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Abstract. For an accurate scene analysis using monocular color traffic
image sequences, a robust segmentation of moving vehicles from the
stationary background is generally required. However, the presence of
moving cast shadow may lead to an inaccurate vehicle segmentation,
and as a result, may lead to further erroneous scene analysis. We pro-
pose an effective method for the detection of moving cast shadow. By
observing the characteristics of cast shadow in the luminance, chromi-
nance, gradient density, and geometry domains, a combined probability
map, called a shadow confidence score (SCS), is obtained. From the
edge map of the input image, each edge pixel is examined to determine
whether it belongs to the vehicle region based on its neighboring SCSs.

The cast shadow is identified as those regions with high SCSs, which are
outside the convex hull of the selected vehicle edge pixels. The pro-
posed method is tested on 100 vehicle images taken under different
lighting conditions (sunny and cloudy), viewing angles (roadside and
overhead), vehicle sizes (small, medium, and large), and colors (similar
to the road and not). The results indicate that an average error rate of
around 14% is obtained while the lowest error rate is around 3% for large
vehicles. © 2002 Society of Photo-Optical Instrumentation Engineers.
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fective in practical outdoor environments. For example,
some of them are limited to indoor environments only, and
for those that can be used outdoors, environmental infor-
mation is usually required. Thus, we are motivated to re-
Ssolve this problem of separating cast shadows from the
moving vehicles in a practical outdoor environment.

In this paper, we propose a method that can effectively
detect the cast shadow of a moving vehicle from a monocu-
lar color traffic image sequence. We assume that the mask

1 Introduction

Visual traffic surveillancg€VTS) is one of the major com-
ponents within the research of intelligent transportation
system$ (ITS). Its main purpose is to remotely acquire
traffic image sequences from roadside surveillance camera
and interpret them into traffic parameters and vehicle be-
havior. To achieve these requirements, numerous image
processing algorithms, including preprocessing and post-

processing algorithms, have been developadiong them, - moving vehicldgthe region both covering the vehicle
segmentation algorithms that extract the objects of interest, 4 the cast shadovand an estimated static background
(such as moving vehiclgérom the image b_ackgrolt%trulid INan  reference image are both available together with the input
image sequence have recently been actively stutiiesd image sequence. This assumption is considered reasonable
background subtraction is a common appro%?:hl.owever, as many background estimation methods have been
most of these approaches suffer a major drawback. In out-reported® and can be used to determine the motion content
door daylight scenes, shadows cast by moving vehicles aregf the image, and the moving foreground m&sEM) can

often detected as part of the objects since shadows move ime directly computed from the reference background and
accordance with the movement of the objects. When the the input image. Given the MFM, we obtain the shadow

detected vehicles contain shadows, the calculated locationconfidence scor¢SCS, which indicates the likelihood of
dimension, speed, and number often include large errors.shadow, based on the observations of the cast shadow char-
For instance, in a traffic scene with long shadows, vehicle acteristics. The edge pixels of the input image within the
location may be incorrectly estimated on the shadow region MFM are then computed and classified into object-edge
rather than on the vehicle body by the center-of-gravity pixels and non-object-edge pixels using the neighboring
method. This also creates a multitude of problems associ-SCSs, where the object edge pixels are bounded by a con-
ated with occlusion. Therefore, the accuracy and robustnessyex hull. This convex hull denotes the vehicle region, while
of the algorithm may be seriously affected if the cast the remaining pixels of the MFM denote the cast shadow
shadow is not detected and removed. Although numerousregion. To evaluate the proposed method, we analyzed the
shadow detection methods have been propés€dhey all selection of the parameters used to control the score func-
suffer from a number of limitations that make them inef- tions, as well as the object edges classification. The pro-
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posed method was tested on about 100 images taken undeimages with a single-colored flat surface background and a
different lighting conditions(sunny and cloudy viewing single light source, these assumptions would likely restrict
angles(roadside and overhepdvehicle sizegsmall, me- the method from being applicable in outdoor environments
dium, and largeand colors(similar to the road and npt where complex lighting and unstructured background sur-
The results indicate that an average error rate of aroundfaces are both common.
14% is obtained while the lowest error rate is around 3%  Funka-Lea and BajcSypresented an active shadow rec-
for large vehicles. ognition method by combining color and geometric proper-
The paper is organized as follows. Section 2 gives a ties of the image. They suggested a number of cues that
survey of various shadow detection approaches developedtogether point toward the identification of a shadow. One of
The strengths and limitations of these approaches are conthe cues is that the intensity, hue, and saturation changes
sidered. Section 3 presents the basic concept and methoddue to shadows tend to be predicable. The image is seg-
ology of the proposed method. Section 4 defines the com-mented by a color image segmentation method that recov-
putation of the SCS. Section 5 discusses the final steps iners a single material surface as a single image region re-
moving cast shadow detection. Section 6 outlines, evalu- gardless of whether the surface is partially in shadow. The
ates, and analyzes a series of tests on typical outdoor trafficoenumbra and umbra of shadows are then recovered based

scenes. Finally, the paper is concluded in Sec. 7. on an illumination model called the linear color cluster as-
sumption for penumbra@ CCAP). To recover the geomet-
2 Related Works ric properties of the scene, such as the location of the light

sources, an extendable probe is also used to actively obtain
shadows in the scene. Both outdoor and indoor scenes were
tested and the shadows were reasonably detected. However,
due to the use of the linear color cluster assumption, their
method is limited to relatively simple scenes. Moreover, the
umbra and penumbra properties of shadow can hardly be
maintained in complex outdoor scene.

Salvador et at® presented a method that is based on the
B ) ) use of invariant color models to identify and classify shad-
Traditionally, cast shadow detection algorithms have been o5 in color images. The candidate shadow regions are first
mostly developed based on the single-frame appréath.  eytracted by searching the edge map in the dark regions of
As there are limited cast shadow characteristics that can beyhe image. After color conversion to an invariant color
extracted from a single input frame, authors tend to make yogel, the candidate shadow pixels are classified as self-
stricter assumptions as the basis for the algorithm develop-gnagow points or as cast shadow points based on the de-
ment. . tected color edge of the image. The method was success-

For instance, Scanlan et aresented a shadow removal 11y applied to a number of indoor scenes with one or two
algorithm that employs a simple histogram modification sjmple objects and one light source. Similar to other single-
function on the image intensity. They assumed that objects frame approach methods, the application of their method is
occupy only the uppermost intensity range of the image, restricted by its assumptions that shadows are cast on a flat

and that the image is background-dominant. To preserve thegnqg nontextured surface, objects are uniformly colored, and
image texture and edges, the image is partitioned INtO 3 single light source illuminates the scene.

blocks. The mean intensity of the pixels in each block is
computed and stored. They assumed that the median of the
block intensity means, which is used as a scaling reference,2-2 Intérframe or Reference Frame Approach
is sufficient to isolate the object region from the back- Essentially, the interframe approdttand reference frame
ground. All the blocks with mean intensity values below the approache$™° are intrinsically very similar. Both ap-
median are considered as shadow elements and scaled tproaches utilize multiple frames in an image sequence.
the median value. In theory, background shadows can beThey explicitly explore the change of the region properties
removed and the object regions are left untouched. Their under shadow as the criteria of the detection process. Their
airport aerial view experiment showed reasonably good re- major difference is that the interframe approach uses the
sults since the airplane occupies the uppermost intensityprevious frames directly, while the reference frame ap-
range of the image and is larger than the median of the proach uses the previous frames to generate a reference
respective mean image. It is, however, not indicative from frame for comparison. These approaches are suitable for
their experiment that their algorithm will work equally well ~ detecting cast shadows that are associated with moving ob-
in other practical scenes involving objects that possess in-jects captured by a static camera.
tensity content different from their assumptions. By using the interframe difference and explicitly detect-
Jiang and Wartipresented a shadow identification and ing the penumbra and umbra properties of shadow, Stauder
classification method for real images in a laboratory envi- et al!! proposed a detection method for ideal indoor cast
ronment. In their method, the shadow intensity and shadow shadow. Their algorithm works well under the assumptions
geometry are analyzed. The image is classified into object,that there is a plane background and the light source is of
self-shadow, and cast shadow regions based on a number ofionnegligible size and intensity. According to their simula-
shadow hypotheses. However, their method is governed bytion results on three test sequences, their algorithm is able
assumptions such as shadow must cast on a flat surface, antb detect single or multiple moving cast shadows in indoor
there must be only one light source in the scene. Although video sequences with spotlights and cast shadows on the
satisfactory results were achieved in their simple indoor background. If the shadows are weak, their algorithm may

Due to the importance of cast shadow detection, numerous
shadow detection methods have been proposed in the las
decad€~*® Basically, the methods can be classified into
three categories(1) the single-frame approach?) the
interframe- or reference-frame approach, &8dother ap-
proaches.

2.1 Single-Frame Approach

1426 Optical Engineering, Vol. 41 No. 6, June 2002
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fail as the assumption for penumbra and umbra propertiestational color model is employed to decompose the distor-

of shadow may not hold. Moreover, as interframe differ- tion measurement of the difference between the input

ence is used, shadows can be entirely detected only if theirimage and the background image into brightness distortion

background is revealed entirely. and chromaticity distortion. Based on their color model,
Kilger'? presented a shadow handler in a video-based their algorithm classifies pixels intfl) the original back-

traffic monitoring system. The object and its shadow are ground class(2) the shaded background or shadow class,

detected by comparing the current frame with the back- (3) the highlighted background class, at® the moving

ground image and then described by a bounding box. Fromforeground object class. The pixel classification procedure

the geometry of the scert@eading of the observed road is defined by the decision rules using normalized brightness

and other global dat@date and timg the searching criteria  distortion and normalized chromaticity distortion. They

and direction for cast shadows are determined by the ex-successfully applied the method to image sequences of a

pected shadow direction derived frompriori knowledge person moving in indoor and outdoor scenes.

about the scene. According to the expected position of the

shadow, the edge histogram of the detected region is com-

puted. The author argued that as shadow is relatively edge-

less in nature, the subtraction of the edge histogram from 2.3  Other Approaches

the corresponding one in the background image indicates

the presence of the vehicle. By detecting the first edge of

the vehicle along the searching direction, the vehicle is then

Ses;c:jibed dby a refin?o: bfc;ynding goxl.. Thr;e algé)'iithmsfwere Instead of separating the shadow from the object, Koller
ested under normai tratfic and daylight conaitions 1or @ o4 516 yefined an illumination model and shadow forma-

”U”.‘t.’ef of image sequences. G'V‘?n the _expected .Shadowﬁon model to handle the shadow in road traffic scene. A
position and overhead camera setting, a high detection rate

was reported. However, to guide the shadow search thiS_S|mple illumination model, which assumed parallel incom-

algorithm  requires environmental knowledge, which ing light, was used and the visible contour of the 3-D ve-

changes dynamically. As bounding box is used to describe hicle model projected onto the street plane was computed.

the vehicle region and the vehicle appears in various poses' 1S @Pproach is believed to be feasible only for limited

depending on the moving direction of the vehicle, a signifi- real outdoor. surveﬂlanpe pyrpqses,.becgusa pfiori pa-
cant portion of the shadow may still be present after the rameter setting forthg |Ilum|nat_|on q|reqtlon, the unrealistic
detection. assumptions of _the S|mpl|_f|ed illumination model, and the

Gamba et af® realized two different shadow detection Nighly complex interpretation. o
approaches: shadows associate with still objects in the 120 etal’ presented a shadow elimination method
scene, and shadows are more similar than the actual object®2S€d on a fuzzy neural network approach for an outdoor
between corresponding targets. By exploiting the hue, lu- mobile robot. A multiresolution approach is adopted to
minosity, and saturation components, an algorithm that ex- achieve the required accuracy, efficiency and speed of op-
tracts a shadow model from a monocular color scene was€ration. The parameters of the membership functions of the
presented. Their algorithm was tested on a number of im- fuzzy rules are optimized by a genetic algorithm. The in-
age sequences of a parking lot and reported low misclassi-Puts of the fuzzy neural network are the red, green, and
fied pixels for most cases. Their analysis works well only Plue component of the image pixels. The output is the re-
when there are enough shadows in the reference imagesult of shadow recognition. Without much details of the
Moreover, they have implicitly assumed that all the shad- shadow discrimination process, it is suspected that the
ows are cast on the same kind of surface, which is in fact neural-network-based approach would require a large num-
not true in most outdoor cases. ber of training samples captured under different lighting

Mikic et al.}* presented an algorithm that statistically conditions to achieve reasonable results. The authors re-
classifies pixels into the shadow, object, and background ported results by analyzing 100 images captured under dif-
classes. In their approach, the color response of the camerderent lighting conditions such as time of the day and year,
is statistically predetermined as a diagonal matrix. Based but there was a lack of analytical and objective measures.
on the givera priori probabilities of the pixel belonging to Sonoda and Ogalhpresented a technique of separating
different classes, the pixels are classified by maximizing the the moving object, standing in an erected posture, from its
a posteriori probability of the class membership. A spatial shadow. The authors assumed that the position of the light
smoothing filter is used to filter the noisy shadow detection source with reference to the camera is given beforehand.
results computed from the previous stage. Their algorithm Hence, the expected shadow direction is defined, from
was successfully tested on a traffic scene with long shad-which two “core lines” that pass around the center of the
ows. However, computation of the diagonal matrix is extracted region of the object and the shadow are obtained
highly dependent on the camera settings and may lead toautomatically. Based on these lines and the matching with
performance degradation if there are changes in scene conthe predefined template, a “separation point” is decided to
ditions. separate the object from its cast shadow. Their algorithm

Horprasert et at® presented an algorithm for detecting was successfully tested on an image sequence with three
moving objects from a static background scene that con- people walking across the scene. However, the applicability
tains shading and shadow. They developed a backgroundof this algorithm is strictly limited by the assumption that
subtraction algorithm that is able to cope with local illumi- the targeted object is in an elongated shape and an erected
nation changes and global illumination changes. A compu- posture.

Apart from the single-frame and interframe/reference-
frame approachs, there are the model-based appldaé,
neural network approact,and the core-line approach.

Optical Engineering, Vol. 41 No. 6, June 2002 1427



Fung et al.: Effective moving cast shadow . . .

(a) A Double-deck Bus (b) Static Background (c) Moving Foreground Mask

[ Static Background Region
[JMoving Foreground Region

Fig. 1 Double-deck bus example.

2.4  Summary ample. Figure (a) depicts a typical outdoor traffic scene

The single-frame approach utilizes only the information With @ double-deck bus under bright sunlight. A cast
provided in a single image. To detect cast shadow with this Shadow faglls on the road surface to the left of the bus. Lai
limited information, some strict assumptions must be made. @nd Yung® presented a stationary background estimation
On the other hand, the interframe/reference-frame approach@lgorithm for color image sequence. In the algorithm, the
utilizes multiple previous frames to provide information running mode and running average algorithms are em-
over the temporal domain. The properties of the region un- Ployed as the estimation core. To select between the run-
der shadow and not under shadow can be extracted. Therening mode and running average algorithm in each estima-
fore, in most practical cases, the interframe/reference-frametion iteration, a scoreboard is employed to keep track the
approach achieves higher accuracy and robustness compixel variations in the image sequence. The estimated back-
pared with the single-frame approach. Other approachesground is depicted as shown in Figbl Figure Xc) shows
provide some robust methods but are limited by their spe- the MFM, which is obtained by subtracting the background
cific applications. Overall, among all these approaches, theimage from the input image, followed by mathematical
reference-frame approach is the most promising. However, morphological closing to join the disjoint regions that be-
most of the current reference-frame approaches consideriong to the same object. This mask essentially defines the
only a specific aspect of the shadow, and do not fully utilize filter window for the subsequent process@sote that the

the spectrum of features that may be useful for the eventualMFM of the taxi at the upper left-hand corner is intention-
classification of object and shadow. Therefore, it is our in- ally ignored to keep our illustration simpjein Fig. 1(c),
tention to include those unique shadow features and inte-there are some holes inside the MFM which commonly
grate them to give a combined confidence score to eachoccur in background subtraction because of the vehicle
pixel in the region of interest. To develop and test the parts being similar to the corresponding background. The
method effectively, we must have an objective way to mea- problem associated with these holes is resolved in the later

sure the error rate of the classification, and a large imagestage by using convex hull to bound the object region.
data set to cover different outdoor environments.

Observation 1. The luminance values of the cast shadow
3 Methodology pixels are lower than those of the corresponding pixels in
. the background image
3.1 Observations Since cast shadow is the region with lower illumination,
As defined in Ref. 8, there are two parts in a shadow: self- the shadow region appears to be darker, as illustrated in
shadow and cast shadow. Self-shadow is the part of objectrig. 2. (All the figures in Fig. 2 are filtered by the MFM.

that is not illuminated by direct light, while cast shadow is Figure 2a) depicts the luminance of the double-deck bus
the region projected by the object in the direction of direct within the mask. Figure (®) also depicts the luminance of

light. In this paper, our objective is to detect the cast ) T .
shadow associated with a moving object. Although the for- the corresponding background within the mask is also de-

mation of cast shadow depends on various environmentPicted. Figure &) shows the subtraction between the two.

factors, we observed that there are four generic features ofTO represent negative value in FigcP, the gray level is

cast shadow that can be considered. shifted up by 128. Thus, for a pixel with gray level less
To illustrate our observations, we use Fig. 1 as an ex- than 128, the corresponding pixel in the input image is

(a) Luminance of Masked (b) Luminance of Masked (¢) Luminance Subtraction
Input Frame Background Frame between Input and
Background Frame

Fig. 2 Cast shadow luminance observation.
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(a) Cb of the Input Frame Cb;  (b) Cb of the Corresponding

(c) Cb difference |Cb, - Cbﬁ|
Background Frame Chg

(d) Cr of the Input Frame Cr;  (c¢) Cr of the Corresponding

Background Frame Cry

(1) Cr difference |Cr, —Cry|

(g) Chrominance difference MFM Filtered:
C=|Ch, —Chy|+|Cr, —Cry (a,b,d.e) W (c,f,g) M Static Background Region

Fig. 3 Cast shadow chrominance observation.

lower than the background image. We can observe that theing background. As observed in Fig. 3, there is only a slight
luminance of the input image is always lower than the change at the cast shadow region but a large change at the
background image in the cast shadow region. lower part of the bus, which is orange in color.

Observation 2. The chrominance values of the cast Observation 3. The difference in gradient density values
shadow pixels are identical or only slightly different from of the cast shadow pixels and the corresponding back-
those of the corresponding pixels in the background image ground pixels is relatively low. The difference in gradient
To illustrate this, the chrominance feature is depicted in density values between the vehicle pixels and the corre-
Fig. 3. In this paper, the color model YCbCr is used to sponding background pixels is relatively high
separate the luminance and chrominance components of the Let &(x,y) be the magnitude of the gradient response at
images. Other invariant color models, suchcas,cs, can pixel location(x,y) as given by
potentially be employed to separate the chrominance
component from the luminance component. Figurés 3 al\?
and 3b) show the Cb representation of the input and back- €(X,¥)= |gradl(x,y)|= 5) +
ground images. The Cb absolute difference between input
wherel (x,y) is the luminance value at pixel locatior, ),
andg(x,y) is the average oé(x,y) over a spatial window
area as given by

al

ay , (1

2} 1/2

and background images is depicted in Fi¢c)3Similarly,

the Cr representation of the input and background images
and the Cr absolute difference are depicted in Fi¢gd. &nd

3(f). The sum of the Cb and Cr differences is depicted in

Fig. 3(g). For a typical white light source or sunlight, a XtN YN
decrease in illumination for the shadow region will cause _

XY)= 5o e(k,l), 2
only a slight change in chrominance from the correspond- 9x.y) (2N+1) k:;—N I:;N (k) @
(a) Gradient Density of (b) Gradient Density of (c) Gradient Density

Masked Input Frame Masked Background Frame Dillerence

Fig. 4 Cast shadow gradient density observation.
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tionary background in an image sequence. It is mainly di-
vided into two parts: the SCS computation and moving cast
shadow detection.

Based on the observations of cast shadow as discussed
in the last section, we transform the input image, the back-
ground image, and the MFM into a SCS map in the SCS
computation, in which the input image is subtracted from
the background image in the luminance, chrominance, and
gradient density domains. By mapping through various
shadow score functions, these shadow scores in different
where (N+1) is the size of the window. domains for each pixel are combined and transformed into

Figure 4 illustrates the gradient density change at the an overall SCS, which indicates the likelihood of the pixel
cast shadow area. As shown in E@$) and (2), gradient belonging to the cast shadow region. Based on the SCS
density is defined as the magnitude of the gradient averagedmap, the object mask is determined in the moving cast
over its neighboring pixels. Figuresa} and 4b) depictthe  shadow detection. In this detection algorithm, we obtain the
gradient densities of the input image and the background edge pixels that belong to the vehicle through a threshold
image. The absolute difference between them is shown infiltering by their shadow confidence scores. The convex-
Fig. 4(c). As observed in Fig. @), there is no significant  hull of these vehicle edges is then determined and is used to
gradient density difference in the cast shadow region. How- define the object mask, whereas the remaining pixels in the
ever, in the vehicle region, the gradient density difference MFM are classified as the shadow region.
between the input and background images varies signifi-
cantly. Since the shadow is cast on the background region,
the original gradient property of the background is not af- 4 SCS Computation
fected too much by the shadow. However, the gradient dis-| ot the input image and the background image be de-
tribution of the vehicle is mostly different from the back- ¢ (iped respectively, as
ground. Therefore, most pixels in the vehicle region are ' '
likely to have large gradient density difference between the

(3 Static Background Region, [0 Object Region, B Cast Shadow Region)

Fig. 5 Vehicle convexity observation.

input and background images. I i(x,y)
. . . . i = b i ’ ’ i ’
Observation 4. The vehicle is approximately bounded by li(x.y) ehyiay).Crixy) r @
its convex object mask. The cast shadow is always an ex- 9ri(xy)
tension of this object mask
Figure 5 shows the three regions including the back- lgi(X,Y)

ground, object, and cast shadow of the input image. For the

bus shown in Fig. 5, the convex-hull can accurately define Bi(x.y)= Cbe,i(X.y).CTa,(xy) 1, @

the object region. Hence, the remaining foreground region 9e.i(X.y)

can be classified as the cast shadow region. Theoretically,

each vehicle can be approximately bounded by the convex-where x=0, ... W—=1, y=04q... H-1, i is the frame

hull of the vehicle edge pixels. The shadow is then defined number,W is the width of the imageHi is the height of the

as the remaining region within the foreground mask. image,l; ;(X,y) is the luminance at pixelx(y), cby ;(x,y)
andcr, ;(x,y) are the chrominance values at pix&| y),

3.2 Proposed Method andg, j(x,y) is the gradient density at pixgk, y) in the

Our proposed method, as shown in Fig. 6, aims to extractinput image. In addition, let the MFN#1;(x,y) be defined
the moving vehicles without the cast shadows from the sta- as

Input Frame

Shadow Moving Cast
Confidence Shadow
Score Algorithm Detection
Background Frame Shadow Confidence Object Mask

Score Map

Foreground Mask

Fig. 6 Proposed method.
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Furegrourd Mask Mx,y)

Input Frame 1(x.y) Luminance
: Shadow Score
Luminance Diference Lfx,y) Function Luminance Shadow Soore 5, (x,y)
Chrominance e
Sublraction Shadow Score Combination
Function Function
g ) Gradient Densit minanees Shisdow Seore 8., (x adow Lionhdence
- Chrominance Difterence C{x.y) e mdbm Smrey Chruminunce: Studuw Seore: S (x,y) Score Map S{xy)
Backg!mnd Frame Function
Bxy
Gradient Density Difference Gix.y) Gradient Density Shadow Score 8, (X.y)
Fig. 7 SCS computation.
1 1i(xy)=Bi(x,y)|>Tas negative luminance difference value means that the cast
M;(x,y)= (5) shadow criterion is satisfied and it is likely to be a cast

0, otherwise, shadow. On the other hand, if the luminance value of a

_ . . ixel in the input image is higher than that of the corre-
whereTg is the threshold used in background subtraction. Sponding pixeﬁ) in thegbackgr%und imadpositive lumi-

To indicate whether a pixel should be classified as cast yance difference valigit does not satisfy the shadow cri-
shadow, an SCS;(x,y) is defined. If the pixel is likely to  {5rion ands, ;(x,y) of the pixel tends to zero. Far;(x,y)

be part of a cast shadow, a high(x,y) will be given t©0  penyveen 0 and, , a linear mapping from 0 to 1 is chosen
that pixel. On the other hand, if the pixel is likely to be part ;5 provide a smooth transition.

of an object or background, a lo®(x,y) will be given.
The score is a probability value ranging from 0 to 1 inclu-
sive.

As shown in Fig. 7, the luminance, chrominance, and The chrominance scor€ ;(x,y) can be defined as fol-
gradient density values for each pixel are calculated from lows: let C;(x,y) be the chrominance difference between
the input and background images. To calculate the overall thei’th input image and thé’th background image at lo-
scoreS(x,y), the three mapping functions are defined: lu- cation(x, y) as given by
minance scorg S (x,y)] versus luminance difference,
chrominance scorgSc j(x,y)] versus chrominance differ- ~ Ci(X,y)=|cby j(x,y) —cbgi(x,y)|+cr i(X,y)
ence, and gradient density scdi®s; ;(x,y)] versus gradi-
ent density difference. Then, the combined &I x,y)]
is computed by combining these three individual scores. Sei(%,Y)

4.2 Chrominance Score Sc i(x,y)

—crgi(x,y)|, Y(x,y) whereM;(x,y)=1, ®

4.1 Luminance Score S, (X,Y) 1 Ci(x,y)<T¢;
] I ) =

The luminance scor§_;(x,y) can be defined as follows:  _) r1 ¢ (x \)1/(TeseT T <Ci(xV)<T
let L;i(x,y) be the luminance difference between fihth [Tez= QoY (TezTew) Tea<Cixy)<Tez
input image and thé'th background image at locatiox, 0, Ci(x,y)=Tca.

y) as given by ©

The mapping function of chrominance scdr8c i(X,y)]

Lixy) =1, ()~
(Y =1i6y) =l i(xy), against chrominance differende;(x,y)] is depicted in

Y(x,y) whereM;(x,y)=1 (6) Fig. 9, whereT.; and T, are predefined parameters to
il 1 i) il

1, Li(x,y)<0O N
SL,i(X'y): [TL_LI(le)]/TL ’ 0<LI(le)<TL (7) S[_’[(xly) Lugg;argce

0, Lioy)=Ty. —

The mapping function of luminance scofe& i(X,y)]
against luminance differendéd.;(x,y)] is depicted in Fig.

8, whereT, is a predefined parameter to accommodate the Lx.y) Luminance
acquisition noise in luminance domain. As discussed in ob- Difference
servation 1, the luminance values of the pixels in the input T, "

image is lower than that of the corresponding pixels in the

background image at the shadow. Therefore, a pixel with a Fig. 8 Function S, /(x,y) versus L,(x,y).
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s i Chrominance SG,,(x,y) 1 %::;?;t
ci%.Y) Score Score
1 , 1
] Gradient
Chrominance i
C(x.¥) Dpifference G(xy) Dgfzrr]:lr:yce
Tot Teo Tai To2
Fig. 9 Function S j(x,y) versus Ci(x,y). Fig. 10 Function Sg /(x,y) versus G/(x,y).

accommodate the tolerance to acquisition noise in the. . -
chrominance domain. As discussedqin observation 2 theJ.eC.t andSg ;(x,y) is set to 0. Smooth transition from 0 t_o_l
chrominance value of a pixel in the input image is approxi- 1? |rrlp2Ien]|_ent§d fr?r the.resr;[. of the range. For simplicity,
mately the same as that of the corresponding pixel in the 162~ 2% Te1 IS chosen in this paper.

background image at the cast shadow region. Thus, we

have observed that the change will occur only in the lumi- 4.4 Combined SCS Si(x,y)
nance dimension and there should be a very small changenier the three scores, (x,y), Sci(x,y), andSe (X,Y)

or no change in chrominance level. Therefore, @fx,y) are calculated in the three difference domains, the total
less thanTcy, Sci(x,y) is set to 1(high scorg since it Si(x,y) is computed by combining them:

satisfies the shadow criteri@mall changgin the chromi-

nance domain. Fo€(x,y) larger thanTcy, Sci(X,y) is Si(x%,Y) =3[SLi(%,Y),Sc.i(X,Y),Se.i(X,¥)]. (12)

set to 0 because of the large change in the chrominance

domain. Smooth transition from 0 to 1 is implemented for Since each domain is a necessary requirement for the pixel
the rest of the range of chrominance difference. For sim- to be classified as cast shadow, hence funcjids chosen

plicity, Tco=2XT¢; is chosen in this paper. to be a logical AND function. Mathematically, direct mul-
_ _ tiplication of S_;(x,y), Sc,i(x,y), and Sg;(x,y) can be
4.3 Gradient Density Score Sg {(X,y) used, such that,  Si(X,y)=S,i(X,¥) X Sc.i(X,y)

The gradient density scoi®; ;(x,y) can be defined as fol- X Sg,i(X,Y)-
lows: let G;(x,y) be the gradient density difference be-
tween thei’th input image and thé’'th background image 5 Moving Cast Shadow Detection

at location(x, y) as given by In the detection part, the cast shadow is separated from the
object based on the shadow confidence s&fer,y) and
Gi(x,y)=91i(X,y)~0g,i(XY), the object edge pixels of the foreground masked input im-
age (see Fig. 11 All the pixels with significant gradient
V(x,y) where M;(x,y)=1, (10 values are detected using the edge detector within the
MFM. These pixels are denoted BYx,y). For pixels with
Se,i(%.Y) high gradient values, a thresholdifig is applied to discard
those with high shadow confidence score levels. This test
1, Gi(x,y)<Te1 also eliminates noise and edge pixels that do not belong to
=1 [Te2=Gi(x,Y)/(Te2=Te1), Te1<Gi(X,y)<Teg2 the vehicle. If a high gradient pixel has high shadow con-
fidence score value, it will be discarded; otherwise, it will
0, Gi(x,y)=Tez. a1 be retained:

Gradient densitieg, ;(X,y) andgg i(X,y) are the averages Ei(X,y)= 0 (dlsca'rdeoi for S(xy)>=Ts

of the gradient magnitude over a spatial window area in the 1 (retained for S(x,y)<Ts.

input and background images. The mapping function of ] ] ) )

gradient density scorESg ;(x,y)] against gradient density As discussed in observation 4, the vehicle can be seg-
diferencel Gy(x.y)] is depicted in Fig. 10, wherBo and (R B B8 o o0 e els witin
Tgo are prede_flned parameters. As _defmed in observation 3’the foreground mask are then classified as cast shadow pix-
after subtraction of gradient density values of the corre- els

sponding pixels in the input and background images, the ~

gradient density values are mostly canceled out in the cast . .
shadow region. However, in the object region, there is sig- © Results and Discussions

nificant difference between the input and background im- In this section, 100 test samples are used to systematically
ages in gradient density. Therefore, a pixel with small gra- determine the parametets , Tcy, Tg1, andTg. The re-
dient density difference value is more likely to be part of sults of a test case are used to illustrate how the proposed
the shadow anég ;(X,y) is set to 1. For a pixel with high  method works step by step. Finally, the effect behavior of
gradient density difference, it is likely to be part of an ob- our method due to environment factors and vehicle factors

13
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Foreground Mask M(x,y)

Input Frame I(x.y)
- i

Edge Detection

l

Local
Thresholding

Convex-Hull  —

Object Edge E(x.y) Object Mask O(x,y)

Shadow Confidence
Score Map S(x.y)

Fig. 11 Moving cast shadow detection.

are detailed. The strengths and limitations of the proposed 1 if Ri(x,y)=0 and O;(x,y)=1
method are objectively analyzed based on these results. FPM(Xx,y)= a7

0 otherwise,

6.1 Evaluation Conditions riwl ysize-1 } /

. N,= FNM; (kI
To test the effectiveness and robustness of the proposecr ' kZO go (k)
method, some typical outdoor traffic image sequences on

different roads in Hong Kong were captured and tested. xsize-1 ysize-1

These image sequences were all captured by a Panasonic { 2 E Ri(m,n)}, (18
DV camera, and transferred to a PC by a Canopus DV-Rex m=0  n=0

through IEEE-1394. The image sequences were captured , _

under different lighting conditions, including sunny, cloudy, xsize-1 ysize-1

and different time of the day, with the camera position ei- FR=| > > FPM(k,) /

ther overhead or by the roadside. The camera was set to a k=0 1=0

good coverage of the road lengthwise. Among these image xsize-1 ysize-1

sequences, different vehicle samples were selected under E E R.(m n)} (19
two different vehicle factors. These factors include vehicle =, &

types, such as small and large vehicles, and vehicle colors.

For evaluation purposes, reference object masks of the veyyhere

hicles without their cast shadows are required for the cal- . .

culation of classification error. A reference object mask for Ri(x.y) = reference object mask of th&h frame
each vehicle sample is defined manually by combining the at pixel (x, y)

visual observation on the images and the knowledge about O;(x,y) = object mask of theé’th frame at pixel
the vehicle: (x,y)

FNM;(x,y) = i 1
1 if (x,y) is in vehicle region defined (x.y) = false negative map of théth frame at

pixel (x,y)
Ri(x,y)= in the reference object mask FPM(x,y) = false positive map of the'th frame at
0 otherwise, pixel (x, y)
(14) FN; = false negative error rate of th&h
o frame
() FR = false positive error rate of thieth frame

1 if (x,y) is in vehicle region in the
. . y comparing the object mask computed by our method
= object mask obtained by proposed method g the reference object mask, two error rates, false posi-
0 otherwise, tive (FR) and false negative (FINas defined in Eq9198)

(15) and(19), can be calculated. Note that the;Ffror rate is
defined as the ratio of the number of nonvehicle pixels that
are incorrectly classified as vehicle pixels to the total num-

(16) ber of vehicle pixels. The FENerror rate is defined as the
ratio of the number of vehicle pixels that are incorrectly

1 if R(x,y)=1 and O;(x,y)=0

FNM;(x,y)= 0 otherwise,
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classified as nonvehicle pixels to the total number of ve- tings. In our proposed method, there are four parameters:

hicle pixels. To objectively evaluate the error performance T, | the parameter for luminance scdr§_;(x,y)] func-
of the method, the total error rate is taken, which is the g, ’

mean of the FPand FN error rates of the 100 test cases.

6.2 Selection of T;, Tcy, Tgy, and Ts

Fung et al.: Effective moving cast shadow . . .
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(a) Effect of T, on Total Error Rate (T¢=30, Tg1=60, Ts=0.94)
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(b) Effect of T¢, on Total Error Rate (T, =30, T¢4=60, Ts=0.94)
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(c) Effect of Tg4 on Total Error Rate (T =30, T¢1=30, T31=0.94)
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(d) Effect of Ts on Total Error Rate (T =30, T¢,=30, T1=60)

Fig. 12 Impact of the performance by varying various parameters setting.
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; Tca, the parameter for chrominance scp& ;(x,y)]
function; T, , the parameter for gradient scqi®s i (X,y)]
function; andTg, the threshold to retain the object edge

In this section, we explicitly evaluate the error performance PiXels. As there is a lack of a theoretical approach to deter-
of the proposed method due to the different parameter set-mine the optimal parameter setting for this kind of problem,
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(b) Background Color Image by
kground Estimation

(c) MFM of the Bus

(d) Result of Luminance Score
SL.ix.y)

(e) Result of Chrominance
Score Sci(x.y)

(f) Result of Gradient Density
Score Sg,i{(x,y)

(g) Result of Shadow Score (h) Resuit of Object Edge (i) Decision of Shadow, Object
Six,y) and Background Regions

For (d) - (g).

@ Background O Low Score [l High Score
Region (unlikely to be (likely to be

shadow) shadow)

For (h)-(i),

[ Background [ Object Region + M Shadow Region
Region Edge pixels

(i) Reference Object Mask

Fig. 13 Results for a bus.

we chose to embark on an experimental approach. We haveshows the effect on the total error rate of varyifg, . The
performed a brute force search over the Cartesian combi-tgtal error rate hits the high of 39.50% #t,= 10, then

nations of parameter settings. The near optimal setting is gettjles down to approximately 15% fBg, beyond 30. The
determined as the setting that achieved the lowest error rat%igh error rate reported in the loWc, setting is mainly
C1

averaged over the test images. ; e ; .
To illustrate the trends of the error performance due to cau_sed by the n_1|sclas§|f|cat|on Of. shadow region as ObJe.Ct
region. As mentioned in observation 2, there is a chromi-

different parameter settings, a subset of test results is : ) .
shown in Fig. 12. The results are illustrated in four graphs. Nance shift at the cast shadow region. A largen will
For each graph, one of the parameters is varied while the€nable our method to accept higher tolerance in the chromi-
others are fixed. Figure 1@ shows the effect on the total Nnance shift. Figure 12) shows the effect on the total error
error rate of varyingT, . A total error rate ranging from  rate of varyingTg; is depicted. Similar to varyingcs,
14.37 to 15.22% was obtained far, =10 to 60, which ~ varying T¢; also starts with high error rate of 44.12% at
indicates that the selection @f setting will unlikely affect ~ Tg1=10 and ends at approximately 15%Ta§; =50 to 90.

the error performance much. However, given the minimum There is a minimum al g, =60, but the difference is very

at T, =30, this seems to offer a good choice. Figurébl2  small. It is also caused by incorrectly classifying shadow

(a) Input Image (b) Foreground Mask (c) Shadow Score

(d) Object Mask with
Si(xy) shadow removal

Fig. 14 Results for a truck image taken on a cloudy day.
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(b) Foreground Mask (c) Shadow Score

(d) Object Mask with
Sixy) shadow removal

(a) Input Image

Fig. 15 Results for a truck image taken on a sunny day.

region as object region. The high error rate reported for a shadow are shown in gray, white, and black, respectively,
low Tg; setting is because the pixels on the shadow border after performing the convex-hull on the object edge pixels.
are misclassified as vehicle edge pixels under sunny condi-It is important to use the convex-hull to bound the vehicle
tion. Figure 12d) shows the effect on the total error rate of to recover the inner misclassified region. Comparing this
varying Ts. The small error rate range of 14.37 to 19.40% With the reference object mask, as depicted in Figj)13
indicates a mild effect off on the error performance. A the false p_ositive error rate is 2.18% and the false negative
minimum is detected aTs=0.94, giving approximately ~ €ITor rate is 1.05%.
14% error.

By setting T, =30, Tc;=30, Tg;=60, andTs=0.94, 6.4 Effect of Environment Factors
the mean of total error rate averaged over 100 samples is
13.95% and the standard deviation is 7.65%. The best error6.4.1 Lighting conditions

rate is 3.23% and the worst is 33.46%. It is important that the method works well under different
6.3 Test Case Iighti_ng <_:ondition_s_. We:\ tested our method under two differ-
ent lighting conditions: cloudy and sunny. On a cloudy day,
Figure 13 shows one of the test cases. The settilgs as shown in Fig. 14), the cast shadow is poorly defined
=30, T¢;=30, Tg;=60, andTs=0.94 are used. The out- since it is mainly caused by ambient light. However, the
put images at different stages of the proposed method arecomputed foreground mask depicted in Fig(d4clearly

described step by step. includes a large region as shadow. The SCS is shown in
An image of a white and orange double-deck bus, which Fig. 14(c). In Fig. 14d), by the proposed method, the ob-
was captured on a sunny day, is shown in Figal3n Fig. ject mask is successfully segmented by removing the

13(b), the background color image was generated by the shadow region. However, the right-hand mirror and the
background estimation method of Ref. 19. After subtracting lower part of the tires are misclassified as shadow regions.
the background frame from the input frame, the MFM after In Fig. 15, a similar truck image was taken on a sunny day.
the morphological closing transform is shown in Fig(d3 The shadow is clearly defined and exhibits a significant
where the white region is the foreground and the gray re- change in luminance. Similarly, as shown in Fig(d)5the

gion is the background region. In Figs. (88 13(e), and lower part of the tires is misclassified as shadow region.
13(f), the foreground masked results foB_;(x,y), Moreover, we noted that there is a shadow region correctly
Sci(x.y), and Sg i(x.y) are shown, respectively. In Fig. detected next to the right front of the truck. This shadow is
13(d), some parts of the bus, such as the windows and thecast on the concrete structure of the road but not on the
orange part, are recognized as shadow since they have 0ad surface. Potentially, our proposed method is capable of
luminance level similar to the background image. There- detecting multiple cast shadows.

fore, luminance can provide only a limited indication of the I our test cases, there are vehicle samples taken under
SCS. In Fig. 189), based on the chrominance value, the different degree of cloudy condition and others taken under
orange part of the bus is clearly classified as nonshadowdifferent degree of sunny condition. As shown in Table 1,
because its chrominance value is significantly different the error rates are both approximately equal to 14% under
from the background. In Fig. 18, the pixels with large

gradient density difference are clearly marked as non-

shadow. They include the blocked road lane maggion Table 1 Effect on the error performance under different lighting con-

A) and the tree branchésegionB). By combining the re-  ditions.
sults forS, i(x,y), Sci(X,y), andSg i(X,Y), the total SCS

L PG ot Cloudy Sunny
Si(x,y) is shown in Fig. 18), in which only the cast
shadow region has a hig§(x,y) value (shown in black Vehicle samples tested 20 79
while the vehicle region is surrounded by I&\(x,y) val- Total error rate
ues. However, the windscreen and the windows were incor-  Minimum 5.58% 3.23%
rectly interpreted as shadow since they exhibit shadow-like  maximum 33.25% 33.46%
characteristics. In Fig. 1B), the edge pixels that have Average 14.01% 13.93%
shadow scores lower than threshdlg are retained as ob- Standard deviation 7.34% 7.77%

ject edge pixel. In Fig. 18), the background, object, and
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ritarl

(b) Foreground Mask (c) Shadow Score (d) Object Mask with
Si(xy) shadow removal

(a) Input Image

Fig. 16 Results for a van captured by a roadside camera.

a2l 0

(a) Input Image (b) Foreground Mask (c) Shadow Score (d) Object Mask with
Si(xy) shadow removal

Fig. 17 Results for a van captured by an overhead camera.

different lighting conditions. From the results, it seems that 6.5 Effect of Vehicle Factors
our method copes with the cloudy and sunny lighting con-

ditions reasonably well. 6.5.1 Vehicle types

There are many different vehicles on the road. Very
L broadly, a vehicle can be roughly classified as a motorbike,
6.4.2 Effect of viewing angles a small vehicle(sedan, hatch, station-wagon, texand a
Traffic surveillance cameras are mostly installed by the large vehiclgivan, truck, minibus, bysin Figs. 18-20, the
roadside or overhead. In Figs. 16 and 17, the results for aresults of applying our method to a motorbike, a sedan, and
van captured by a roadside camera and an overhead camera bus are depicted, respectively.
are shown. In both cases, most of the van is successfully In Fig. 18d), the computed object mask is under seg-
segmented with its shadow removed. In Fig(dipa small mented since the motorbike does not have a cuboid-like
part of the dark gray bumper is misclassified as shadow vehicle body. In Fig. 1@), since our proposed method uses
region since it exhibits shadow characteristics. In Fig. the convex-hull to define the region border, small vehicles,
17(a), there is a white road lane mark partially covered by such as a sedan, are not convex objects. Besides, the ve-
the cast shadow of the van. As shown in Fig(d)/ this hicle side mirror further increases the false positive error.
lane mark does not affect our method and is correctly clas- As shown in Fig. 20d), our method performs better on
sified as shadow region. As shown in Table 2, under differ- large vehicles since they are mostly cuboid and can be de-
ent viewing angle, the total error rates are approximately scribed by a convex-hull. In Fig. 26), there are holes in
equal to 14%. From the results, we find that the error per- the shadow region since the input image is very similar to
formance of our method is not sensitive to the viewing the background image at these holes. Since a vehicle with-
angle. out a cast shadow is the objective of our method, there is no
impact of having holes in the shadow region.

Table 2 Effect on the performance under different viewing angles. Table 3 Effect on the performance for different vehicle class.
Roadside Overhead Motorbike Small Vehicle Large Vehicle

Vehicle samples tested 79 20 Vehicle samples tested 7 45 a7

Total error rate Total error rate
Minimum 3.23% 5.55% Minimum 15.22% 5.58% 3.23%
Maximum 33.46% 28.31% Maximum 30.42% 33.46% 33.25%
Average 14.06% 13.49% Average 22.80% 15.07% 11.55%
Standard deviation 7.90% 6.70% Standard deviation 5.84% 7.43% 6.94%
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(a) Input Image (b) Foreground Mask (c) Shadow Score (d) Object Mask with

Si(xy) shadow removal

Fig. 18 Results for a motorbike.

(a) Input Image (b) Foreground Mask

(c) Shadow Score (d) Object Mask with
Si(xy) shadow removal

Fig. 19 Results for a sedan (small vehicle).

(@) Input Image (b) Foreground Mask (c) Shadow Score

Sixy)

Fig. 20 Results for a bus (large vehicle).

(d) Object Mask with
shadow removal

(b) Foreground Mask (c) Shadow Score

(d) Object Mask with
Si(xy) shadow removal

(a) Input Image

Fig. 21 Results for a gray van (similar to road surface color).

(a) Input Image (b) Foreground Mask (c) Shadow Score

Sixy)

Fig. 22 Results for a white/blue van (not similar to road surface color).

(d) Object Mask with
shadow removal
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Table 4 Effect on the performance for different vehicle color. References
Similar Nonsimilar
Vehicle samples tested 8 91
Total error rate 1. N. H. C. Yung and A. H. S. Lai, “A system architecture for visual
Minimum 9.68% 3.23% traffic surveillance,” inProc. 5th World Congr. on Intelligent Trans-
. port SystemslITS Congress Associatiof1998.
Maximum 33.46% 33.25% 2. N. Hoose,Computer Image Processing in Traffic EngineerifRe-
Average 18.00% 13.59% search Studies Press, Londd®91).
Standard deviation 8.03% 7.55% 3. A Ma_karov, “(_:ompa_rison of background extraction bas'ed intrusion
detection algorithm,” inProc. Int. Conf. on Image Processingol. 1,
pp. 521-5241996.
4. A. Neri, S. Colonnese, and G. Russo, “Video sequence segmentation
for object-based coders using higher order statistics,Pinc. Int.
. . . . Symp. on Circuits and Systen¥®l. 2, pp. 1245-12481997.
Our argument is further supported in Table 3, in which 5. N.H. C. Yung and A. H. S. Lai, “Detection of vehicle occlusion using
our method achieves the lowest error rate for a large ve- a generglized deformable model,” Proc. IE7E(E Inaf- Symp. on Cir-
i i i cuits and System®roc. |IEEE4, pp. 154-1571998.
hicle and the hlgheSt error rate for a motorbike. 6. J. Malik, S. Russel, J. Weber, T. Huang, and D. Koller, “A machine
vision based surveillance system for California roads,” PATH Project
. MOU-83 Final Report, University of Californigl994.
6.5.2 Vehicle colors 7. J. M. Scanlan, D. M. Chabries, and R. W. Christiansen, “A shadow
e ; ; . cimi detection and removal algorithm for 2-D images,”Rmnoc. Int. Conf.
:Ne rogghlyf divide lvehlcge Cotlors !:’ltottWO c(ljassefs. Slmlllar on Acoustics, Speech, and Signal Processapy 2057-20601990.
Y rc_)a surrace color and not simifar to road surtace color. g ¢ Jiang, and M. O. Ward, “Shadow identification,” Proc. |IEEE
In Figs. 21 and 22, the results for a gray van and a colored  conf. on Computer Vision and Pattern Recognitiqp. 606—612
van are shown. A large part of the gray van is not correctly (1992.
9. G. Funka-Lea and R. Bajcsy, “Combining color and geometry for the

classified since this part is not successfully extracted by
background subtraction. Our observation is further con-
firmed in Table 4. Those vehicles that have colors similar to 19,
the road surface color will likely be undersegmented.

7 Conclusions 11.

We presented a cast shadow detection method for estimat-

ing a vehicle outline. It can effectively separate cast 12

shadow from the vehicle under different environment and

vehicle factors. In our method, an SCS is computed in three 13.

different domains: luminance, chrominance, and gradient
density. Based on the shadow confidence score and the ob-
ject edge pixels, the cast shadow is separated from the ve-
hicle using convex-hull within the foreground mask.

We tested our proposed method on 100 different vehicle 15.

samples captured in typical outdoor traffic scenes. From
our results and analysis of various vehicle samples, the pro-

posed method can successfully separate the cast shadow

and a moving vehicle. With settings @f =30, T¢;=30,
Ts1=60, andT5=0.94, the mean of error rate is 13.95%
and the standard deviation is 7.65%. The lowest error rate
is around 3% for large vehicles. By observing the effect of

the error performance of our method under varying envi- 18.

ronment and vehicle factors, including different lighting
conditions, camera view angles, vehicle types, and vehicle

colors, we found that our proposed method is reasonably1g.

robust for various outdoor daylight environments and ve-
hicles.

For future research, we will further investigate the use of
a more efficient search algorithm to select an appropriate
parameter setting for a typical traffic scene. In addition, to _
further improve the robustness of our proposed method, we
intend to work on a continuous sequence of images of the
same vehicle. Since the vehicle is a rigid body, the ex-
tracted object masks should be consistent over the image
sequence. By analyzing the change of the object mask over
an image sequence, we can further remove undesired
shadow regions and recover the missing vehicle regions.
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