms [1]–[11], [20]–[24], [37]–[39]. Fast
RLS algorithms can broadly be classified into two different
categories. The first class of algorithm recursively updates
the inverse of the correlation matrix of the input signal using
certain time- and order-recursions [1]–[5], [9]–[11], [21], [22],
[39]. The second class of algorithms works directly with the
data matrix using QR decomposition (QRD) [Givens rotation
or Householder transformation] [6]–[8], [20]–[24], [37], [38],
[40]–[42]. Fast RLS algorithms using the QRD usually exhibit
better numerical property because of their lower condition
number of the system, as compared with that of the input
correlation matrix, which is square of that of the data matrix.
Based on these two approaches, several fast RLS adaptive
filtering algorithms with complexity are now available
[1]–[5], [8], [11], [18], [23], [24], [39]. Interested readers are
referred to the excellent summary in [15, pp. 394, 469–470])
and a recent survey paper in [18]. Algorithms employing the
QRD usually consist of the following two separate parts: 1)
recursive updating of the triangular matrix and 2) backsolving
of the parameters. Since the backsolving step requires
operation, the entire algorithm still requires at least
arithmetic operations. For single input adaptive filters, the
time-shift property of the input signal can further be exploited
to reduce the arithmetic complexity for updating the triangular
factor in complexity. This is useful in beamforming
and some applications, where only the least squares error is of
interest. For multichannel adaptive filtering [8], [21]–[24], how-
ever, the input signal vector does not satisfy the time-shifting
property and a higher complexity is required. In order to reduce
the complexity of the back-substitution step in the QRD using
Householder transformation, Liu [12] proposed an approximate
QR-LS algorithm, which combines the recursive updating of
the triangular matrix and the back-solving of the parameters.
A related QR-LMS algorithm based on Householder trans-
formation was also proposed recently in [13]. It was shown
that the QR-LMS algorithm is mathematically equivalent to
the ONM-LMS algorithm [35] in infinite precision arithmetic.
However, the QR-LMS algorithm generally exhibits better
numerical property than the ONM-LMS algorithm because
of its lower conditional number in solving for the parameter
vectors. This benefit, however, is realized at the cost of more
computations ( multiplications, additions, and
square root), though both algorithms have complexity.

In this paper, we show that the approximate QR-based LS
(A-QR-LS) algorithm in [12] is in fact equivalent to an ele-
ment-wise normalized LMS algorithm with time-varying step-
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sizes. It reduces to the QR-LMS algorithm when all the normal-
ization constants are chosen as the Euclidean norm of the input
signal vector (as pointed out by one of the reviewer, it is pos-
sible to come up with a similar conclusion using the results re-
ported in a recent work by Bhouri et al. [42], which deals with
the block version of this algorithm). Although the normaliza-
tion of individual elements in the input signal vector improves
the convergence speed by reducing the eigenvalue spread of the
input correlation matrix, such improvement is limited when the
components are highly correlated. An improved transform-do-
main approximate QR-LS (TA-QR-LS) algorithm, where the
input signal vector is first approximately decorrelated by some
unitary transformations such as the discrete cosine transform
(DCT) before carrying out the normalization is, therefore, pro-
posed. This considerably improves the convergence speed of the
A-QR-LS algorithm. The mean convergence behaviors of the
A-QR-LS and TA-QR-LS algorithms are analyzed and it sug-
gests that the mean weight of the algorithms converge to the
optimal Wiener solution if the weighting factor of the algo-
rithms is chosen between 0 and 1. The TA-QR-LS algorithm
can be viewed as a variable stepsize and numerical better-be-
haved implementation of the transform domain LMS (TLMS)
algorithm [34]. An improved TA-QR-LS with initial power es-
timation, called the power estimated transform domain approxi-
mate QR-LS (PTA-QR-LS), is also proposed. Further, we show
that it is possible to reduce the arithmetic complexities of the
A-QR-LS, TA-QR-LS, PTA-QR-LS, and the QR-LMS algo-
rithms by using Givens rotations instead of the Householder
transformation, as only one input signal vector is processed at
a time. This reduces the arithmetic complexity by a factor of
two, and facilitates the development of new square root-free
versions of the algorithms, in the same spirit as the classical
square root-free Givens-based QR decomposition LS algorithm
[6]. The resultant algorithms are much simpler to implement in
either software or hardware. The performances of the various
algorithms are evaluated through computer simulation. Simu-
lation results show that the proposed algorithms are good al-
ternatives to the RLS and QR-LMS algorithms in applications
involving multiple channels, acoustic modeling, and fast param-
eter variations. The rest of the paper is organized as follows. The
traditional QR-based LS adaptive algorithm is briefly reviewed
in Section II. The approximate QR-LS algorithm proposed in
[13] and the new TA-QR-LS algorithm are described in Sec-
tion III. The mean convergence performance analysis and its re-
lation to the normalized LMS algorithm will also be given. Sec-
tion IV is devoted to the efficient implementation of the various
approximate QR-LS algorithms. Simulation results and compar-
ison of the various algorithms are carried out in Section V. Fi-
nally, conclusions are drawn in Section VI.

II. QR-BASED LS ADAPTIVE ALGORITHM

Consider the estimation of the -dimensional parameter
vector for the following linear model:

(1)

where and are the
desired (observed) signal and input vectors, respectively, and

is an additive white Gaussian noise sequence with zero

mean. Let be the estimated parameter vector at time , the
estimation error at time instant is, thus, given by

(2)

In least squares parameter estimation, the following time-aver-
aged squared magnitude error is:

(3)

where the constant is the forgetting factor with a value be-
tween 0 and 1. Equation (1) can be written more compactly in
matrix form as

(4)

where

(5)

(6)

and are the received signal vector and the data
matrix, respectively. Then, the least squares objective function

in (3) becomes

(7)

where is a diagonal weighting matrix given by
. The optimum

value of can be obtained by solving the normal
equation: , where

and
are, respectively, the weighted autocorrelation matrix of

, and the weighted cross-correlation vector of
and . Due to the lower numerical accuracy in solving the
normal equation, a better method, called the QR-LS method, is
employed. The following QRD of is performed

(8)

where is some unitary matrix and
is an upper triangular matrix. Using (8), (4) can be
rewritten as

(9)

where . Since
is an unitary matrix, the square of the Euclidean norm
on the left-hand side in (9) is equal to in (7). The
two-norm on the right-hand side of (9) achieves its minimum
value when is chosen as , and

. Since is an
upper triangular matrix, can be obtained by back-substi-
tution. There are several methods to perform the QRD of the
weighted data matrix . If a single input vector

is processed at a time, then the Givens rotation-based
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QRD algorithm is preferred because of its low arithmetic com-
plexity. When multiple input vectors ’s are processed
at a time, then the Householder transformation [15] is more
efficient. The QR-LS algorithm can be made recursive for each
input vector. Let’s define the augmented data matrix

(10)

Suppose that we have computed the QRD of
, then we have

(11)

Given the new data vector , we are
interested in computing the QRD of . From (10),
we have

(12)

Multiply (12) by the augmented matrix

one gets

(13)

Since is an upper-triangular matrix, the new QRD
can be obtained by zeroing out by a series of -Givens
rotations or Householder reflections

(14)

where are the Givens rotation or Householder matrix
used to zero out the element at the th stage. Normally, the
matrix is not stored explicitly. Only the triangular matrix

is stored and the minimum LS error is recursively
computed as .

III. THE TRANSFORM-DOMAIN APPROXIMATE

QR-LS ALGORITHM

Even though it is possible to recursively update the trian-
gular matrix for single-input adaptive-filtering applications with

arithmetic operations, direct back solving of the optimal
parameter vector still requires about arithmetic com-
plexity. In [12], Liu proposed an approximate QR-LS algorithm,
which approximates the triangular factor with a special struc-
tural matrix. By so doing, it is possible to combine the up-
dating and the back solving processes together using the House-
holder transformation, yielding a very efficient algorithm re-
quiring square roots, multiplications, and additions.
However, the performance analysis of this algorithm was not
studied. Here we show that this approximate QR-LS algorithm

is closely related to the normalized LMS algorithm and analyze
its mean convergence performance. In addition, a new trans-
form domain version of this approximate QR-LS algorithm is
proposed, which has a faster convergence speed than the orig-
inal approximate QR-LS algorithm when the input correlation
matrix is highly correlated. First of all, let us briefly summarize
the principle of this approximate QR-LS algorithm. Assume that
the upper triangular matrix is known at time instant

. From in (9), the parameter vector
can be computed by back substitution as follows:

(15)

where is the th element of the estimated parameter
vector . Let the term inside the square bracket for

in (15) be . Then

(16)

and (15) can be rewritten as

(17)

Given the values of and , (17) can be viewed
as a system of linear equations in variable , the parameter
estimate to be solved at time instant . This, together with (1),
yields the following equation in :

(18)

where is the square root of the forgetting factor. Note, because
of the approximation just mentioned for (17), ’s in
(18) will be different from those of the QRD. To solve (18), let
us rewrite it in matrix form as follows:

(19)

where

Equation (19) can be solved by computing the QRD of .
However, because the matrix in is a diagonal
matrix, the system can be solved using the QRD in order
arithmetic complexity. More precisely, we can construct the ap-
pended matrix as follows [12] [as seen
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in (20) at the bottom of the page]. Because of the special struc-
ture of this matrix, the upper triangularization and the back
solving processes can be combined together using the House-
holder transformation. Due to page limitation, interested readers
are referred to [12] for more details of the algorithm. Because
of the similarity between the QRD-based LS method and the
QR method for solving (19), this is called an approximate
QR-LS method. However, due to the relation used in (17), it will
be shown in the following that it is a variable stepsize LMS algo-
rithm with element-wise normalization of the input signal vector.

A. The Relation With the Normalized LMS Algorithm

From (19), we know that the parameter estimate of the
approximate QR-LS method is the solution of the equation

, which can be written formally as

(21)

Using the matrix inversion lemma, (21) can be simplified to
(22), as shown at the bottom of the page.

It can be seen that the recursion in (22) is very similar to the
normalized LMS algorithm, except that the normalization is per-
formed on each of the component of and a variable step-
size parameter is
employed. From (20), we notice that when is large, the ele-
ments of will approach the energy of the corresponding
elements in . Further, this normalized LMS algorithm re-
duces to the QR-LMS algorithm if , are equal
to one. As the normalization is performed on the original input
data vector, considerable improvement in the convergence speed
can only be achieved when they are uncorrelated and with dif-
ferent signal powers. An efficient method to realize this advan-
tage is to transform the input signal vector using certain uni-

tary or orthogonal matrices so as to approximately diagonalize
the covariance matrix . The resulting transform domain ap-
proximate QR-LS (TA-QR-LS) algorithm becomes a variable
stepsize implementation of the transform domain LMS algo-
rithm, using the numerically well-behaved Givens rotation or
Householder reflection. In Section III-B, we shall show that the
condition number in solving the normal equation is improved
when this QR-based algorithm is employed. Further, it is shown
in Section IV that the arithmetic complexity of this algorithm
can be further reduced using the Givens rotation instead of the
Householder transformation. Next, we consider the mean con-
vergence of this TA-QR-LS algorithm.

B. Performance Analysis

Assume that the desired signal is given by

(23)

where is the Wiener solution and is a zero mean noise
process uncorrelated with . Substituting (23) into (22)
and letting be the error weight vector, we
get

(24)

where
. If is sufficient large, the

matrix will converge to a constant matrix . Therefore,
for simplicity, we assume the matrix converges to the
matrix in the following analysis. For transform domain LMS
algorithm, is obtained by transforming the input vector

by some unitary transformation matrix as follows

(25)

where . For simplicity, we assume that is real and
hence it is orthogonal. Then, (24) becomes

(26)

. . .
... (20)

(22)
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Substituting the transformation into (26)
gives

(27)

where . If we assume that ’s are uncor-
related over time indices , then so is . For a sufficiently
small stepsize, we can further assume that the error weight
vector is uncorrelated with the transformed input signal
vector . Taking expectation on both sides of (27), and
using the fact that is zero mean and uncorrelated with

(i.e., ) yields

(28)

where . From (28),
it can be seen that the algorithm is convergent with a steady-state
solution of , if all the eigenvalues of the matrix
are less than 1. Consider the trace of this matrix, we have

(29)

Equation (29) follows from the linearity of the trace and expec-
tation operators and the fact that . Since the eigen-
values of the symmetric matrix are all posi-
tive and , it follows that ,
and the mean weight of the algorithm converges to the optimal
Wiener solution. In the following, we shall briefly analyze the
condition number of the QR-based method in solving the linear
system in (19). First of all, we note from (19) that

(30)

The condition number for the QR-based solution is
, and it is expected

to be much smaller than solving the system directly. For the
QR-LMS algorithm, ’s are chosen to be 1, instead of
recursively computed using the algorithm in [12], and

The condition numbers of and the QR-LMS algo-
rithm can be shown to be [14]

respectively. In the A-QR-LS algorithm, is the square
root of the estimated signal power associated with the th ele-
ment in the input signal vector. It helps to normalize the indi-
vidual components in the signal vector so as to minimize the

eigenvalue spread. By the same token, we can replace
using other recursive signal power estimator such as

where

(31)

and is a positive forgetting factor between 0 and 1. It will be
shown in the simulation section that this simple power estimate,
when used to estimate the power of individual elements in the
transformed signal vector, leads to faster convergence speed in
the TA-QR-LS algorithm. Further, for adaptive filtering applica-
tions with single and wide-sense stationary input, the condition
number in (30) can be evaluated analytically. First of all, notice
that ,
the square root of the signal power of the input. This allows us
to simply (30) to

(32a)

which is a rank-one modification of a scaled identity matrix with
characteristic polynomial

(32b)

The largest and smallest eigenvalues of are thus
and , respectively. Accordingly,

the condition numbers of and the A-QR-LS algo-
rithm are

(33a)

(33b)

respectively. Since is the square root of the average power of
, the average value of is thus equal to

. Therefore, the condition number of the A-QR-LS algo-
rithm is less sensitive to the signal power of the input. For the
TA-QR-LS algorithm, the power estimates will in gen-
eral differ from each other. The exact condition number is quite
difficult to analyze. However, the overall effect is still to reduce
the sensitivity of the algorithm to variation of input signal power
and eigenvalue spread.

IV. GIVENS-BASED APPROXIMATE QR-LS ALGORITHM

Although the Householder transformation is in general more
efficient than Givens rotation when multiple input signal vec-
tors are processed, it is less efficient than the Givens rotation
when signal vectors are processed one at a time [15]. In order
to combine the back solving and the matrix updating steps in
the approximate QR-LS algorithm, the signal vector has to be
processed one at a time. Hence, it is possible to reduce the arith-
metic complexity further by employing the Givens rotation in-
stead of the Householder transformation as proposed originally
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in [12]. Furthermore, thanks to the Givens rotations, it is pos-
sible to develop a “square-root free” version of the resulting
Givens-based approximate QR-LS algorithm, similar to
the classical work in [6]. This greatly reduces the complexity
of the algorithm and is very easy to implement in hardware. For
notation convenience, let us consider the triangularization of the
following matrix (the shorthand of )
having the same structure as in (20):

. . .
...

(34)

Owing to the special structure of matrix , only two rows, the
th row and the th row, are changed when applying

Givens rotation to it during the th iteration, i.e.,

(35)

where denotes the element of the upper triangular matrix
transformed. Following the derivation in [12], the following
approximate QR-LS algorithm based on Givens rotations is
obtained as shown in (36) at the bottom of the next page,
where . In order to avoid the
square root operations in the Givens-based algorithm, a
similar approach as in the square-root free Givens QRD
algorithm [6] is derived below. More precisely, is rewritten
as follows in (37), shown at the bottom of the next page,
where

. Consider the
th Givens rotation, where the -entries

of the previously rotated matrix, is
being annihilated. (Please see (38) at the bottom of the next
page.) For simplicity, only the th and th rows of

are shown. From (38), we get

(39)

where are auxiliary parameters given by
. Since the Givens rotation annihilates

the first nonzero element of the second row, it can be shown that

(40)

Combining (38) and (40), we have

(41)

and . Be-
cause is equal to zero, (41) can be written after some algebra
as

(42)

TABLE I
GIVENS-BASED TA-QR-LS ALGORITHM

where . Similarly, we have

(43)

where . Hence, the square root operations are
avoided in the updating equations in (42) to (43). Finally,
we get the recursive parameter estimation formulas for the
proposed square root-free Givens-based approximate QR-LS
algorithm (TA-QR-LS) as shown in Table I. The Givens-based
A-QR-LS algorithm only requires multiplications and

additions. The arithmetic complexity of this algorithm is
considerably lower than the original A-QR-LS algorithm in
[12], which requires square roots, multiplications,
and additions. It should be noted that a similar approach
can be applied to the QR-LMS algorithm in [13] (where all
the ’s are equal to 1). Table II compares the arithmetic
complexities of these algorithms. For simplicity, the divisions
in the algorithms are counted as multiplications. and

are respectively the multiplications and additions
required for the transformation and inverse transformation

. If is chosen as the DCT, fast algorithms are available
for their computation [25]–[29]. If is a power of two, fast
algorithms [25], [26] with complexity
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TABLE II
ARITHMETIC COMPLEXITIES OF THE VARIOUS ALGORITHMS

can be employed. Fast DCT algorithms for composite values
of are also available [28], [30], [32], and their complexities
are similar to that of the power of two algorithm. For adap-
tive filtering applications with single input, the inverse DCT
(IDCT) can be computed recursively in additions and
multiplications [25]. Fast algorithms for computing the discrete

Fourier transforms (DFT) [30], [31] and discrete Hartley trans-
forms (DHT) can be found in [28], [31]–[33]. Interested readers
are referred to [29] for more details on other unitary transfor-
mations and their fast algorithms. Finally, we remark that the
TA-QR-LS algorithm is very regular for systolic implementa-
tion. Due to page limitation, the details are omitted.

(36)

. . .
... (37)

(38)
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TABLE III
MAXIMUM ERRORS OF THE ESTIMATES OBTAINED BY THE VARIOUS ALGORITHMS

Fig. 1. True and estimated values of a(k) obtained by: (a) TA-QR-LS; (b) QR-LMS; (c) TLMS; (d) A-QR-LS; and (e) RLS.
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V. EXPERIMENTAL RESULTS

Example 1 System Identification: The first simulation is the
identification of the following second-order system, which is
used in [13]

(44)

where , and are respectively the input, output,
and measurement noise of the system. The system is driven by a
white zero mean white Gaussian process with unit variance.
The measurement noise is assumed to be a zero mean white
Gaussian noise process with variance . In the first part of the
simulation, is chosen to be a constant equal to . The
objective is to estimate the model parameters from the system
input and output for . Table III summarizes
the maximum errors when estimating these parameters after
the algorithms have converged. These results are obtained by
averaging over 100 Monte Carlo simulations with a forgetting
factor . Since the DCT is an efficient transformation
for decorrelating signal and fast computational algorithms are
available, it is employed in this study. The parameter vectorsof all
algorithms are initialized to zero. The inverse of the correlation
matrix is initialized to , where , and
is the power of the input signal vector. From Table III, it can be
seen that the steady state maximum errors of the estimates of the
RLS algorithm is smaller than those of the TA-QR-LS and the
A-QR-LS algorithms, which are comparable to each other. In the
second part of the simulation, the parameter is assumed to
be time-varying, and is modeled by a slowly varying sinusoid:

with Hz, to compare the tracking
performance of the algorithms. The forgetting factors for the
TA-QR-LS, and A-QR-LS algorithms are both equal to 0.7. Be-
cause the correlation matrix of the input signal is nearly singular,
the RLS algorithm cannot converge when the forgetting factor
is smaller than 0.97, a value of 0.98 is chosen. The weight factor

for the QR-LMS algorithm is chosen as 0.7 and the stepsize
for the TLMS algorithm is chosen as 0.1. The estimates of
obtained by the TA-QR-LS, QR-LMS, TLMS, A-QR-LS and
RLS algorithms are shown in Fig. 1. Very good performances
are obtained by the TA-QR-LS and the QR-LMS algorithms,
which are comparable to each other. There is a considerable
parameter fluctuation in the TLMS algorithm at the beginning of
the simulation, and its value start to settle down after simulation
time . The A-QR-LS and the RLS algorithms are unable
to track the slowly time-varying parameter, and the performance
of theRLSalgorithmseems to be theworse.Asmentionedearlier,
the main diagonal elements of in (22) of the TA-QR-LS
algorithm are power estimates of the elements in the input signal
vector. However, their values only converge slowly to the true
estimates. Therefore, the tracking speed of the TA-QR-LS al-
gorithm is almost identical to that of the QR-LMS algorithm. In
order to evaluate the performance of the various algorithms to
sudden change of system parameter, is suddenly changed
from to after . The results are shown in
Fig. 2, and it was obtained using 100 Monte Carlo simulations. In
order to improve the tracking speed of the TA-QR-LS algorithm,
the initialvaluesof thediagonalelementsof forsimulation
time to are replaced by the power estimates as mentioned
in (31). This improved algorithm is referred to as initial power

Fig. 2. True and estimated values of a(k) by various algorithms.

estimated transform domain approximate QR-LS algorithm
(PTA-QR-LS). The forgetting factors for the TA-QR-LS,
PTA-QR-LS, QR-LMS, and A-QR-LS algorithms are chosen as
0.32, to allow for a faster tracking speed. Because the correlation
matrix of the input is nearly singular, the forgetting factor
for the RLS algorithm is chosen to be 0.98. It can be seen that
the initial convergence of the RLS algorithm is better than the
A-QR-LS, TA-QR-LS, PTA-QR-LS, and QR-LMS algorithms.
However, its response to the sudden change of system parameter
is rather poor because of the relatively large forgetting factor
used to avoid the correlation matrix from being singular. Even
so, the RLS algorithm exhibits instability after simulation time

. The performances of the QR-LMS, TA-QR-LS,
and PTA-QR-LS algorithms are more satisfactory, with the best
performance achieved by the PTA-QR-LS algorithm. It can be
seen that the transformation and initial power estimation help to
improve the convergence and tracking speed of the algorithms.

Example 2 Acoustic Echo Cancellation: The second simula-
tion is to evaluate the performances of the various algorithms for
acoustic echo cancellation. The input signal is an artificially gen-
eratedspeech signal, which ismodeled as an fifthorderARmodel
characterized by poles at: and
and . This AR model is driven by a white noise
with zero mean and unit variance. The acoustic path of the echo
is modeled as a linear time invariant system using an exponen-
tially weighted model of order 60. The adaptive filters are as-
sumed to have an order of 100, which is larger than the actual
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Fig. 3. Echo path estimated by various algorithms.

length of the acoustic path. Fig. 3 shows the estimated echo paths
obtained by the TA-QR-LS, and A-QR-LS algorithms. The result
for the PTA-QR-LS is very close to the TA-QR-LS in this case,
and it is omitted for page limitation. The estimated echo path for
the TA-QR-LS and RLS algorithms are similar to each other in
appearance and the result for the RLS algorithm is omitted for
simplicity. The error norms for all the algorithms are shown in
Fig. 4. These estimates are obtained by averaging over 100 Monte
Carlo simulations. The forgetting factors for these three algo-
rithms are chosen as 0.99. It can be seen that the trail coefficients
after of the echo path estimated by the A-QR-LS algo-
rithm are considerable larger than the TA-QR-LS (and the RLS)
algorithm, though the steady state error norms are almost iden-
tical for all the algorithms. From Fig. 4, it can be seen that the
initial convergence of the RLS algorithm is inferior to the other
algorithms. It is due to the large time lag required to forget the
initial correlation matrix and to estimate the correct correlation
matrix of large size (100 100). After the correlation matrix has
been estimated, the RLS algorithm convergences rapidly to the
final solution. Another reason for the fast initial convergence of
the LMS-based algorithms is that the echo path coefficients in
the exponential decaying model are relatively small in amplitude.
Therefore, the LMS algorithms are easier to converge to these

Fig. 4. Error norm of the parameter vector for various algorithms.

small coefficients with an initial zero weight vector. This implies
that the proposed PTA-QR-LS algorithm is attractive in acoustic
applications where large number of coefficients with small co-
efficients has to be estimated.
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VI. CONCLUSION

Improved algorithms for a class of approximate QR-based LS
(A-QR-LS) algorithms recently proposed by Liu [12] are pre-
sented. It is shown that the A-QR-LS algorithm is equivalent to
an element-wise normalized LMS algorithm with time-varying
stepsizes. It reduces to the QR-LMS algorithm when all the
normalization constants are chosen as the Euclidean norm of the
input signal vector. Two transform-domain approximate QR-LS
algorithms, the TA-QR-LS, and the initial power estimated
TA-QR-LS (PTA-QR-LS) algorithms, are proposed to improve
the convergence speed by decorrelating the input signal vector
with unitary transformations. The mean weight vectors of these
algorithms are shown to converge to the optimal Wiener solution
if the weighting factor lies between 0 and 1. New realizations
of the A-QR-LS, TA-QR-LS, PTA-QR-LS, and QR-LMS algo-
rithms using the Givens rotations are presented. This reduces
the arithmetic complexity by a factor of two and allows square
root-free versions of the algorithms to be developed. Simulation
results show that the proposed TA-QR-LS and the PTA-QR-LS
algorithms are good alternatives to the RLS and QR-LMS
algorithms in applications involving multiple channels, acoustic
modeling, and fast parameter variations.
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