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Effective moving cast shadow detection for
monocular color traffic image sequences
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Abstract. For an accurate scene analysis using monocular color traffic
image sequences, a robust segmentation of moving vehicles from the
stationary background is generally required. However, the presence of
moving cast shadow may lead to an inaccurate vehicle segmentation,
and as a result, may lead to further erroneous scene analysis. We pro-
pose an effective method for the detection of moving cast shadow. By
observing the characteristics of cast shadow in the luminance, chromi-
nance, gradient density, and geometry domains, a combined probability
map, called a shadow confidence score (SCS), is obtained. From the
edge map of the input image, each edge pixel is examined to determine
whether it belongs to the vehicle region based on its neighboring SCSs.
The cast shadow is identified as those regions with high SCSs, which are
outside the convex hull of the selected vehicle edge pixels. The pro-
posed method is tested on 100 vehicle images taken under different
lighting conditions (sunny and cloudy), viewing angles (roadside and
overhead), vehicle sizes (small, medium, and large), and colors (similar
to the road and not). The results indicate that an average error rate of
around 14% is obtained while the lowest error rate is around 3% for large
vehicles. © 2002 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1473638]

Subject terms: shadow detection; image sequence analysis; visual traffic surveil-
lance; image segmentation; intelligent transportation systems.
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1 Introduction

Visual traffic surveillance~VTS! is one of the major com-
ponents within the research of intelligent transportat
systems1 ~ITS!. Its main purpose is to remotely acqui
traffic image sequences from roadside surveillance cam
and interpret them into traffic parameters and vehicle
havior. To achieve these requirements, numerous im
processing algorithms, including preprocessing and p
processing algorithms, have been developed.2 Among them,
segmentation algorithms that extract the objects of inte
~such as moving vehicles! from the image background in a
image sequence have recently been actively studied,3,4 and
background subtraction is a common approach.5,6 However,
most of these approaches suffer a major drawback. In
door daylight scenes, shadows cast by moving vehicles
often detected as part of the objects since shadows mov
accordance with the movement of the objects. When
detected vehicles contain shadows, the calculated loca
dimension, speed, and number often include large err
For instance, in a traffic scene with long shadows, veh
location may be incorrectly estimated on the shadow reg
rather than on the vehicle body by the center-of-grav
method. This also creates a multitude of problems ass
ated with occlusion. Therefore, the accuracy and robustn
of the algorithm may be seriously affected if the ca
shadow is not detected and removed. Although numer
shadow detection methods have been proposed,7–18 they all
suffer from a number of limitations that make them ine
Opt. Eng. 41(6) 1425–1440 (June 2002) 0091-3286/2002/$15.00
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fective in practical outdoor environments. For examp
some of them are limited to indoor environments only, a
for those that can be used outdoors, environmental in
mation is usually required. Thus, we are motivated to
solve this problem of separating cast shadows from
moving vehicles in a practical outdoor environment.

In this paper, we propose a method that can effectiv
detect the cast shadow of a moving vehicle from a mono
lar color traffic image sequence. We assume that the m
of the moving vehicle~the region both covering the vehicl
and the cast shadow! and an estimated static backgroun
reference image are both available together with the in
image sequence. This assumption is considered reason
as many background estimation methods have b
reported5,6 and can be used to determine the motion cont
of the image, and the moving foreground mask~MFM! can
be directly computed from the reference background a
the input image. Given the MFM, we obtain the shado
confidence score~SCS!, which indicates the likelihood of
shadow, based on the observations of the cast shadow
acteristics. The edge pixels of the input image within t
MFM are then computed and classified into object-ed
pixels and non-object-edge pixels using the neighbor
SCSs, where the object edge pixels are bounded by a
vex hull. This convex hull denotes the vehicle region, wh
the remaining pixels of the MFM denote the cast shad
region. To evaluate the proposed method, we analyzed
selection of the parameters used to control the score fu
tions, as well as the object edges classification. The p
1425© 2002 Society of Photo-Optical Instrumentation Engineers
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Fung et al.: Effective moving cast shadow . . .
posed method was tested on about 100 images taken u
different lighting conditions~sunny and cloudy!, viewing
angles~roadside and overhead!, vehicle sizes~small, me-
dium, and large! and colors~similar to the road and not!.
The results indicate that an average error rate of aro
14% is obtained while the lowest error rate is around
for large vehicles.

The paper is organized as follows. Section 2 give
survey of various shadow detection approaches develo
The strengths and limitations of these approaches are
sidered. Section 3 presents the basic concept and met
ology of the proposed method. Section 4 defines the c
putation of the SCS. Section 5 discusses the final step
moving cast shadow detection. Section 6 outlines, ev
ates, and analyzes a series of tests on typical outdoor tr
scenes. Finally, the paper is concluded in Sec. 7.

2 Related Works

Due to the importance of cast shadow detection, numer
shadow detection methods have been proposed in the
decade.7–18 Basically, the methods can be classified in
three categories:~1! the single-frame approach,~2! the
interframe- or reference-frame approach, and~3! other ap-
proaches.

2.1 Single-Frame Approach

Traditionally, cast shadow detection algorithms have b
mostly developed based on the single-frame approach7–10

As there are limited cast shadow characteristics that ca
extracted from a single input frame, authors tend to m
stricter assumptions as the basis for the algorithm deve
ment.

For instance, Scanlan et al.7 presented a shadow remov
algorithm that employs a simple histogram modificati
function on the image intensity. They assumed that obje
occupy only the uppermost intensity range of the ima
and that the image is background-dominant. To preserve
image texture and edges, the image is partitioned
blocks. The mean intensity of the pixels in each block
computed and stored. They assumed that the median o
block intensity means, which is used as a scaling refere
is sufficient to isolate the object region from the bac
ground. All the blocks with mean intensity values below t
median are considered as shadow elements and scal
the median value. In theory, background shadows can
removed and the object regions are left untouched. T
airport aerial view experiment showed reasonably good
sults since the airplane occupies the uppermost inten
range of the image and is larger than the median of
respective mean image. It is, however, not indicative fr
their experiment that their algorithm will work equally we
in other practical scenes involving objects that possess
tensity content different from their assumptions.

Jiang and Ward8 presented a shadow identification a
classification method for real images in a laboratory en
ronment. In their method, the shadow intensity and shad
geometry are analyzed. The image is classified into obj
self-shadow, and cast shadow regions based on a numb
shadow hypotheses. However, their method is governed
assumptions such as shadow must cast on a flat surface
there must be only one light source in the scene. Althou
satisfactory results were achieved in their simple ind
1426 Optical Engineering, Vol. 41 No. 6, June 2002
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images with a single-colored flat surface background an
single light source, these assumptions would likely rest
the method from being applicable in outdoor environme
where complex lighting and unstructured background s
faces are both common.

Funka-Lea and Bajcsy9 presented an active shadow re
ognition method by combining color and geometric prop
ties of the image. They suggested a number of cues
together point toward the identification of a shadow. One
the cues is that the intensity, hue, and saturation chan
due to shadows tend to be predicable. The image is s
mented by a color image segmentation method that rec
ers a single material surface as a single image region
gardless of whether the surface is partially in shadow. T
penumbra and umbra of shadows are then recovered b
on an illumination model called the linear color cluster a
sumption for penumbrae~LCCAP!. To recover the geomet
ric properties of the scene, such as the location of the li
sources, an extendable probe is also used to actively ob
shadows in the scene. Both outdoor and indoor scenes w
tested and the shadows were reasonably detected. How
due to the use of the linear color cluster assumption, th
method is limited to relatively simple scenes. Moreover,
umbra and penumbra properties of shadow can hardly
maintained in complex outdoor scene.

Salvador et al.10 presented a method that is based on
use of invariant color models to identify and classify sha
ows in color images. The candidate shadow regions are
extracted by searching the edge map in the dark region
the image. After color conversion to an invariant col
model, the candidate shadow pixels are classified as s
shadow points or as cast shadow points based on the
tected color edge of the image. The method was succ
fully applied to a number of indoor scenes with one or tw
simple objects and one light source. Similar to other sing
frame approach methods, the application of their metho
restricted by its assumptions that shadows are cast on a
and nontextured surface, objects are uniformly colored,
a single light source illuminates the scene.

2.2 Interframe or Reference Frame Approach

Essentially, the interframe approach11 and reference frame
approaches12–15 are intrinsically very similar. Both ap-
proaches utilize multiple frames in an image sequen
They explicitly explore the change of the region propert
under shadow as the criteria of the detection process. T
major difference is that the interframe approach uses
previous frames directly, while the reference frame a
proach uses the previous frames to generate a refer
frame for comparison. These approaches are suitable
detecting cast shadows that are associated with moving
jects captured by a static camera.

By using the interframe difference and explicitly detec
ing the penumbra and umbra properties of shadow, Stau
et al.11 proposed a detection method for ideal indoor c
shadow. Their algorithm works well under the assumptio
that there is a plane background and the light source i
nonnegligible size and intensity. According to their simu
tion results on three test sequences, their algorithm is a
to detect single or multiple moving cast shadows in indo
video sequences with spotlights and cast shadows on
background. If the shadows are weak, their algorithm m
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Fung et al.: Effective moving cast shadow . . .
fail as the assumption for penumbra and umbra proper
of shadow may not hold. Moreover, as interframe diffe
ence is used, shadows can be entirely detected only if t
background is revealed entirely.

Kilger12 presented a shadow handler in a video-ba
traffic monitoring system. The object and its shadow
detected by comparing the current frame with the ba
ground image and then described by a bounding box. F
the geometry of the scene~heading of the observed road!
and other global data~date and time!, the searching criteria
and direction for cast shadows are determined by the
pected shadow direction derived froma priori knowledge
about the scene. According to the expected position of
shadow, the edge histogram of the detected region is c
puted. The author argued that as shadow is relatively ed
less in nature, the subtraction of the edge histogram fr
the corresponding one in the background image indica
the presence of the vehicle. By detecting the first edge
the vehicle along the searching direction, the vehicle is t
described by a refined bounding box. The algorithms w
tested under normal traffic and daylight conditions for
number of image sequences. Given the expected sha
position and overhead camera setting, a high detection
was reported. However, to guide the shadow search
algorithm requires environmental knowledge, whi
changes dynamically. As bounding box is used to desc
the vehicle region and the vehicle appears in various po
depending on the moving direction of the vehicle, a sign
cant portion of the shadow may still be present after
detection.

Gamba et al.13 realized two different shadow detectio
approaches: shadows associate with still objects in
scene, and shadows are more similar than the actual ob
between corresponding targets. By exploiting the hue,
minosity, and saturation components, an algorithm that
tracts a shadow model from a monocular color scene
presented. Their algorithm was tested on a number of
age sequences of a parking lot and reported low miscla
fied pixels for most cases. Their analysis works well on
when there are enough shadows in the reference im
Moreover, they have implicitly assumed that all the sha
ows are cast on the same kind of surface, which is in f
not true in most outdoor cases.

Mikic et al.14 presented an algorithm that statistica
classifies pixels into the shadow, object, and backgro
classes. In their approach, the color response of the cam
is statistically predetermined as a diagonal matrix. Ba
on the givena priori probabilities of the pixel belonging to
different classes, the pixels are classified by maximizing
a posterioriprobability of the class membership. A spati
smoothing filter is used to filter the noisy shadow detect
results computed from the previous stage. Their algorit
was successfully tested on a traffic scene with long sh
ows. However, computation of the diagonal matrix
highly dependent on the camera settings and may lea
performance degradation if there are changes in scene
ditions.

Horprasert et al.15 presented an algorithm for detectin
moving objects from a static background scene that c
tains shading and shadow. They developed a backgro
subtraction algorithm that is able to cope with local illum
nation changes and global illumination changes. A com
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tational color model is employed to decompose the dis
tion measurement of the difference between the in
image and the background image into brightness distor
and chromaticity distortion. Based on their color mod
their algorithm classifies pixels into~1! the original back-
ground class,~2! the shaded background or shadow cla
~3! the highlighted background class, and~4! the moving
foreground object class. The pixel classification proced
is defined by the decision rules using normalized brightn
distortion and normalized chromaticity distortion. The
successfully applied the method to image sequences
person moving in indoor and outdoor scenes.

2.3 Other Approaches

Apart from the single-frame and interframe/referenc
frame approachs, there are the model-based approach,16 the
neural network approach,17 and the core-line approach.18

Instead of separating the shadow from the object, Ko
et al.16 defined an illumination model and shadow form
tion model to handle the shadow in road traffic scene
simple illumination model, which assumed parallel incom
ing light, was used and the visible contour of the 3-D v
hicle model projected onto the street plane was compu
This approach is believed to be feasible only for limit
real outdoor surveillance purposes, because ofa priori pa-
rameter setting for the illumination direction, the unrealis
assumptions of the simplified illumination model, and t
highly complex interpretation.

Tao et al.17 presented a shadow elimination meth
based on a fuzzy neural network approach for an outd
mobile robot. A multiresolution approach is adopted
achieve the required accuracy, efficiency and speed of
eration. The parameters of the membership functions of
fuzzy rules are optimized by a genetic algorithm. The
puts of the fuzzy neural network are the red, green, a
blue component of the image pixels. The output is the
sult of shadow recognition. Without much details of th
shadow discrimination process, it is suspected that
neural-network-based approach would require a large n
ber of training samples captured under different lighti
conditions to achieve reasonable results. The authors
ported results by analyzing 100 images captured under
ferent lighting conditions such as time of the day and ye
but there was a lack of analytical and objective measur

Sonoda and Ogata18 presented a technique of separati
the moving object, standing in an erected posture, from
shadow. The authors assumed that the position of the l
source with reference to the camera is given beforeha
Hence, the expected shadow direction is defined, fr
which two ‘‘core lines’’ that pass around the center of t
extracted region of the object and the shadow are obta
automatically. Based on these lines and the matching w
the predefined template, a ‘‘separation point’’ is decided
separate the object from its cast shadow. Their algorit
was successfully tested on an image sequence with t
people walking across the scene. However, the applicab
of this algorithm is strictly limited by the assumption th
the targeted object is in an elongated shape and an ere
posture.
1427Optical Engineering, Vol. 41 No. 6, June 2002
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Fig. 1 Double-deck bus example.
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2.4 Summary

The single-frame approach utilizes only the informati
provided in a single image. To detect cast shadow with
limited information, some strict assumptions must be ma
On the other hand, the interframe/reference-frame appro
utilizes multiple previous frames to provide informatio
over the temporal domain. The properties of the region
der shadow and not under shadow can be extracted. Th
fore, in most practical cases, the interframe/reference-fra
approach achieves higher accuracy and robustness
pared with the single-frame approach. Other approac
provide some robust methods but are limited by their s
cific applications. Overall, among all these approaches,
reference-frame approach is the most promising. Howe
most of the current reference-frame approaches cons
only a specific aspect of the shadow, and do not fully util
the spectrum of features that may be useful for the even
classification of object and shadow. Therefore, it is our
tention to include those unique shadow features and i
grate them to give a combined confidence score to e
pixel in the region of interest. To develop and test t
method effectively, we must have an objective way to m
sure the error rate of the classification, and a large im
data set to cover different outdoor environments.

3 Methodology

3.1 Observations

As defined in Ref. 8, there are two parts in a shadow: s
shadow and cast shadow. Self-shadow is the part of ob
that is not illuminated by direct light, while cast shadow
the region projected by the object in the direction of dire
light. In this paper, our objective is to detect the ca
shadow associated with a moving object. Although the f
mation of cast shadow depends on various environm
factors, we observed that there are four generic feature
cast shadow that can be considered.

To illustrate our observations, we use Fig. 1 as an
neering, Vol. 41 No. 6, June 2002
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ample. Figure 1~a! depicts a typical outdoor traffic scen
with a double-deck bus under bright sunlight. A ca
shadow falls on the road surface to the left of the bus.
and Yung19 presented a stationary background estimat
algorithm for color image sequence. In the algorithm, t
running mode and running average algorithms are e
ployed as the estimation core. To select between the
ning mode and running average algorithm in each estim
tion iteration, a scoreboard is employed to keep track
pixel variations in the image sequence. The estimated ba
ground is depicted as shown in Fig. 1~b!. Figure 1~c! shows
the MFM, which is obtained by subtracting the backgrou
image from the input image, followed by mathematic
morphological closing to join the disjoint regions that b
long to the same object. This mask essentially defines
filter window for the subsequent processes.~Note that the
MFM of the taxi at the upper left-hand corner is intentio
ally ignored to keep our illustration simple.! In Fig. 1~c!,
there are some holes inside the MFM which commo
occur in background subtraction because of the veh
parts being similar to the corresponding background. T
problem associated with these holes is resolved in the l
stage by using convex hull to bound the object region.

Observation 1. The luminance values of the cast shado
pixels are lower than those of the corresponding pixels
the background image.

Since cast shadow is the region with lower illuminatio
the shadow region appears to be darker, as illustrate
Fig. 2. ~All the figures in Fig. 2 are filtered by the MFM.!
Figure 2~a! depicts the luminance of the double-deck b
within the mask. Figure 2~b! also depicts the luminance o
the corresponding background within the mask is also
picted. Figure 2~c! shows the subtraction between the tw
To represent negative value in Fig. 2~c!, the gray level is
shifted up by 128. Thus, for a pixel with gray level le
than 128, the corresponding pixel in the input image
Fig. 2 Cast shadow luminance observation.
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Fig. 3 Cast shadow chrominance observation.
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lower than the background image. We can observe that
luminance of the input image is always lower than t
background image in the cast shadow region.

Observation 2. The chrominance values of the ca
shadow pixels are identical or only slightly different fro
those of the corresponding pixels in the background ima.

To illustrate this, the chrominance feature is depicted
Fig. 3. In this paper, the color model YCbCr is used
separate the luminance and chrominance components o
images. Other invariant color models, such asc1c2c3 , can
potentially be employed10 to separate the chrominanc
component from the luminance component. Figures 3~a!
and 3~b! show the Cb representation of the input and ba
ground images. The Cb absolute difference between in
and background images is depicted in Fig. 3~c!. Similarly,
the Cr representation of the input and background ima
and the Cr absolute difference are depicted in Figs. 3~d! and
3~f!. The sum of the Cb and Cr differences is depicted
Fig. 3~g!. For a typical white light source or sunlight,
decrease in illumination for the shadow region will cau
only a slight change in chrominance from the correspo
e

t

ing background. As observed in Fig. 3, there is only a slig
change at the cast shadow region but a large change a
lower part of the bus, which is orange in color.

Observation 3. The difference in gradient density value
of the cast shadow pixels and the corresponding ba
ground pixels is relatively low. The difference in gradie
density values between the vehicle pixels and the co
sponding background pixels is relatively high.

Let e(x,y) be the magnitude of the gradient response
pixel location~x,y! as given by

e~x,y!5ugrad l ~x,y!u5F S ] l

]xD 2

1S ] l

]yD 2G1/2

, ~1!

wherel (x,y) is the luminance value at pixel location (x,y),
andg(x,y) is the average ofe(x,y) over a spatial window
area as given by

g~x,y!5
1

~2N11!2 (
k5x2N

x1N

(
l 5y2N

y1N

e~k,l !, ~2!
Fig. 4 Cast shadow gradient density observation.
1429Optical Engineering, Vol. 41 No. 6, June 2002
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Fung et al.: Effective moving cast shadow . . .
where (2N11) is the size of the window.
Figure 4 illustrates the gradient density change at

cast shadow area. As shown in Eqs.~1! and ~2!, gradient
density is defined as the magnitude of the gradient avera
over its neighboring pixels. Figures 4~a! and 4~b! depict the
gradient densities of the input image and the backgrou
image. The absolute difference between them is shown
Fig. 4~c!. As observed in Fig. 4~c!, there is no significant
gradient density difference in the cast shadow region. Ho
ever, in the vehicle region, the gradient density differen
between the input and background images varies sign
cantly. Since the shadow is cast on the background reg
the original gradient property of the background is not
fected too much by the shadow. However, the gradient d
tribution of the vehicle is mostly different from the back
ground. Therefore, most pixels in the vehicle region a
likely to have large gradient density difference between
input and background images.

Observation 4. The vehicle is approximately bounded b
its convex object mask. The cast shadow is always an
tension of this object mask.

Figure 5 shows the three regions including the ba
ground, object, and cast shadow of the input image. For
bus shown in Fig. 5, the convex-hull can accurately defi
the object region. Hence, the remaining foreground reg
can be classified as the cast shadow region. Theoretic
each vehicle can be approximately bounded by the conv
hull of the vehicle edge pixels. The shadow is then defin
as the remaining region within the foreground mask.

3.2 Proposed Method

Our proposed method, as shown in Fig. 6, aims to extr
the moving vehicles without the cast shadows from the s

Fig. 5 Vehicle convexity observation.
1430 Optical Engineering, Vol. 41 No. 6, June 2002
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tionary background in an image sequence. It is mainly
vided into two parts: the SCS computation and moving c
shadow detection.

Based on the observations of cast shadow as discu
in the last section, we transform the input image, the ba
ground image, and the MFM into a SCS map in the S
computation, in which the input image is subtracted fro
the background image in the luminance, chrominance,
gradient density domains. By mapping through vario
shadow score functions, these shadow scores in diffe
domains for each pixel are combined and transformed
an overall SCS, which indicates the likelihood of the pix
belonging to the cast shadow region. Based on the S
map, the object mask is determined in the moving c
shadow detection. In this detection algorithm, we obtain
edge pixels that belong to the vehicle through a thresh
filtering by their shadow confidence scores. The conv
hull of these vehicle edges is then determined and is use
define the object mask, whereas the remaining pixels in
MFM are classified as the shadow region.

4 SCS Computation

Let the input image and the background image be
scribed, respectively, as

I i~x,y!5H l I ,i~x,y!

cbI ,i~x,y!,crI ,i~x,y!

gI ,i~x,y!
J , ~3!

Bi~x,y!5H l B,i~x,y!

cbB,i~x,y!,crB,i~x,y!

gB,i~x,y!
J , ~4!

where x50, . . . ,W21, y50,q . . . ,H21, i is the frame
number,W is the width of the image,H is the height of the
image,l I ,i(x,y) is the luminance at pixel (x,y), cbI ,i(x,y)
and crI ,i(x,y) are the chrominance values at pixel~x, y!,
and gI ,i(x,y) is the gradient density at pixel~x, y! in the
input image. In addition, let the MFMMi(x,y) be defined
as
Fig. 6 Proposed method.
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Fig. 7 SCS computation.
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Mi~x,y!5H 1 uI i~x,y!2Bi~x,y!u.TBG

0, otherwise,
~5!

whereTBG is the threshold used in background subtracti
To indicate whether a pixel should be classified as c

shadow, an SCSSi(x,y) is defined. If the pixel is likely to
be part of a cast shadow, a highSi(x,y) will be given to
that pixel. On the other hand, if the pixel is likely to be pa
of an object or background, a lowSi(x,y) will be given.
The score is a probability value ranging from 0 to 1 inc
sive.

As shown in Fig. 7, the luminance, chrominance, a
gradient density values for each pixel are calculated fr
the input and background images. To calculate the ove
scoreSi(x,y), the three mapping functions are defined:
minance score@SL,i(x,y)# versus luminance difference
chrominance score@SC,i(x,y)# versus chrominance differ
ence, and gradient density score@SG,i(x,y)# versus gradi-
ent density difference. Then, the combined SCS@Si(x,y)#
is computed by combining these three individual scores

4.1 Luminance Score SL,i(x,y)

The luminance scoreSL,i(x,y) can be defined as follows
let Li(x,y) be the luminance difference between thei ’ th
input image and thei ’ th background image at location~x,
y! as given by

Li~x,y!5 l I ,i~x,y!2 l B,i~x,y!,

;~x,y! whereMi~x,y!51, ~6!

SL,i~x,y!5H 1, Li~x,y!<0

@TL2Li~x,y!#/TL , 0,Li~x,y!,TL

0, Li~x,y!>TL.

~7!

The mapping function of luminance score@SL,i(x,y)#
against luminance difference@Li(x,y)# is depicted in Fig.
8, whereTL is a predefined parameter to accommodate
acquisition noise in luminance domain. As discussed in
servation 1, the luminance values of the pixels in the in
image is lower than that of the corresponding pixels in
background image at the shadow. Therefore, a pixel wit
t

l

negative luminance difference value means that the
shadow criterion is satisfied and it is likely to be a ca
shadow. On the other hand, if the luminance value o
pixel in the input image is higher than that of the corr
sponding pixel in the background image~positive lumi-
nance difference value!, it does not satisfy the shadow cr
terion andSL,i(x,y) of the pixel tends to zero. ForLi(x,y)
between 0 andTL , a linear mapping from 0 to 1 is chose
to provide a smooth transition.

4.2 Chrominance Score SC,i(x,y)

The chrominance scoreSC,i(x,y) can be defined as fol
lows: let Ci(x,y) be the chrominance difference betwe
the i ’ th input image and thei ’ th background image at lo-
cation ~x, y! as given by

Ci~x,y!5ucbI ,i~x,y!2cbB,i~x,y!u1ucrI ,i~x,y!

2crB,i~x,y!u, ;~x,y! whereMi~x,y!51, ~8!

SC,i~x,y!

5H 1, Ci~x,y!<TC1

@TC22Ci~x,y!#/~TC22TC1!, TC1,Ci~x,y!,TC2

0, Ci~x,y!>TC2.
~9!

The mapping function of chrominance score@SC,i(x,y)#
against chrominance difference@Ci(x,y)# is depicted in
Fig. 9, whereTC1 and TC2 are predefined parameters

Fig. 8 Function SL,i(x,y) versus Li(x,y).
1431Optical Engineering, Vol. 41 No. 6, June 2002
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Fung et al.: Effective moving cast shadow . . .
accommodate the tolerance to acquisition noise in
chrominance domain. As discussed in observation 2,
chrominance value of a pixel in the input image is appro
mately the same as that of the corresponding pixel in
background image at the cast shadow region. Thus,
have observed that the change will occur only in the lum
nance dimension and there should be a very small cha
or no change in chrominance level. Therefore, forCi(x,y)
less thanTC1 , SC,i(x,y) is set to 1~high score! since it
satisfies the shadow criteria~small change! in the chromi-
nance domain. ForCi(x,y) larger thanTC1 , SC,i(x,y) is
set to 0 because of the large change in the chromina
domain. Smooth transition from 0 to 1 is implemented
the rest of the range of chrominance difference. For s
plicity, TC2523TC1 is chosen in this paper.

4.3 Gradient Density Score SG,i(x,y)

The gradient density scoreSG,i(x,y) can be defined as fol
lows: let Gi(x,y) be the gradient density difference b
tween thei ’ th input image and thei ’ th background image
at location~x, y! as given by

Gi~x,y!5gI ,i~x,y!2gB,i~x,y!,

;~x,y! where Mi~x,y!51, ~10!

SG,i~x,y!

5H 1, Gi~x,y!<TG1

@TG22Gi~x,y!#/~TG22TG1!, TG1,Gi~x,y!,TG2

0, Gi~x,y!>TG2.
~11!

Gradient densitiesgI ,i(x,y) andgB,i(x,y) are the average
of the gradient magnitude over a spatial window area in
input and background images. The mapping function
gradient density score@SG,i(x,y)# against gradient densit
difference@Gi(x,y)# is depicted in Fig. 10, whereTG1 and
TG2 are predefined parameters. As defined in observatio
after subtraction of gradient density values of the cor
sponding pixels in the input and background images,
gradient density values are mostly canceled out in the
shadow region. However, in the object region, there is s
nificant difference between the input and background
ages in gradient density. Therefore, a pixel with small g
dient density difference value is more likely to be part
the shadow andSG,i(x,y) is set to 1. For a pixel with high
gradient density difference, it is likely to be part of an o

Fig. 9 Function Sc,i(x,y) versus Ci(x,y).
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ject andSG,i(x,y) is set to 0. Smooth transition from 0 to
is implemented for the rest of the range. For simplici
TG2523TG1 is chosen in this paper.

4.4 Combined SCS Si(x,y)

After the three scores,SL,i(x,y), SC,i(x,y), andSG,i(x,y),
are calculated in the three difference domains, the to
Si(x,y) is computed by combining them:

Si~x,y!5J@SL,i~x,y!,SC,i~x,y!,SG,i~x,y!#. ~12!

Since each domain is a necessary requirement for the p
to be classified as cast shadow, hence functionJ is chosen
to be a logical AND function. Mathematically, direct mu
tiplication of SL,i(x,y), SC,i(x,y), and SG,i(x,y) can be
used, such that, Si(x,y)5SL,i(x,y)3SC,i(x,y)
3SG,i(x,y).

5 Moving Cast Shadow Detection

In the detection part, the cast shadow is separated from
object based on the shadow confidence scoreSi(x,y) and
the object edge pixels of the foreground masked input
age ~see Fig. 11!. All the pixels with significant gradient
values are detected using the edge detector within
MFM. These pixels are denoted asEi(x,y). For pixels with
high gradient values, a thresholdingTS is applied to discard
those with high shadow confidence score levels. This
also eliminates noise and edge pixels that do not belon
the vehicle. If a high gradient pixel has high shadow co
fidence score value, it will be discarded; otherwise, it w
be retained:

Ei~x,y!5H 0 ~discarded! for Si~x,y!.5Ts

1 ~retained! for Si~x,y!,Ts.
~13!

As discussed in observation 4, the vehicle can be s
mented out in the foreground mask by bounding conv
hull on the vehicle edge pixels. The remaining pixels with
the foreground mask are then classified as cast shadow
els.

6 Results and Discussions

In this section, 100 test samples are used to systematic
determine the parametersTL , TC1 , TG1 , andTS . The re-
sults of a test case are used to illustrate how the propo
method works step by step. Finally, the effect behavior
our method due to environment factors and vehicle fact

Fig. 10 Function SG,i(x,y) versus Gi(x,y).
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Fig. 11 Moving cast shadow detection.
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are detailed. The strengths and limitations of the propo
method are objectively analyzed based on these result

6.1 Evaluation Conditions

To test the effectiveness and robustness of the propo
method, some typical outdoor traffic image sequences
different roads in Hong Kong were captured and test
These image sequences were all captured by a Pana
DV camera, and transferred to a PC by a Canopus DV-R
through IEEE-1394. The image sequences were capt
under different lighting conditions, including sunny, cloud
and different time of the day, with the camera position
ther overhead or by the roadside. The camera was set
good coverage of the road lengthwise. Among these im
sequences, different vehicle samples were selected u
two different vehicle factors. These factors include vehi
types, such as small and large vehicles, and vehicle co
For evaluation purposes, reference object masks of the
hicles without their cast shadows are required for the c
culation of classification error. A reference object mask
each vehicle sample is defined manually by combining
visual observation on the images and the knowledge ab
the vehicle:

Ri~x,y!5H 1 if ~x,y! is in vehicle region defined

in the reference object mask

0 otherwise,
~14!

Oi~x,y!

5H 1 if ~x,y! is in vehicle region in the

object mask obtained by proposed me

0 otherwise,

~15!

FNMi~x,y!5H 1 if Ri~x,y!51 and Oi~x,y!50

0 otherwise,
~16!
d

ic

d

a

r

.
-

t

d

FPMi~x,y!5H 1 if Ri~x,y!50 and Oi~x,y!51

0 otherwise,
~17!

FNi5F (
k50

xsize21

(
l 50

ysize21

FNMi~k,l !G Y
F (

m50

xsize21

(
n50

ysize21

Ri~m,n!G , ~18!

FPi5F (
k50

xsize21

(
l 50

ysize21

FPMi~k,l !G Y
F (

m50

xsize21

(
n50

ysize21

Ri~m,n!G , ~19!

where

Ri(x,y) 5 reference object mask of thei ’ th frame
at pixel ~x, y!

Oi(x,y) 5 object mask of thei ’ th frame at pixel
~x,y!

FNMi(x,y) 5 false negative map of thei ’ th frame at
pixel ~x,y!

FPMi(x,y) 5 false positive map of thei ’ th frame at
pixel ~x, y!

FNi 5 false negative error rate of thei ’ th
frame

FPi 5 false positive error rate of thei ’ th frame

By comparing the object mask computed by our meth
and the reference object mask, two error rates, false p
tive (FPi) and false negative (FNi) as defined in Eqs.~18!
and ~19!, can be calculated. Note that the FPi error rate is
defined as the ratio of the number of nonvehicle pixels t
are incorrectly classified as vehicle pixels to the total nu
ber of vehicle pixels. The FNi error rate is defined as th
ratio of the number of vehicle pixels that are incorrec
1433Optical Engineering, Vol. 41 No. 6, June 2002
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1434 Optical En
Fig. 12 Impact of the performance by varying various parameters setting.
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classified as nonvehicle pixels to the total number of
hicle pixels. To objectively evaluate the error performan
of the method, the total error rate is taken, which is
mean of the FPi and FNi error rates of the 100 test case

6.2 Selection of TL , TC1 , TG1 , and TS

In this section, we explicitly evaluate the error performan
of the proposed method due to the different parameter
gineering, Vol. 41 No. 6, June 2002
-

tings. In our proposed method, there are four paramet
TL , the parameter for luminance score@SL,i(x,y)# func-
tion; TC1 , the parameter for chrominance score@SC,i(x,y)#
function;TG1 , the parameter for gradient score@SG,i(x,y)#
function; andTS , the threshold to retain the object edg
pixels. As there is a lack of a theoretical approach to de
mine the optimal parameter setting for this kind of proble
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Fig. 13 Results for a bus.
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we chose to embark on an experimental approach. We h
performed a brute force search over the Cartesian com
nations of parameter settings. The near optimal settin
determined as the setting that achieved the lowest error
averaged over the test images.

To illustrate the trends of the error performance due
different parameter settings, a subset of test result
shown in Fig. 12. The results are illustrated in four grap
For each graph, one of the parameters is varied while
others are fixed. Figure 12~a! shows the effect on the tota
error rate of varyingTL . A total error rate ranging from
14.37 to 15.22% was obtained forTL510 to 60, which
indicates that the selection ofTL setting will unlikely affect
the error performance much. However, given the minim
at TL530, this seems to offer a good choice. Figure 12~b!
e
-

e

shows the effect on the total error rate of varyingTC1 . The
total error rate hits the high of 39.50% atTC1510, then
settles down to approximately 15% forTC1 beyond 30. The
high error rate reported in the lowTC1 setting is mainly
caused by the misclassification of shadow region as ob
region. As mentioned in observation 2, there is a chro
nance shift at the cast shadow region. A largerTC1 will
enable our method to accept higher tolerance in the chro
nance shift. Figure 12~c! shows the effect on the total erro
rate of varyingTG1 is depicted. Similar to varyingTC1 ,
varying TG1 also starts with high error rate of 44.12%
TG1510 and ends at approximately 15% atTG1550 to 90.
There is a minimum atTG1560, but the difference is very
small. It is also caused by incorrectly classifying shad
Fig. 14 Results for a truck image taken on a cloudy day.
1435Optical Engineering, Vol. 41 No. 6, June 2002
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1436 Optical Engi
Fig. 15 Results for a truck image taken on a sunny day.
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region as object region. The high error rate reported fo
low TG1 setting is because the pixels on the shadow bor
are misclassified as vehicle edge pixels under sunny co
tion. Figure 12~d! shows the effect on the total error rate
varying TS . The small error rate range of 14.37 to 19.40
indicates a mild effect ofTS on the error performance. A
minimum is detected atTS50.94, giving approximately
14% error.

By setting TL530, TC1530, TG1560, andTS50.94,
the mean of total error rate averaged over 100 sample
13.95% and the standard deviation is 7.65%. The best e
rate is 3.23% and the worst is 33.46%.

6.3 Test Case

Figure 13 shows one of the test cases. The settingsTL

530, TC1530, TG1560, andTS50.94 are used. The out
put images at different stages of the proposed method
described step by step.

An image of a white and orange double-deck bus, wh
was captured on a sunny day, is shown in Fig. 13~a!. In Fig.
13~b!, the background color image was generated by
background estimation method of Ref. 19. After subtract
the background frame from the input frame, the MFM af
the morphological closing transform is shown in Fig. 13~c!,
where the white region is the foreground and the gray
gion is the background region. In Figs. 13~d!, 13~e!, and
13~f!, the foreground masked results forSL,i(x,y),
SC,i(x,y), and SG,i(x,y) are shown, respectively. In Fig
13~d!, some parts of the bus, such as the windows and
orange part, are recognized as shadow since they ha
luminance level similar to the background image. The
fore, luminance can provide only a limited indication of th
SCS. In Fig. 13~e!, based on the chrominance value, t
orange part of the bus is clearly classified as nonsha
because its chrominance value is significantly differ
from the background. In Fig. 13~f!, the pixels with large
gradient density difference are clearly marked as n
shadow. They include the blocked road lane mark~region
A! and the tree branches~regionB!. By combining the re-
sults forSL,i(x,y), SC,i(x,y), andSG,i(x,y), the total SCS
Si(x,y) is shown in Fig. 13~g!, in which only the cast
shadow region has a highSi(x,y) value ~shown in black!
while the vehicle region is surrounded by lowSi(x,y) val-
ues. However, the windscreen and the windows were in
rectly interpreted as shadow since they exhibit shadow-
characteristics. In Fig. 13~h!, the edge pixels that hav
shadow scores lower than thresholdTS are retained as ob
ject edge pixel. In Fig. 13~i!, the background, object, an
neering, Vol. 41 No. 6, June 2002
r
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shadow are shown in gray, white, and black, respectiv
after performing the convex-hull on the object edge pixe
It is important to use the convex-hull to bound the vehic
to recover the inner misclassified region. Comparing t
with the reference object mask, as depicted in Fig. 13~j!,
the false positive error rate is 2.18% and the false nega
error rate is 1.05%.

6.4 Effect of Environment Factors

6.4.1 Lighting conditions

It is important that the method works well under differe
lighting conditions. We tested our method under two diffe
ent lighting conditions: cloudy and sunny. On a cloudy d
as shown in Fig. 14~a!, the cast shadow is poorly define
since it is mainly caused by ambient light. However, t
computed foreground mask depicted in Fig. 14~b! clearly
includes a large region as shadow. The SCS is show
Fig. 14~c!. In Fig. 14~d!, by the proposed method, the ob
ject mask is successfully segmented by removing
shadow region. However, the right-hand mirror and t
lower part of the tires are misclassified as shadow regio
In Fig. 15, a similar truck image was taken on a sunny d
The shadow is clearly defined and exhibits a signific
change in luminance. Similarly, as shown in Fig. 15~d!, the
lower part of the tires is misclassified as shadow regi
Moreover, we noted that there is a shadow region corre
detected next to the right front of the truck. This shadow
cast on the concrete structure of the road but not on
road surface. Potentially, our proposed method is capabl
detecting multiple cast shadows.

In our test cases, there are vehicle samples taken u
different degree of cloudy condition and others taken un
different degree of sunny condition. As shown in Table
the error rates are both approximately equal to 14% un

Table 1 Effect on the error performance under different lighting con-
ditions.

Cloudy Sunny

Vehicle samples tested 20 79

Total error rate

Minimum 5.58% 3.23%

Maximum 33.25% 33.46%

Average 14.01% 13.93%

Standard deviation 7.34% 7.77%
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Fig. 16 Results for a van captured by a roadside camera.

Fig. 17 Results for a van captured by an overhead camera.
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different lighting conditions. From the results, it seems t
our method copes with the cloudy and sunny lighting co
ditions reasonably well.

6.4.2 Effect of viewing angles

Traffic surveillance cameras are mostly installed by
roadside or overhead. In Figs. 16 and 17, the results f
van captured by a roadside camera and an overhead ca
are shown. In both cases, most of the van is success
segmented with its shadow removed. In Fig. 16~d!, a small
part of the dark gray bumper is misclassified as shad
region since it exhibits shadow characteristics. In F
17~a!, there is a white road lane mark partially covered
the cast shadow of the van. As shown in Fig. 17~d!, this
lane mark does not affect our method and is correctly c
sified as shadow region. As shown in Table 2, under diff
ent viewing angle, the total error rates are approximat
equal to 14%. From the results, we find that the error p
formance of our method is not sensitive to the viewi
angle.

Table 2 Effect on the performance under different viewing angles.

Roadside Overhead

Vehicle samples tested 79 20

Total error rate

Minimum 3.23% 5.55%

Maximum 33.46% 28.31%

Average 14.06% 13.49%

Standard deviation 7.90% 6.70%
ra

6.5 Effect of Vehicle Factors

6.5.1 Vehicle types

There are many different vehicles on the road. Ve
broadly, a vehicle can be roughly classified as a motorb
a small vehicle~sedan, hatch, station-wagon, taxi!, and a
large vehicle~van, truck, minibus, bus!. In Figs. 18–20, the
results of applying our method to a motorbike, a sedan,
a bus are depicted, respectively.

In Fig. 18~d!, the computed object mask is under se
mented since the motorbike does not have a cuboid-
vehicle body. In Fig. 19~d!, since our proposed method us
the convex-hull to define the region border, small vehicl
such as a sedan, are not convex objects. Besides, the
hicle side mirror further increases the false positive err
As shown in Fig. 20~d!, our method performs better o
large vehicles since they are mostly cuboid and can be
scribed by a convex-hull. In Fig. 20~d!, there are holes in
the shadow region since the input image is very similar
the background image at these holes. Since a vehicle w
out a cast shadow is the objective of our method, there is
impact of having holes in the shadow region.

Table 3 Effect on the performance for different vehicle class.

Motorbike Small Vehicle Large Vehicle

Vehicle samples tested 7 45 47

Total error rate

Minimum 15.22% 5.58% 3.23%

Maximum 30.42% 33.46% 33.25%

Average 22.80% 15.07% 11.55%

Standard deviation 5.84% 7.43% 6.94%
1437Optical Engineering, Vol. 41 No. 6, June 2002
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1438 Optical Engi
Fig. 18 Results for a motorbike.

Fig. 19 Results for a sedan (small vehicle).

Fig. 20 Results for a bus (large vehicle).

Fig. 21 Results for a gray van (similar to road surface color).

Fig. 22 Results for a white/blue van (not similar to road surface color).
neering, Vol. 41 No. 6, June 2002
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Our argument is further supported in Table 3, in whi
our method achieves the lowest error rate for a large
hicle and the highest error rate for a motorbike.

6.5.2 Vehicle colors

We roughly divide vehicle colors into two classes: simi
to road surface color and not similar to road surface co
In Figs. 21 and 22, the results for a gray van and a colo
van are shown. A large part of the gray van is not correc
classified since this part is not successfully extracted
background subtraction. Our observation is further c
firmed in Table 4. Those vehicles that have colors simila
the road surface color will likely be undersegmented.

7 Conclusions

We presented a cast shadow detection method for esti
ing a vehicle outline. It can effectively separate ca
shadow from the vehicle under different environment a
vehicle factors. In our method, an SCS is computed in th
different domains: luminance, chrominance, and grad
density. Based on the shadow confidence score and the
ject edge pixels, the cast shadow is separated from the
hicle using convex-hull within the foreground mask.

We tested our proposed method on 100 different veh
samples captured in typical outdoor traffic scenes. Fr
our results and analysis of various vehicle samples, the
posed method can successfully separate the cast sh
and a moving vehicle. With settings ofTL530, TC1530,
TG1560, andTS50.94, the mean of error rate is 13.95
and the standard deviation is 7.65%. The lowest error
is around 3% for large vehicles. By observing the effect
the error performance of our method under varying en
ronment and vehicle factors, including different lightin
conditions, camera view angles, vehicle types, and veh
colors, we found that our proposed method is reasona
robust for various outdoor daylight environments and
hicles.

For future research, we will further investigate the use
a more efficient search algorithm to select an appropr
parameter setting for a typical traffic scene. In addition,
further improve the robustness of our proposed method,
intend to work on a continuous sequence of images of
same vehicle. Since the vehicle is a rigid body, the
tracted object masks should be consistent over the im
sequence. By analyzing the change of the object mask
an image sequence, we can further remove undes
shadow regions and recover the missing vehicle region

Table 4 Effect on the performance for different vehicle color.

Similar Nonsimilar

Vehicle samples tested 8 91

Total error rate

Minimum 9.68% 3.23%

Maximum 33.46% 33.25%

Average 18.00% 13.59%

Standard deviation 8.03% 7.55%
-
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