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Image Restoration in Digital Photography 
Edmund Y. Lam, Member, IEEE 

Abstract - This paper introduces some novel image 
restoration algorithms for digitalphotography, which has one 

. of the fastest growing consumer electronics markets in recent 
years. Many attempts have been made to improve the quality 
of the digital pictures in comparison with photography taken 
on films. A lot of these methods have their roots in discrete 
signal and image processing developed over the last two 
decades, but the ever-increasing computational power of 
personal computers has made possible new designs and 
advanced techniques. The algorithms we are presenting here 
take advantage of the programmability of the pixels and the 
availability of a compression codec commonly found inside 
digital cameras, and work in compliance with either the JPEG 
or the JPEG-2000 image compression standard'. 

Index Terms - Image Restoration, Resolution 
Enhancement, Digital Photography, JPEG, JPEG-2000. 

I. INTRODUCTION 

N traditional film-based photography, a picture is recorded 

specks of silver that form a latent image of the scene. This is 
an irreversible process. Various chemical processes are 
involved, and it is not easy to modify the picture recorded on 
the film. 

Digital photography, on the other hand, is vastly different. 
Images are recorded on electronic sensors, either in the form 
of charge coupled devices (CCD) or complementary metal- 
oxide semiconductor (CMOS). The latter has shown a lot of 
promise as a viahie, low cost solution because they enable the 
integration of sensing, processing, and memory. In both cases, 
the images are recorded directly in a digital medium, without 
the need for further chemical processes. They can he stored 
permanently without degradation, while photographic film and 
prints will inevitably fade over time. The electronic sensors 
can also be reused once the previous image has been saved in 
memory, and therefore over time it will be more economical 
than constantly buying new film. The most important feature 
of digital photography, however, is the programmability of the 
pixels. It has already been demonstrated that pixel-level 
analog-to-digital conversion (ADC) is possible [I] .  With 
further transistor size shrinkage in the iiiture, more logic can 
he put on the pixel level to enhance the function of the 
cameras. Furthermore, we already have application-specific 
integrated circuits (ASIC) on the digital cameras to perform 
operations such as white balancing, color processing, 
compression, storage, and transmission. These provide the 

I when incident " photons hit the silver halide film to create 
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bases with which we can manipulate the digital images much 
more easily than with traditional photography. 

In this paper, our goal is to explore methods by which we 
can restore degraded images by taking advantage of the 
programmability of digital cameras. We devise novel image 
restoration algorithms to he implemented in the camera 
alongside the compression of the images. We aim at creating a 
more versatile digital camera that would make use of the 
power of its programmability. 

11. IMAGE PROCESSING PIPELINE 
A prerequisite to designing effective image restoration 

algorithms for digital photography is a good understanding of 
the image acquisition process, especially under incoherent 
illumination which is the typical case for consumer use of 
digital cameras. Linear system theory provides us a very 
powerful tool for the analysis of the optical system inside the 
cameras. In particular, the frequency domain offers very 
compact relationships between the object and the image, 
establishing the preeminent role of Fourier analysis in the 
theory of incoherent imaging. In this section, we explore a 
simple model of the imaging system, and describe how 
restoration can be performed as suggested by linear system 
theory and Fourier analysis. 

A .  The Imaging System 
Many steps are involved in the imaging process for digital 

cameras, including white balancing, demosaicing, color matrix 
correction, nonlinear conversion, compression, and storage. A 
block diagram of the different steps in the image processing 
pipeline inside a digital camera is shown in Fig. 1. Here we 
focus on the image acquisition, which describes how images 
are formed. 

In its simplest form, the image acquisition system can be 
represented as in Fig. 2. The lens in the diagram represents a 
system of lenses. The object plane is located at a 
distance zo from the entrance pupil, while the image plane is 

located at a distance zi from the exit pupil. Our goal is to find 
the image intensity distribution given a certain object at the 
object plane. We assume the imaging system has the property 
that a diverging spherical wave, emanating from a point-source 
object, is converted by the system into a new spherical wave 
converging towards a point in the image plane. The locations 
of the ideal image point and the original object are related by a 
simple scaling factor, which is constant across ail points in the 
image field of interest. Such systems are called diffraction- 
limited when the object of interest is confined to the region 
where the above property holds [2]. We further assume that the 
camera is used under incoherent light. One important properly 
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Fig. 1. Simplified block diagram of the image processing pipeline. 

of an incoherent imaging system is that it is linear in intensity. 
Defining G,(f,,f,,) as the normalized frequency spectrum of 

the object and Gj(fx,S,,) as the normalized frequency 

spectrum of the image, we have the important relationship [2] 
Gj (,/”, fj,) = H ( f x ,  /,.FE (L 2 fi),) (11 

where H(f , , f , , )  is called the optical transfer function (OTF) of 

the system. For a diffraction-limited system with incoherent 
imaging, we can have an analytical formula for the OTF in 
terms of the pupil function, wavelength, and zi [2]. 

In all practical imaging systems, noise is inevitably present. 
It is common to model it as additive white Gaussian noise at 
the output, when the dominant source is the random thermal 
motion of electrons [3]. A uniformly distributed noise 
assumption is also common for the quantization noise 
distribution [4], while Poisson noise is typically used for 
astronomical images, which are taken at low light levels. Now, 
let us take equation (I)  hack to the space domain by inverse 
Fourier transforms, and sample the quantities at regular 
intervals in both the horizontal and vertical directions. This.is 
useful because computers can only handle discrete images of 
finite size. We also include the contribution of additive noise 
to arrive at the following equation’ 

where g(x,y)  is the object, i ( x , y )  is the image, n ( x , y )  is 

the noise, and h(x, y )  is the point spread function (PSF). 

i ( x , y )  = h(* ,y ) *g(x ly )+n(x ,y ) ,  (2) 
,I 

B. Aberrations 
In the presence of a point-source object, if the wavefront 

leaving the exit pupil departs significantly from ideal spherical 
shape’the imaging system is said to have aberrations [2]. By 
na&e all aberrations are linear. When a particular aberration 
is  space-invariant, its effects can be incorporated by changing 
the 0TF;so that the general imaging equations ( I )  and (2) are 
still applicable but withnew H(f, , f , )  and h(x ,y)  . 

A simple focusing error is one of the most common space- 
invariant aberrations. In the literature, the inverse Fourier 
transform of the OTF is usually modeled as a circular disc with 

unit magnitude, the size of the disc being indicative of the 
amount of focusing error. This is a valid model from a 
geometric (ray) optics perspective. Its usefulness, however, is 
limited in cases when diffraction effects govern, for instance, 
in a lens with small relative aperture. For those situations, 
Fourier (wave) optics allows us to derive more accurate 
expressions. Only in the limiting case where the focusing error 
is severe does the geometric optics expression become a good 
approximation, because the effects of diffraction become 
negligible [2]. Readers are referred to [ 5 ]  for discussions on 
the analytical yxpressions of the OTF for various amount of 
defocus. It suffices to note that as the amount of defocus 
increases, the ‘magnitude of H(f , , f , )  for middle to high 

frequencies is smaller, sometimes even becoming negative. 
This correspoyds to a lo’ss of image details, and visually the 
effect is that the image is blurred. 

The OTF’s of many other aberrations can also he derived or 
measured, such as spherical aberration, coma, astigmatism, 
cumahre of field, and distortion, which are collectively called 
Seidel aberrations [ 6 ] .  However, one should be aware that 
most of these aberrations are space-variant. Therefore, only 
“local” OTF’s can he used. In somg cases, if we know the type 
and amount of the aberration, we ,can perform a geometric 
coordinate transformation to turn the space-variant imaging 
equation into a space-invariant imaging equation similar to 
equations ( I )  and (2). 

C. Image Restoration 
From the perspective of equation (Z), the goal of image 

restoration is to recover the object ‘g(x ,  y )  given the observed 

image i (x .y)  Since the imaging equation represents a 
convolutional relationship, the restoration problem is often 
called deconvolution. Generally for image restoration, the PSF 
h ( x ,  y )  is assumed to he known. The restoration problem is 
termed blind image deconvolution when h ( x , y )  is not knowp 
precisely, and is a subject of active research. See [7] for some 
recent developments in this area. 

When the imaging system has a negligible amount of noise, 
equation (I)  leads to a veG direct method for restoration. At 
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Fig. 2. Generalized model of an imaging system. 

each frequency, we define the restored object 

Gg(~,1!,) as 

spectrum 

(3) 
I 0 1 otherwise. 

This is called pseudoinverse filtering. Although simple, this 
method has limited use because of the presence of noise. A 
better solution is found by using Wiener filtering. This is 
computed with 

where Q E ( f x , f J , )  and Q n ( , f I , . f l )  are the power spectra of 

the object and noise respectively. 

111. GENERAL SETTING FOR RESTORATION IN CAMERA 

Because of the large quantity of data captured in the camera 
image, compression is necessw. Each camera is therefore 
equipped with a compression engine, while the decompression is 
done after the images are downloaded to a computer host. It is 
advantageous to see whether it is possible to achieve some 
restoration akin to equation (4) as part of the compression and 
decompression process. In this section we will attempt a general 
formulation, while in sections IV and V we will deal more 
specifically with JPEG [8] and P E G  2000 [9] respectively, 
which are the two most common compression standards. 

The method comes in using different encoding and decoding 
parameters. Consider Fig. 3, 'which represents the process of 
blurring, compression, quantization, decompression, and 
debluning. Quantization is represented as the addition of 
quantization noise [4]. Typically, we use a symmetric pair of 
encoder and decoder, i.e., if i (x , y )  is the image before the 
encoder, then 

or to simplify notation, 
DLW(x.y)ll = ; ( X , Y ) ,  

21 1 

D = E ~ ' .  ( 6 )  
Alternatively, we should rather use another decompressor 

D', which incorporates the effect of dehlurring as well. This 
principle has been applied for vector quantization design in the 
past [lo]. Its feasibility can he argued from the following 
thought experiment: suppose that the quantization effect is 
small. The blurring causes some loss in'high frequency 
components. If the compression is based on the frequency 
components, we should design a decompressor that has a 
boosting effect in the high frequency components with respect 
to the compressor. The deblurring operation is then 
"absorbed" into the decompression. In practice, the 
quantization noise may not he negligible, especially for low 
hit-rate transmission. Furthermore, the compression is often 
not in Fourier frequency components; it is not for JPEG and 
JPEG 2000. The two sections below deal with the specific 
algorithms possible with the two compression standards. 
Related works that deal specifically with out-of-focus images 
have heen reported in [5, 111. 

IV. IMAGE RESTORATION WITH THE JPEG ALGORITHM 

A.  Motivarion 
In JPEG, the first step is to divide an image into 8 x 8  pixel 

non-overlapping blocks. Each block is then subjected to a 
discrete cosine transform (DCT), as follows: let i ( p , q )  denote 
a pixel value, p = 0 ,... 7 ,  q = 0 ,_.. 7 ,  within an 8x8 block. 
The DCT coefficients are then 

with m = O  ,... 7 ,  n=O ,_.. 7 , a n d  

for m , n  = 0 
1 fo rm,n>O 

The coefficients are then quantized according to the 
quantization matrix Q, , by rounding off the quotients when 
the DCT coefficients are divided entrywise by the 
corresponding element in the matrix. They are then entropy- 
coded, with either modified Huffman coding or arithmetic 
coding, before transmission. Upon receiving the compressed 
data, the decoder reverses the process for the entropy coding, 
dequantizes the coefficients by multiplying entrywise with the 
matrix Q d .  and performs the inverse DCT [SI. The 
compression is considered lossy because of the quantization 
process. 

Usually we use the,same quantization matrix for both 
encoding and decoding, i.e., Q, = Q d .  As an example, the 
JPEG committee uses a matrix that attempts to take into 
account some human visual system properties. One then needs 
to transmit the matrix as part of the compressed image 
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Fig. 3. image blurring and compression model. 

hitstream to the decoder. To adjust the quality of the 
compression, one usually scales the whole quantization matrix 
by a constant factor. This is called the quality factor. 

However, as argued in the previous section, in the presence 
of blur or quantization noise using a decompressor that is the 
inverse of the compressor may not he optimal. In the case for 
JPEG, that means we should not always set Q, = Qd . This is 

explained in [ 5 ]  and summarized below. Let I,(m,n) denote 

the quantized coefficients and In(m,  n)  the quantization noise. 
To compare the original and the decompressed image, we need 
to calculate the mean-square error (MSE) in the space domain, 
which can he done in the DCT domain because of its unitary 
nature and Parseval's theorem [12]. Therefore, 

(9) 

where it is understood that the above quantities all have 
arguments(m,n) . We can see that when I,(m,n) is small and 

I,(m,n) large, it is reasonable to set Q, = Qd to generate a 

where (x ,y )  denotes the inner product of x and, y . 
We can further improve this algorithm if we have some 

prior estimate of the blur. In this case, we can first process 
I,(m,n) with a restoration filter, such as using a Wiener filter 

with the estimated h(x ,y)  to produce i,,(m,n). Equation (11) 

is then computed with i ,(m,n) replacing I,(m,n). Because 

I,(m,n) is now closer to I , (m,n) ,  but usually not identical 
due to limitation in the restoration filter and blur estimate, 
a(m,n) would he more stable and the approximation in 
I ,  (m, n)a(m, n )  = I,(m, n )  would be closer to equality. Note 
however that this would add extra computational burden to the 
digital camera and may not he feasible for those cameras that 
need to conserve power as much as possible. 

In both cases, since image restoration is an ill-posed 
deconvolution problem, a minimum MSE solution is known to 
be highly sensitive to noise, especially at high frequencies. It is 
very important to incorporate some regularization constraint. 
A technique to this effect is proposed in [13, 141. Let L(m,n) 
be a highpass filter in the DCT domain. We measure the 
amount of desired high frequencies in all the blocks by 

B. Algorithm 
We seek to adjust the dequantization matrix by letting it he 

In order to calculate a(m, n)  , we assume that we have at our 
disposal a collection of images that have both the blurred and 
restored versions available. Let I,,(m,n) he the vector 
containing the DCT coefficients of the blurred images, and 
I,(m,n) he the corresponding vector for the restored images. 

We seek to find a(m,n) where I,(m,n)a(m,n)= Ir (m,n) .  
The best value of a(m,n) ,  in the mean-square sense, can he 
found by [SI 

Qd(m,n) = a(m,n)Qe(m,n). (10) where the subscript n again is used to denote the quantization 
noise. Using a Lagrange multiplier formulation that attempts to 
balance the MSE while staying close to the amount of desired 
high frequency components, and simplifying, we have 

Combining this with equation (12), therefore, 
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. .. 
= k,(m,ni ,. t .asgn,( l , (mln)) led(m,n),  . .  . (16) 

where sgn(x) denotes'the SIgnbf x.:. It'is zero if x = 0 .  a is 
a design parameter that we 'can make 'use of here 'to further 
improve the restored image quality. Ordinarily, we can pick 
a=0.5 in the absence of knowledge about the probability 
density function of q .  However, we know that. I ,  the 
unquantired DWT coefficient, is usually modeled as Laplacian 
[15], i .e.,  

p ( 1 )  = -e  p 4 4 .  (17) 
2 

(Note that this does not mean the quantized coefficient I ,  is 

also Laplacian.) As such, a smaller value of a can reduce the 
overall distortion. 

The question arises as to how to estimate p . If we have the 

values of I(m,n) available, we can compute the maximum 
likelihood (ML) estimation. Let l ( p )  denote the log 
likelihood. With the probability density function in equation 
(1 7 ) ,  we have 

M N  

U ) =  C C O o g p  - w - P I I ( ~ ~ ~ ) I I  (18) 
m 4  n=1 

Setting l'(p) = 0 ,  we have 
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V. IMAGE RESTORATION WITH THE JPEG 2000 
ALGORITHM 

A.  Motivation 
The P E G  image compression is a very successful standard, as 

evident from its proliferation in many areas o f .  image 
representation, storage, and transmission. Yet technology is 
constantly evolving, and new applications are being devised. 
The emergence and wide adoption of the Internet prompts new 
developments in image compression, with its demand for 
progressive transmission in quality and resolution. Electronic 
commerce also pushes for better image security, giving rise to 
many schemes for digital watermarking and steganography. 
Digital photography is also a new application .to the JPEG 
compression standard, and is heavily demanding for ' a more 
efficient compression scheme with a relatively low complexity. 
Progressive coding of images is also a desirable quality because 
of the limited memory available in the camera, which calls for a 
need to discard the less significant information of the existing 
pictures to make room for a new photograph, if necessary. 

To address for these needs, much research has shown that 
wavelet-based compression schemes can produce better image 
quality than DCT-based compression at the same bibate, while 
providing many enhancements to the features desired. That is 
primarily because it is ideally suitable for multiresolution 
transmission due to its subband decomposition nature. At the 
same time, a breakthrough in using bit-plane coding allows for 
progressive decoding, and when combined with an integer 
wavelet basis, can provide a range of lossy to lossless 
transmission of an image. A more elaborate bitstream syntax 
could also allow for better region-of-interest coding. 

As a response, the JPEG 2000 committee was formed to 
develop a new, advanced standardized image coding system to 
serve new applications. The JPEG 2000 standard is divided 
into two parts: part I defines the minimum set of functionality 
and features, while part 11 includes advanced techniques and 
algorithms. Details of the standard can be found in [9]. For our 
purpose here, we note that although wavelet is much different 
from DCT, they both fit the blur model depicted in Fig. 3. In 
the case of JPEG 2000, we try to alter the wavelet transform 
coefficients given a certain wavelet basis. 

B. Algorithm 
Similar to the DCT domain image restoration algorithm, our 

wavelet domain restoration also takes advantage of the 
flexibility of using different quantization for compression and 
decompression. We begin with a reference quantization step 
sizes for the discrete wavelet transform (DWT) coefficients. 
This step size can be different for different subbands. Using 
I,(m,n) and I,(m,n) from the training data set, we can use 

equation (1 1) to best value of a(m, n) , in the mean-square 
sense. Again, if we have some estimate of the blur, we can 
.improve the algorithm with the use of  f,,(m,n) similar to the 
previous section. 

The dequantization is somewhat different. In the standard, 
the process is governed by the equation 

When we only have I,(m,n) available instead of I(m,n) , we 

can still compute the ML estimation with a probability mass 
function 

The ML estimation still has an analytical expression, although 
the expression is somewhat cumbersome. A similar derivation 
can be found in [16]. 

Once we have an estimate of p , we can use it to find the 
centroid of each partition, which is the optimal decoding 
according to the Lloyd-Max condition [4]. This is derived 
from the equation 

After some arithmetic manivulation, we have 

Notethat O < a < 0 . 5 [ 1 1 ] .  



274 

VI. CONSIDERATIONS FOR 1MPLEMENTATION AND 
EXTENSIONS 

In implementing the above algorithms, we need to have 
training images to assist us in adjusting the quantization levels. 
Depending on applications, this may or may not be totally 
feasible. One altemative would be to have models of the blur 
and simulate the adjustments in quantization levels necessary. 
The .advantage that these algorithms bring to us is then an 
efficient way of performing the restoration without actually 
computing a filtering operation, such as that in equation (4). 
We can pre-compute some common blurs, such as defocusing, 
and store the quantization changes in the camera. 

Another point to note about these algorithms is that they 
provide a basic setting for restoration implemented together 
with the compression. There are at least two areas where this 
work can be extended: 

Restoration of images with linear space-variant 
aberrations. As explained earlier, a number of 
optical aberrations are space-variant, and some can 
be converted to space-invariant degradations by 
suitable geometric coordinate transformations. To 
incorporate these in our restoration scheme, we 
need to include both the forward and inverse 
coordinate transformations before and after the 
linear space-invariant equivalence of the blur. The 
challenge is then to devise algorithms that can 
embed these additional operations in the transform 
domain used for compression. 

2. Restoration of color images. As it stands, our 
algorithm deals with monochrome images, and 
therefore should only be applied on the luminance 
channel of a color image. Since almost all 
consumer level digital cameras produce color 
pictures, it is important to extend our algorithms to 
color images. Color image processing requires 
much more sophistication than processing of the 
three color planes separately. First of all, one needs 
to be concerned with how the color image is 
acquired, for instance, the particular demosaicing 
algorithm associated with a certain color filter 
array. Second, one should have a prudent choice of 
the color space to cany out the restoration. 
Traditionally, a luminance-chrominance color 
space such as YUV or YC& is preferable to RGB 
or CMY color spaces. Finally, whatever the color 
space, the aberrations on the three color planes are 
related, and this provides extra information for 
image restoration. How that information can be put 
to good use is itself a large area for further studies. 

1. 

VII. CONCLUSION . 
The digital photography industry is experiencing 

exponential growth. as digital cameras become more viable 
competitors with film-based cameras. The push for 
advancement in technology has been extensive and diverse, 
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with a lot of research focusing on increasing the resolution of 
the sensor, designing new shapes of the pixels, or improving 
the readout of the image for faster frame rate. In this paper, we 
concentrate our efforts to show that digital photography allows 
complex calculations using the pixel intensities, which enables 
us to implement image processing algorithms inside a digital 
camera to restore the quality of degraded images. This would 
be a definitive advantage over film-based photography. 
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