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ABSTRACT

This paper studies the design and implementation of FIR and
IIR VDF, whose frequency characteristics can be controlled
continuously by some control or tuning parameters. A least
squares (LS) approach is proposed to design FIR VDF with its
impulse response expressed as a linear combination of basis
functions. By choosing the basis functions as piecewise
polynomials, VDF with larger tuning range than ordinary
polynomial based approach results. This VDF can be efficiently
implemented using the Farrow structure. Making use of the FIR
VDF, an eigensystem realization algorithm (ERA)-based model
reduction technique is proposed to obtain a stable IR VDF with
lower system order. It does not suffer from the undesirable
transient response during parameter tuning. For frequency
selective VDF, about 40% of the multiplications can be saved
using the IIR VDF. The implementation of the proposed FIR
VDF using SOPOT coefficient and the multiplier block technique
is also studied. Results show that about two-third of the additions
in implementing the SOPOT coefficients can be saved using the
multiplier block.

Index Terms — Variable or tunable digital filters, design and
implementation, FIR and IIR filters, least squares design, model
reduction, multiplier block.

1. INTRODUCTION

Variable digital filters (VDF) are digital filters with
controllable spectral characteristics such as variable cutoff
frequency response, adjustable passband width, controllable
fractional delay, etc. They found applications in different areas of
signal processing and communications [1]}[{2]. Methods for
designing variable digital filters can be broadly classified into two
categories:  transformation [3] and spectral parameter
approximation (4]-[7] methods. In general, transformation method
is applicable to VDF with variable cutoff frequencies, but not
general variable characteristics say variable fractional delay. The
spectral parameter approximation method is more general in that it
assumes that either the impulse responses [5](6] or the poles and
zeros [4][7] of the filters are polynomials of certain spectral
parameters. Most of the works on VDF reported are focused on
the design of IIR VDF and methods for guaranteeing their stability
[4]. More recently, the design of 1-D [6] and 2-D [5] FIR VDF
has received considerably attention due to their simple design
procedure and good filter performance. Also, the close link
between the Farrow-based fractional delay digital filter and such
FIR VDF becomes more apparent [5].

This paper studies the design and implementation of FIR and
IIR VDF. First of all, the least squares (LS) approach in [6] for
designing FIR VDF is generalized to a linear combination of basis
functions. It is shown that the optimal LS solution can also be
obtained by solving a system of linear equations. This differs
from the weighted least squares approach in [6] in that i) no
discretization of the tuning and frequency variables is used; ii) the
approximation function is assumed to be a linear combination of
* basis functions. In particular, it is shown that tunable filter using a
piecewise polynomial yields larger tuning range than ordinary
polynomial based approach. The resulting VDF can be
implemented with the familiar Farrow structure [10]. The
piecewise polynomial-based approach also reduces the number of
general multipliers required in the Farrow structure because of the
lower order of the piecewise polynomial used. Making use of the
FIR VDFs obtained by the proposed approach, an Eigensystem
Realization Algorithm (ERA)-based model reduction technique is
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proposed to yield a stable IR VDF with lower system order.
Model order reduction [8] is applied to this FIR filter to obtain the
desire IIR filter with lower system order and hence arithmetic
complexity. The reduction process is very simple which involves
the computation of the singular value decomposition (SVD) of a
Hankel matrix. Therefore, time consuming iterative optimization
method is not necessary. In addition, the model reduced IIR
system is guaranteed to be stable and it tries to preserve the
frequency characteristics and approximately linear-phase of the
original system. The proposed IIR VDF does not suffer from
undesirable transient response during parameter tuning found in
other approaches based on direct tuning of filter parameters [4](7].
This is because the states of the IIR sub-filter in the proposed
structure are not abruptly changed during the parameter tuning
process. The proposed VDF structure involves a number of
sub-filter with fixed coefficients. The implementation of these
coefficients wusing the sum-of-powers-of-two (SOPOT)
representation and the multiplier-block technique [9] is studied.
Results show that about two-third of the additions in
implementing the SOPOT coefficients can be saved using MB,
which leads to significant savings in hardware complexity.

This paper is organized as follows: In section II, the design
method of the FIR VDF using the least squares method is
described. The design of the IIR VDF using the ERA model
reduction method is then studied in Section III.  The
implementation of the FIR VDF using the SOPOT representation
and the multiplier block techniques is described in Section IV.
Several design examples are given in section V. Conclusions of
this work are drawn in section VI.

II. LEAST SQUARES DESIGN OF FIR VARIABLE DIGITAL
FILTERS

The impulse response of the variable FIR filter under
consideration h(n,®) is assumed to be a linear combination of

some functions y,, (®) of the spectral parameters & , instead of
a polynomial. That is

W @)= 3 e, (@), 0

where ¢, , is the coefficient of expansion. The z-transform of the
VDFin(l)is
M-l N1 M~1
H(z,®)= Z{Zc,.mz'"]wm @)=2.C.) v, @) . (@
m=o|_n=0 m=0
This suggests the general structure for its implementation as
shown in figure 1. If H,(e’”,®) is the desired frequency
response, the approximation error is
M-AN-}
E(@,®)=H,(e”,®)- .Y c, ¥, (P ™. 6))

m=0 n=0
The L, norm of E(w,®) will therefore be a quadratic function

of ¢,,,, which has a unique minimum characterized by a system

of linear equation. More precisely, the L, norm of E(w,®) is
given by
E= W(e™ @) |E(0,d) dodd
[, [,7e".9) £ o) dodo, )
where W (e’®,®) s a positive weighting function used to control

the amount of approximation error in the frequency and the tuning
space. The set Qg is the frequency support over which
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H ,(e’®,®) is to be approximated. To simplify notation, letting

I=n+Nm and z=¢’" in (2), we have

) M-IN-1 N~
H(E™ @)= 3 D ¢l (@)™ = Zam’:(w,d’) , ®

where a,=c,,, and 4,(w,P) =y, (P)e”"”. Substituting (5) into
(4) and simplifying gives the following matrix equation

E=a"Qa-2b"a+c, (6)
where a=[a, a aNM—J]T »b=[b, b by ]T P
lol, = [ [ #(".2) 4 .2),(0,9) dodo
[8] = L L W(ef”,«b)-Re{H, (ei",w)¢,(w,a>)}1¢dw,

P . 2
and c= L L W (e, @) |H, (") dwdd .
s 'S

The optimal LS solution, a , is:

a;=Q"b. )
If h(n,$) is approximated by a polynomial, then the function
v, (#) is simply given by ¢”. Putting the weighting function
K, weS,
K, weS§

5 5

W(e’"’,di):{ into (6), the equations can then
readily be calculated by the reduction formula or in general
numerical integration. The optimal weighted least square solution
can be calculated from (7). The design of other VDF such as
variable bandpass filters and two-dimensional VDFs can be
derived similarly. One problem with approximating s(n,4) by a
polynomial is that the order of the polynomial and hence the
number of sub-filter grows rapidly with the tuning range. To
overcome this problem, it is desirable to approximate h(n,4) bya
piecewise polynomial. The tuning range is divided into disjoint
intervals and #4(n,4) in each interval is approximated by a
polynomial in ¢ with lower order. Figure 3 shows a simple
example where two piecewise polynomials with order 2 are
employed. The operator ¥~ is only necessary for the IIR VDF
to be discussed in section III. For FIR VDF, ¥ is not needed
and H,(z) are just the sub-filter C,(z) for the two 2" order
piecewise polynomials.

HI. DESIGN OF IIR VDF USING MODEL REDUCTION

Model reduction is a useful technique for designing IIR filter,
especially for approximately linear-phase IIR filter, from FIR
filters. There are several advantages of the model reduction
approach: i) it is computational simple which only requires the
computation of the SVD of a Hankel matrix, ii) the IIR VDF is
guaranteed to be stable, iii) the frequency response such as the
phase response of the FIR prototype is well preserved. Direct
application of model reduction to the sub-filter C, (z) , however,
does not lead to satisfactory results. Its coefficients are in fact the
coeficients of the interpolating polynomial. Most of the singular
values of the Hankel matrix of the impulse response are rather
large. Model reduction, which removes the less significant
singular values, is therefore unable to offer great reduction in
system order. In what follows, a transformation is used so that
another set of sub-filter, which is more amendable to model
reduction, is implemented instead of C,(z) . Sampling the

transfer function H(z,®) in (2) at M values of the tuning
parameter @ =@, ,i=0,---M —1, in matrix form as
H(z,®,)=C"P(@)=C"P, ®
where C=[C,(z) + C,..(2)] , P= P(d.i)[h" , and
P(®)=[y,(P) -+ y,,(P)]" . (8) can also be rewritten as

H=¥.C ©)
where H =[H(z,®,) - H(Z)¢Al-1)lr » W=[P - PM—I]T is
a M xM matrix. If ¥ in(9) is nonsingular, then we can express
Cin terms of H as

cC=¥'H. (10)
In other words, the sub-filter C, () can be replaced by another
set of sub-filter H(z,®,) followed by a linear transformation
¥~'. For polynomial basis function, we have y, (®)=¢". If
the M values of @ are evenly spaced, then ¥ is the
Vandermonde matrix and it is nonsingular. The model order
reduction of H(z,®,) will produce lower system order than that
of C,(z), if H(z,®,) is frequency selective. The model order
reduction employed is the ERA [8). Note that the sub-filter can be
viewed as a single input and M outputs (SIMO) system. To carry
out model reduction of these sub-filter using the ERA algorithm,
let’s rewrite them in state space model (SSM):

x(k+1)=A-x(k)+ Bu(k) , (1

(k)Y =C - x(k)+D-u(k), (12)
where the size of 4 is (n x n), Bis (n x 1), Cis (M x n), and D is (M
x1). Let Y, ,k=1,2, ..., be the (n x 1) pulse-response matrix or
Markov parameters, one gets:

Y,=D, Y,=CB, Y,=CAB, .., Y,=C4*'B.... (13)
The ERA system begins by forming the generalized aM x S
Hankel matrix H(k — 1) composed of (13) as

Y, Ve o Y,
) ¢ Y, ) ¢
H(k _ 1) — h.+l k.+2 h».ﬂ (14)
Ylna—l leu Ynmvl—l

For simplicity, we choose @ = f#=n,and k= 1. The SVD of the
Hankel matrix with k=1 is computed

HO)=R-Z-57, (15)
where the columns of matrices R and § are orthonormal and Z is a
diagonal matrix. Let r be the order of the model-reduced system
and R, and S, be the matrices formed by the first » columns of R
and S, respectively. Similarly, let 2 be the matrix formed by the
first » columns and first r rows of 2 To reduce (4, B, C, D) to the
reduced system (4,, B,, C,, D,), let’s form the following reduced
Hankel matrix

H,0)=R.Z,ST. (16)
It can be shown that H,(0) is composed of the controllability
matrix M, and the observability matrix M, as

H0)=M M, amn
where M, =(C, C,4, - C,A™'T, M,=[B, 4B, 4778
More generally, we have

H,(k)=MA'M,, as)
Comparing Eqs. (16) and (17) with &= 0 gives

M =R7Y!? and M, =3 ST . 19)

From Eq. (17), it is clear that the first column of M, forms the
reduced input matrix B, whereas the first M rows of M, form the
reduced output matrix C,. The reduced D, matrix is exactly equal
to the D matrix. To determine A,, consider Eq. (18) and (19) with
k=1,

A =% "R'HDS ™. @0)
The reduced system (4,, B,, C,, D,) is now determined. Let the
model-reduced vector of H be denoted as H . The new reduced
transfer function will have the same denominator D(z) and the

M numerators, denoted by N,(z) . Therefore, we have

H=N/D(z), @n
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where N =[N,(z) -+ N,_,(2)]" . Since there is only one

denominator, the implementation complexity associated with the
denominator of the transfer functions is greatly reduced. The
structure of the final IIR VDF is shown in Fig. 2.

IV. EFFICIENT IMPLEMENTATION OF VDF

To reduce the implementation complexity, the sub-filter are
implemented as multiplier-less FIR filters using the SOPOT
coefficients in the form

L
A _ a
Ck,n_zblz,n,j.2 s
=

where b,, () e{-11} and a, € {-],..,~10,1,...,/} . ] is a positive

2

integer and its value determines the range of the coefficients, and
L, is the number of terms used in the coefficient approximation
and is usually limited to a small number. The coefficient
multiplication can then be implemented as limited number of
shifts and additions. To design the SOPOT sub-filter, we
minimize the L, nomm of its difference in frequency response
with the ideal one as

é H (e )- H(e™)

a

= max
weS.def0,1]

). @3)

H,(e’”) is the ideal frequency response and l}(e"") is the
frequency response calculated for a given SOPOT filter
coefficients. The real-valued coefficients ¢, , are first determined

by the LS method described in section II.  Let b be the vector
containing these coefficients. The random search algorithm will
repetitively calculate a candidate SOPOT vector b, by adding to

b a random perturbation vector b, and then rounding it to the

nearest SOPOT representation. That is
b.=|b+b,]

P Jsopor *

@24

The vector b, is a random vector with elements chosen in the

3
range +1, and A is a user-defined variable used to control the

size of the neighborhood to be searched. |- | is the rounding

ISOPOT
operator that converts every element inside the input vector to its
closest SOPOT value with a given value of / . The performance
measure §, of the new coefficients is then calculated. The set

that yields the minimum peak error &, under the given

constraints of total number of terms and / is recorded as the final
solution. The random search algorithm is similar in concept to the
stimulated annealing algorithm. However, we have used the
real-valued optimal solution as a starting point to reduce the
searching time required. To implement the sub-filter C,(z) using
the MB [9], the structure in Fig. 1 is rewritten in its transposed
form. The input is now multiplied with a large number of constant
coefficients in SOPOT form. These products can efficiently be
implemented using MB, which reduces the redundancies in
multiplying a given input with a set of integer coefficients by
removing any possible common sub-expressions in their
representations. Using MB, it is possible to reduce significantly
the additions in implementing the multiplier-less sub-filter leading
to great hardware savings.
V. DESIGN EXAMPLES

A tunable linear-phase FIR VDF and an approximately
linear-phase IIR VDF are designed. The tuning range of the
passband is from 0.2z to 0.47 and the transition band is fixed at
0.2z . We divide the tuning range into 2 intervals with 3 sub-filter
per interval. Each sub-filter has 40 taps. The frequency responses
of the FIR VDF designed using the LS method are shown in Fig. 4
(a), (b). The frequency responses, group delay, and transient
response of the IIR VDF are plotted in figure 4 (c) and (d). Details
comparison of the FIR and IIR VDF are summarized in Table 1.

Since the order of the IIR VDF is reduced to half and there is only
one denominator for all the sub-filter, the total number of
multiplications is reduced approximately by 40% as compared
with the FIR VDF. The frequency response of the IIR VDF is seen
to be comparable to the original FIR VDF.

FIR IIR VDF
VDF
Filter length 40 21 (numerators)

21 (denominator)

Interpolation order * 2 2

Total No. of Multiplications

(due to filter coefficients) 240 147
Required adcider; before using 317 548
Required adders after using MB 103 146
Total No. of Additions
(due to the tapped delay line) 234 140
Stopband Attenuation 45.34dB 44.31dB

Table 1. Parameters for the tunable lowpass filters (*2 blocks each
with 3 branches, each block use Lagrange interpolator of
order-two.)

V1. CONCLUSIONS

A systematic method for design and implementation of FIR
and IIR VDF is presented. A LS approach for designing FIR VDF
with its impulse response expressed as a linear combination of
basis functions is first presented. By choosing the basis functions
as piecewise polynomial, VDF with larger tuning range than
ordinary polynomial based approach can be obtained. The
resulting VDF can be efficiently implemented using the Farrow
structure. Making use of the FIR VDF, an ERA-based model
reduction technique is proposed to yield a stable IIR VDF with
lower system order. It does not suffer from undesirable transient
response during parameter tuning. For frequency selective VDF,
about 40% of the multiplications can be saved using the IIR VDF.
The coefficients implementation of the proposed VDF using
SOPOT and the MB technique is also presented. Results show
that about two-third of the additions in implementing the SOPOT
coefficients can be saved using MB, which leads to significant
savings in hardware complexity.
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Figure 1. A general FIR VDF structure.
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3. Proposed piecewise polynomial-based VDF structure. For FIR
VDF W™ =1 and H,(z) are the sub-filters.
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Figure 4. Design results: (a) 3-D plot of frequency response of FIR VDF

(b) Frequency responses of FIR VDF even sampled in the
range @ =[0,2] . (c) Frequency responses of IIR VDF even
sampled in the range @ =[0,2] . (d) Group delay of the IIR
VDF. (¢) Transient response of the IIR VDF. Tuning
parameter @ is increased by 0.25 every 50 samples, i.e.
the passband is increased by 0.057 successively. It can be
seen that the amplitude of the VDF output increases at each
block of 50 samples. Note there is no transient during
parameter switching,
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